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1. INTRODUCTION

1.1. Background and motivation. Let K be a number field and de-
note by H its group of ideal classes. Since H is finite an interesting question
one may ask is how its size, the class number of K, denoted by h, varies as
K varies in some natural family of number fields. This question is in general
very difficult to answer. As an example, an unproven conjecture of Gauss is
that there are infinitely many real quadratic number fields with h = 1. Here
we will be interested in the opposite extreme. That is, we want to study how
large h can possibly be as K varies.

Littlewood [13] addresses this question in one of the simplest cases, for
K an imaginary quadratic field. His work makes use of the class number
formula for imaginary quadratic fields:

h = |d|1/2π−1L(1, χ),

where d is the discriminant of K, χ is a certain quadratic Dirichlet character
mod |d| and L(s, χ) is the associated Dirichlet L-function. Assuming the
generalized Riemann hypothesis (GRH) for all such L(s, χ), Littlewood is
able to prove that for imaginary quadratic number fields

(1) h ≤ c|d|1/2 log log |d|
for some absolute constant c. To show that his estimate is sharp he goes on
to prove, still assuming GRH, that there are imaginary quadratic number
fields with arbitrarily large discriminant d for which

(2) h ≥ c|d|1/2 log log |d|
for some absolute constant c (1). The key to his argument is the fact that,
under GRH, logL(1, χ) can be approximated by a relatively short sum over
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(1) The constant c is not necessarily the same at each occurrence.
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primes (2):

(3) logL(1, χ) =
∑

p≤(log |d|)1/2

χ(p)p−1 +O(1).

After showing that there are arbitrarily large discriminants for which χ(p)
= 1 for enough primes, the result follows from the asymptotic

(4)
∑

p≤x

p−1 = log log x+O(1).

Under the assumption of GRH, Littlewood’s method can be used to show
that for a real quadratic field of discriminant d we have

h ≤ cd1/2

(
log log d

log d

)

with an absolute constant c. Montgomery and Weinberger [15] show that the
analogue of Littlewood’s result (2) holds unconditionally for real quadratic
fields. They prove that there exist real quadratic fields with arbitrarily large
discriminant d, whose class numbers satisfy

h ≥ cd1/2

(
log log d

log d

)
,

by substituting for GRH a zero density estimate for Dirichlet L-functions.
They make use of the fact that the approximation (3) holds provided L(s, χ)
has no zeros near s = 1, then apply the zero density estimate to show that
such L-functions exist in sufficient abundance.

Duke [4, 5] proves analogous results for more general number fields. Af-
ter formulating the problem of extreme class numbers rather generally, he
proves [5] that there are abelian cubic number fields with arbitrarily large
discriminant d satisfying

(5) h ≥ cd1/2

(
log log d

log d

)2

for an absolute constant c. As in the work of Montgomery and Weinberger,
Duke is able to make use of a zero density estimate for Dirichlet L-functions
since the class number formula for abelian cubic fields gives

h =
d1/2

4R
|L(1, χ)|2,

where R is the regulator of the field and χ denotes a certain primitive
Dirichlet character. The primary difference between this and the imaginary
quadratic case is the presence of the regulator in the class number formula,
which arises from the presence of an infinite unit group in the cubic case.

(2) Littlewood actually uses a more elaborate approximation to get good explicit
constants in (1) and (2).
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To deal with this, Duke must construct an abundance of number fields for
which the value of χ(p) can be forced to be 1 for enough primes and for
which the size of the regulator can be controlled. The result (5) shows that
Duke’s [5] bound

h ≤ cd1/2

(
log log d

log d

)2

provided by GRH is sharp, up to the constant.
Duke [4] conditionally extends these results to certain classes of non-

abelian fields. Specifically, for a fixed n ≥ 2, he considers the set Kn of
number fields K of degree n over Q that are totally real and whose Galois
closures have Sn as their Galois group. The class number formula forK ∈ Kn

states that

h =
d1/2

2n−1R
L(1, χ),

where d is the discriminant ofK, R is the regulator and L(s, χ) = ζK(s)/ζ(s)
is an Artin L-function. Under the assumptions that these Artin L-functions
are entire (Artin’s conjecture) and satisfy GRH, it can be shown that for
K ∈ Kn,

h ≤ cd1/2

(
log log d

log d

)n−1

with an absolute constant c. To show this estimate is sharp, Duke is able
to produce, still under the assumptions of entirety and GRH for Artin L-
functions, fields K ∈ Kn with arbitrarily large discriminant d for which

(6) h ≥ cd1/2

(
log log d

log d

)n−1

.

Here the constant c depends only on n. Note that for n = 2, this is just a
restatement of the Montgomery and Weinberger result. There are two main
ingredients to Duke’s construction. The first consists of finding fields in Kn

for which R is relatively small. Duke then proves an analogue for Artin
L-functions of Littlewood’s result, that if L(s, χ) is entire and satisfies GRH
then

(7) logL(1, χ) =
∑

p≤(log N)1/2

χ(p)p−1 +O(1),

where N is the conductor of χ and the implied constant depends only on n,
the degree of χ. The remainder of his argument is to show that χ(p) can be
forced to be n − 1 for enough primes, for arbitrarily large values of d. The
result follows as above after an application of (4).

1.2. Statement of results. In this paper we will establish an uncon-
ditional version of Duke’s result for K3. Specifically we will prove
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Theorem 1. There exists an absolute constant c > 0 so that there are

totally real non-abelian cubic number fields with arbitrarily large discrimi-

nant d satisfying

h ≥ cd1/2

(
log log d

log d

)2

.

To prove this theorem we apply the technique of Montgomery and Wein-
berger, and use a zero density estimate to replace the need for GRH. The
approach we use is suggested in the final section of [5]. Specifically, we prove
an estimate for the total number of zeros of certain families of automor-
phic L-functions near s = 1 (Theorem 5). It should be noted that in order
to apply this theorem we may only consider families of fields whose Artin
L-functions are known to be automorphic. This is one reason why we have
been able to make Duke’s result unconditional only in the case n = 3. How-
ever, along the same lines we are able to prove the following result, which
extends Theorem 1 to the case of cubic fields with negative discriminant,
which we henceforth refer to as complex cubic fields.

Theorem 2. There exists an absolute constant c > 0 so that there are

complex cubic number fields with arbitrarily large discriminant d satisfying

(8) h ≥ c|d|1/2 (log log |d|)2
log |d| .

As in the totally real case, Theorem 2 shows that the bound for h pro-
vided by GRH

h ≤ c|d|1/2 (log log |d|)2
log |d|

is essentially sharp. Duke [5] suggested a conditional proof (based on Lit-
tlewood’s technique) for this bound; we supply the details in Proposition 3
below.

There are only two possible signatures for cubic number fields, depending
on the sign of the discriminant. Theorems 1 and 2 treat each case in complete
generality. However, in the case of negative discriminant we can prove a
specialized result for a certain subclass of fields, namely the pure cubic fields.
These are cubic fields of the form Q( 3

√
r), r ∈ Q. The upper bound on the

class number of such fields provided by GRH is slightly stronger than that
deduced above for general complex cubic fields. As with complex cubic fields,
we show in Proposition 3 that under the assumption of GRH we have

h ≤ c|d|1/2 log log |d|
log |d|

for pure cubic fields with an absolute implied constant c. That this bound
is essentially sharp follows from the next result.
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Theorem 3. There exists an absolute constant c > 0 so that there are

pure cubic number fields with arbitrarily large discriminant d satisfying

(9) h ≥ c|d|1/2 log log |d|
log |d| .

We remark that Theorem 3 can be proven using existing zero density
estimates (e.g. those due to Huxley [10], etc.) for families of L-functions
of Hecke characters defined over a fixed number field, while the proofs of
Theorems 1 and 2 require a zero density estimate such as that of Theorem 5.
This is due to the fact that the method of Montgomery and Weinberger we
use requires us to estimate the number of zeros of a certain family of L-
functions of Hecke characters defined on quadratic fields. These quadratic
fields are all the same for pure cubic fields, but must vary in general if we
are to force the class number to be as large as allowed by GRH (3). It is in
applicability to the case of varying field of definition that our zero density
estimate supersedes its predecessors.

2. L-FUNCTIONS

The primary goal of this section is the proof of Theorem 5, which gives
an upper bound for the total number of zeros near s = 1 of the L-functions
of a certain family of automorphic representations. For L-functions with
completely multiplicative coefficients, techniques based on sieve methods for
proving such theorems are well established (see [9, 14]). In order to apply
these techniques to the L-functions of automorphic representations, which
do not have completely multiplicative coefficients, we replace them by new L-
series. These new series share the zeros of the originals, but have coefficients
with the desired multiplicativity property. After proving a sieve inequality
analogous to that established by Duke and Kowalski [6] for the new L-series,
we use well known machinery to obtain the zero density theorem.

2.1. Preliminaries. In this section we recall the basic definitions and
theorems that we will need later. Throughout, s = σ + it will denote a
complex variable.

We begin with Artin L-functions. Let K/k be a finite Galois extension
of number fields and let π be a finite-dimensional complex representation
of G(K/k). For a prime p of k let Dp, Ip and σp denote the decomposition
group, inertia group and Frobenius element, respectively, of any prime P of
K over p. If V is the space of π then let V Ip denote the subspace of vectors

(3) In general, if we hold the associated quadratic field fixed, the GRH conditional
upper bound on the class number of a non-abelian cubic number field is smaller than that
mentioned above. See the proof of Lemma 9.



220 R. C. Daileda

fixed by Ip. Define

Lp(s,K/k, π) = det(I − π(σp)|V IpN(p)−s)−1.

The Artin L-function associated to π is then

L(s,K/k, π) =
∏

p

Lp(s,K/k, π).

The factors Lp(s,K/k, π) are all of the form
n∏

i=1

(1 − αi(p)N(p)−s)−1

where n is the dimension of π and |αi(p)| ≤ 1 for all p and i. In fact, since
G is finite it is clear from their definition that the αi(p) are roots of unity
or 0. This implies that the Euler product defining L(s,K/k, π) converges
uniformly on σ ≥ σ0 > 1/2 to a holomorphic function.

For the remainder of this section we set k = Q. Expand the Euler prod-
uct as a Dirichlet series

L(s,K/Q, π) =

∞∑

m=1

λ(m)m−s.

It is immediate that λ(p) =
∑

i αi(p) for all primes p. In particular, we find
that for p unramified in K, λ(p) = Tr(π(σp)).

As is well known, an Artin L-function has a meromorphic continuation
to all of C. The Artin conjecture asserts that if π does not contain the trivial
representation then L(s,K/Q, π) is actually entire. While this is not known
to be true in general, it will hold for the L-functions we consider.

An Artin L-function also satisfies a functional equation relating its value
at s to the value of a related function at 1 − s. To state it we first define

LR(s) = π−s/2Γ (s/2).

Let χ = Tr ◦ π be the character of π. If τ is the element of G(K/Q) corre-
sponding to complex conjugation then we set

n+ =
χ(1) + χ(τ)

2
, n− =

χ(1) − χ(τ)

2
and

L∞(s,K/Q, π) = LR(s)n+
LR(s+ 1)n−

.

The completed L-function Λ(s,K/Q, π) = L∞(s,K/Q, π)L(s,K/Q, π) then
satisfies the functional equation

(10) Λ(1 − s,K/Q, π) = επN
s−1/2Λ(s,K/Q, π̃).

Here N is an integer, the conductor of π, επ is a complex number of absolute
value 1 and π̃ is the representation contragredient to π. The Generalized Rie-
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mann Hypothesis (GRH) is the assertion that all of the zeros of Λ(s,K/Q, π)
lie on the line σ = 1/2.

We now turn to automorphic L-functions. By a cuspidal automorphic

representation of GL(2) over Q we will mean an irreducible unitary rep-
resentation of GL(2,AQ) that occurs in the right regular representation of
GL(2,AQ) on the space L2

0(GL(2,Q) \GL(2,AQ), ω) of cusp forms, where ω
is a unitary character (the so-called central character) of Z(GL(2,AQ)) that
is trivial on Q×. See [1, 7] for notation and additional background. While
this is not the most general definition (see [7]), it is sufficient for our appli-
cations. For us, the most relevant piece of information regarding a cuspidal
automorphic representation π is the fact that it decomposes as a restricted
tensor product of local representations πv of GL(2,Qv), where v runs over
the places of Q. The factor π∞ will be called the infinite part of π.

Let π be a cuspidal automorphic representation of GL(2) over Q and let
L(s, π) denote the finite part of the L-function of π. Then L(s, π) is given
by the degree 2 Euler product

L(s, π) =
∏

p

(1 − α1(p)p
−s)−1(1 − α2(p)p

−s)−1,

which converges absolutely and uniformly for σ = Re s sufficiently large
(below we will see just how large). The parameters in each local factor are
determined by the finite local factors πv alluded to above.

As is well known, L(s, π) has analytic continuation to the entire complex
plane and satisfies a functional equation relating its value at s to its value
at 1 − s. The infinite part of π determines complex numbers µ1, µ2 with
Reµj > −1/2, so that if

L∞(s, π) = LR(s+ µ1)LR(s+ µ2)

and we set

(11) Λ(s, π) = L∞(s, π)L(s, π)

then

(12) Λ(s, π) = επq
1/2−sΛ(1 − s, π̃).

Here επ is a complex number of absolute value 1, q is an integer called the
conductor of π and π̃ is the representation contragredient to π (see [11]).
For our purposes, it is enough to know that the local parameters defining
Λ(s, π̃) are the complex conjugates of those defining Λ(s, π) (see [21]). It is
well known that Λ(s, π) is an entire function of order 1, the zeros ̺ of Λ
satisfying 0 ≤ Re ̺ ≤ 1.

Using the functional equations together with the Phragmén–Lindelöf
convexity principle [18] one can readily deduce the following bounds, valid
in the region σ < 1.



222 R. C. Daileda

Lemma 1. Let L/Q be a finite Galois extension and let π be an n-
dimensional complex representation of G(L/Q). If N is the conductor of

π and the associated Artin L-function L(s, L/Q, π) satisfies Artin’s conjec-

ture then

|L(s, L/Q, π)| ≪n N
3/4−σ/2|1 + s|n(3/4−σ/2)

for all −1/2 ≤ σ ≤ 3/2.

Lemma 2. Let π be a cuspidal automorphic representation of GL(2)
over Q with conductor q. Let L(s, π) be the associated L-function and sup-

pose that there is a c < 1/2 so that

(13) |αi(p)| ≤ pc

for all i, p. Then for −1/2 ≤ σ ≤ 3/2 we have

L(s, π) ≪∞ (1/2 − c)2q3/4−σ/2|s+ 3/2|3/2−σ.

The notation means that the implied constant depends only on the infinite

part of π.

As one may take c = 3/10 (see [21]) we see that this lemma holds for
all cuspidal automorphic π, and we can in fact ignore the factor dependent
on c. However, we will only be applying this lemma to L-functions satisfying
the Ramanujan–Petersson conjecture so that we may in fact take c = 0.

We will make use of the following general results on the vertical distribu-
tion of the zeros of Λ(s, π), where π is a cuspidal automorphic representation
of GL(2) over Q. They can be proven in the same way as the analogous re-
sults for Dirichlet L-functions [3].

Proposition 1. Let π be a cuspidal automorphic representation of

GL(2) over Q with conductor q. Then for any t ∈ R the zeros ̺ = β + iγ of

Λ(s, π) satisfy

#{̺ : |t− γ| < 1} ≪ log(q(|t| +m)),

where m ≥ 2 is a constant depending only on the infinite part of π and the

implied constant is absolute.

Corollary 1. Let π be a cuspidal automorphic representation of GL(2)
over Q with conductor q. Then for any T ≥ 1/2 the zeros ̺ = β + iγ of

Λ(s, π) satisfy

#{̺ : |γ| ≤ T} ≪ T log((T +m)q),

where m ≥ 2 is a constant depending only on the infinite part of π and the

implied constant is absolute.

2.2. Sieve inequalities. As above, let π denote a cuspidal automorphic
representation of GL(2) over Q and let L(s, π) denote the finite part of the
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L-function of π:

L(s, π) =
∏

p

(1 − α1(p)p
−s)−1(1 − α2(p)p

−s)−1.

We suppose that π satisfies the Ramanujan–Petersson conjecture:

|αi(p)| ≤ 1

for all i, p. Writing L(s, π) as a Dirichlet series

L(s, π) =
∞∑

n=1

λπ(n)n−s,

we let
Lc(s, π) =

∏

p≥K

(1 − λπ(p)p−s)−1

where K is a constant whose value will be chosen later. If we write Lc(s, π)
as a Dirichlet series

Lc(s, π) =
∞∑

n=1

lπ(n)n−s

then lπ(p) = λπ(p) for p ≥ K and lπ(p) = 0 for p < K. Note that whereas
the coefficients of L(s, π) are multiplicative, those of Lc(s, π) are completely

multiplicative. This will be important. The functions L and Lc are related
through the following lemma.

Lemma 3. Let L(s, π) and Lc(s, π) be as above. Then for sufficiently

large K there is an Euler product

H(s, π) =
∏

p

Hp(s, π)

which converges uniformly and absolutely for σ ≥ σ0 > 1/2 satisfying

Lc(s, π) = H(s, π)L(s, π).

Moreover , on σ > 1/2 the function H(s, π) is free from zeros and satisfies

the bound

H(s, π) ≪K (σ − 1/2)−2.

Proof. To simplify notation, we omit π in what follows and write X =
p−s. We define the local factors as follows. Let

Hp(s) =





(1 − α1(p)X)(1 − α2(p)X) for p < K,

(1 − α1(p)X)(1 − α2(p)X)

1 − λ(p)X
for p ≥ K.

Note that we need K to be large enough to ensure that the denominator
of this expression does not vanish for σ > 1/2. Since the local factors of H
are just the quotients of the local factors of L and Lc, the equality Lc(s) =
H(s)L(s) is a formal consequence of the definitions.
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To prove the convergence properties of H(s), note first that for p > K,

Hp(s) = 1 +
α1α2X

2

1 − (α1 + α2)X

since λ(p) = α1(p) + α2(p). Now if K is sufficiently large, the Ramanujan–
Petersson conjecture (which we have assumed to be true) gives

∣∣∣∣
α1α2X

2

1 − (α1 + α2)X

∣∣∣∣ ≤ 2|X|2

for all σ > 1/2. The convergence properties as stated above then follow.
The bound for H is easily deduced from the following more general

statement. If H(s) =
∏

pHp(s) and there is a C > 0 so that |Hp(s)| ≤
1 + Cp−2σ for all p and σ > 1/2 then

|H(s)| ≪ (σ − 1/2)−C ,

the implied constant depending only on C. To prove this, note that

1 + Cp−2σ =
1 + Cp−2σ

(1 + p−2σ)C
(1 − p−4σ)C(1 − p−2σ)−C .

The first two terms give rise to Euler products which are bounded for σ >
1/2 and the last term yields ζ(2σ)C .

This lemma provides the analytic continuation of Lc(s, π) to σ > 1/2,
and shows that the zeros of Lc in this region coincide with those of L.

In [6] it is shown that the coefficients λπ(n) of the L-functions of certain
families of automorphic representations satisfy a sieve inequality. Their proof
is based on the analytic properties of the L-functions, and given the relation-
ship between L and Lc it is not surprising that we can modify their proof to
give the analogous sieve inequality for the coefficients lπ(n). However, as in
the case of Dirichlet L-functions, in order to prove our zero density theorem
we require a more general inequality that sieves not only over a family of
representations but also over a collection of points.

To be specific, for Q > 0 we let S(Q) denote a family of cuspidal auto-
morphic representations of GL(2) over Q that have the same infinite part
(for all Q), satisfy the Ramanujan–Petersson conjecture and have conduc-
tors bounded by Q. Let T, δ > 0 and for each π ∈ S(Q) let S(π) be a set of
real numbers satisfying:

• |t− t′| ≥ δ for distinct t, t′ ∈ S(π);
• |t| ≤ T for all t ∈ S(π).

We denote by S the set of all pairs (π, t) with π ∈ S(Q) and t ∈ S(π). The
cardinality of a finite set A is denoted by |A|. If a = (ai)I is a finite sequence
of complex numbers indexed by I we denote by ‖a‖ the L2-norm of a. The
result that we require is the following.
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Theorem 4. Let everything be as above and assume that

|S(Q)| = O(Qd)

for some d > 0 and that T ≥ max{1, δ}. Then, if K is sufficiently large,
there exists a constant E > 2 such that if β > 2(d + 1) and N > Qβ then

for any ε > 0, F > 1 we have
∑

(π,t)∈S

∣∣∣
∑

n≤N

anlπ(n)nit
∣∣∣
2
≪ε,F N1+ε(δ−F + TEδ−1)‖a‖2

for any sequence a = (an)1≤n≤N of complex numbers.

Proof. The inequality we seek to prove is equivalent to the estimate

‖TN,Q‖2 ≪ε N
1+ε(δ−F + TEδ−1)

for the norm of the linear operator

TN,Q : CN → C|S|, (an)1≤n≤N 7→
( ∑

n≤N

anlπ(n)nit
)

(π,t)∈S
.

By general theory the norm of TN,Q is the same as the norm of the conjugate
of its adjoint

T ∗
N,Q : C|S| → CN , (α(π,t))(π,t)∈S 7→

( ∑

(π,t)∈S
α(π,t)lπ(n)nit

)
1≤n≤N

.

Choosing a smooth, compactly supported ψ : [0,∞) → [0, 1] satisfying

ψ(x) = 1 for x ∈ [0, 1] we find that for any α ∈ C|S|,

‖T ∗
N,Q(α)‖2 ≤

∑

n≥1

∣∣∣
∑

(π,t)∈S
α(π,t)lπ(n)nit

∣∣∣
2
ψ(n/N).

Expanding the square and swapping the order of summation gives

‖T ∗
N,Q(α)‖2 ≤

∑

(π,t)∈S

∑

(π′,t′)∈S
α(π,t)α(π′,t′)SN (π, π′, t− t′)

where

SN (π, π′, t) =
∑

n≥1

lπ(n)lπ′(n)ψ(n/N)nit.

By Lemma 1 of [6],

‖T ∗
N,Q(α)‖2 ≤ max

(π,t)∈S

∑

(π′,t′)∈S
|SN (π, π′, t− t′)|

so that we are reduced to studying the SN (π, π′, t).
If ψ̂(s) denotes the Mellin transform of ψ,

ψ̂(s) =

∞\
0

ψ(t)ts
dt

t
,
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then by Mellin inversion

ψ(t) =
1

2πi

\
(3)

ψ̂(s)t−s ds

where the integral is taken over the line σ = 3. Consequently we get the
integral representation

SN (π, π′, t) =
1

2πi

\
(3)

∑

n≥1

(lπ(n)lπ′(n)n−s+it)ψ̂(s)N s ds.

If we set

Lb(s, π1, π2) =
∑

n≥1

lπ1(n)lπ2(n)n−s

then

(14) SN (π, π′, t) =
1

2πi

\
(3)

Lb(s− it, π, π̃′)ψ̂(s)N s ds.

We will bound this integral by studying the analytic properties of
Lb(s, π1, π2). This we will do by relating it to the Rankin–Selberg L-function
L(s, π1 ⊗ π2) (see [1, 2]) through the next lemma.

Lemma 4. Let π1 and π2 be cuspidal automorphic representations of

GL(2) over Q satisfying the Ramanujan–Petersson conjecture. If K in the

definition of Lc(s, πi) is taken sufficiently large (independently of the πi)
then there exists an Euler product

H(s, π1, π2) =
∏

p

Hp(s, π1, π2)

so that Lb(s, π1, π2) = H(s, π1, π2)L(s, π1 ⊗ π2). Moreover , H(s, π1, π2) is

holomorphic on σ > 1/2 and for any ε > 0 satisfies the bound

H(s, π1, π2) ≪ε [q1, q2]
ε(σ − 1/2)−A,

where qi is the conductor of πi, for some A > 0.

We will return to the proof of this lemma shortly. For now we note
that, as above, it provides the continuation of Lb to σ > 1/2 since the
Rankin–Selberg L-function is known to have such a continuation. Indeed, in
our situation it is known [1, 2] that L(s, π ⊗ π̃′) is holomorphic on σ > 1/2
unless π = π′, in which case it has a simple pole at s = 1.

We now shift the contour in the representation (14) to the line σ =

1/2 + c, where c is a positive constant to be chosen later. Since ψ̂ is rapidly
decreasing on vertical strips and L(s, π⊗π̃′) is of at most polynomial growth
(we will see why shortly), the lemma shows that shifting the contour is
permissible. If we let Rπ denote the value of the residue of L(s, π ⊗ π̃) at
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s = 1 then we find that

SN (π, π′, t) = δ(π, π′)H(1, π, π̃)ψ̂(1 + it)N1+itRπ

+
1

2πi

\
(1/2+c)

Lb(s− it, π, π̃′)ψ̂(s)N s ds.

Since H(1, π, π̃) ≪ Q2ε, ψ̂(1 + it) decreases more rapidly than any power
of t, and Rπ ≪ Qε (this follows from the Ramanujan–Petersson conjecture),
we find that the first term above is ≪ NQε|t|−F for any F > 0. As to the
integral, from the functional equation for L(s, π ⊗ π̃′) and the Phragmén–
Lindelöf principle it follows that

L(1/2 + c+ it, π ⊗ π̃′) ≪ Q1−2c|t|E

for some E > 0 (the value of E depends only on the infinite parts of the π’s).

Using the bound for H provided by the lemma and the rapid decay of ψ̂ on
the line we get the bound

≪ c−AN1/2+cQ1−2c+ε|t|E+1

for the integral. If N > Qβ and we take c = (logN)−1 then this is

≪ N1/2+1/β+ε|t|E+1.

Applying these estimates we find that for any (π, t) ∈ S,
∑

(π′,t′)∈S
|SN (π, π′, t− t′)|

≪ NQε +
∑

t′∈S(π)
t′ 6=t

|t− t′|−F +N1/2+1/β+ε
∑

π′∈S(Q)

∑

t′∈S(π′)

|t− t′|E+1

≪ N1+ε/β(δ−F + 1) +N1/2+(d+1)/β+εTE+1(Tδ−1 + 1)

≪ N1+ε(δ−F + TE+1(Tδ−1 + 1)) ≪ N1+ε(δ−F + TE+2δ−1)

provided F > 1 and β > 2(d+ 1).

Proof of Lemma 4. Because both L and Lb have Euler product repre-
sentations, we proceed locally. As before, we write X = p−s and omit p
from our notation when it will cause no confusion. The Euler factor for
the Rankin–Selberg L-function at a prime p that is unramified for both π1

and π2 is given by

Lp(s)
−1 =

∏

i=1,2
j=1,2

(1 − α1iα2jX),
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and at a ramified prime by

Lp(s)
−1 =

∏

1≤i≤m

(1 − βiX)

where the βi are complex numbers and m ≤ 4. The Euler factors of the
function Lb are given by

Lb,p(s)
−1 = 1 − λπ1(p)λπ2(p)X = 1 − (α11(p) + α12(p))(α21(p) + α22(p))X

for p ≥ K and by Lb,p(s) = 1 for p < K.

We now setHp(s) = Lb,p(s)/Lp(s) for all primes. That Lb(s) = H(s)L(s)
is then a formal consequence of this definition, so it only remains to verify
the stated properties of H. We first note that for unramified p > K,

Hp(s) = 1 +
X2f(X)

1 − (α11 + α12)(α21 + α22)X
,

where f(X) is a polynomial of degree at most 2 whose coefficients are poly-
nomials in the α’s. For σ > 1/2 the Ramanujan–Petersson conjecture gives

|1 − (α11 + α12)(α21 + α22)X| ≥ 1 − 4p−1/2 ≥ 1/2

provided K ≥ 17. Thus

X2f(X)

1 − (α11 + α12)(α21 + α22)X
≪ |X|2|f(X)|.

The Ramanujan–Petersson conjecture again shows that for σ > 1/2 we
have |f(X)| ≪ 1. Consequently the Euler product converges uniformly and
absolutely for σ ≥ σ0 > 1/2 and therefore represents a holomorphic function
on σ > 1/2.

To bound H we apply the same reasoning as in Lemma 3 to the unram-
ified primes, since we have just shown that |Hp(s)| ≤ 1 + Ap−2σ for p ≥ K
(it is easy to compensate for the fact that this may not hold for finitely
many primes: this will simply introduce another constant in the bound that
depends on K). It remains to deal with the ramified primes. Since we are
dealing with representations of GL(2), L(s, π1 ⊗ π2) is the L-function of an
automorphic form on GL(4). This is a case of Langlands functoriality due
to Ramakrishnan [20]. Consequently at the ramified places we may use the
well known bound |βi(p)| < p1/2. Thus, for any ramified p we have

|Hp(s)| ≤ 2
∏

1≤i≤m

(1 + p1/2p−σ) ≤ 25 = C1.

So for the product over the ramified primes we have
∣∣∣
∏

p|[q1,q2]

Hp(s)
∣∣∣ ≤

∏

p|[q1,q2]

C1 ≪ε [q1, q2]
ε
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since the number of primes dividing an integer n is O(logn/log logn) (this
is an easy consequence of an argument in Chapter 22 of [8]).

We now wish to replace the sets S(π) of real numbers by sets of complex
numbers and prove an analogous sieve inequality. To be specific, for each
π ∈ S(Q) we now let S(π) be a set of complex numbers s = σ + it and
suppose that there exist T, δ > 0 and σ0 > 1/2 so that

• |t− t′| ≥ δ for distinct s, s′ ∈ S(π);
• |t| ≤ T for all s ∈ S(π);
• σ ≥ σ0 for all s ∈ S(π).

As before, let S be the set of all pairs (π, s) with π ∈ S(Q) and s ∈ S(π).

Corollary 2. Let everything be as above and assume that

|S(Q)| = O(Qd)

for some d > 0 and that T ≥ max{1, δ}. Then, if K is sufficiently large,
there exists a constant E > 2 such that if β > 2(d + 1) and N > Qβ then

for any ε > 0, F > 1 we have
∑

(π,s)∈S

∣∣∣
∑

n≤N

anlπ(n)n−s
∣∣∣
2
≪ε,F N1+ε(δ−F + TEδ−1)

∑

n≤N

|an|2n−2σ0

for any sequence a = (an)1≤n≤N of complex numbers.

Proof. We use the identity

N∑

n=1

ann
−s = a1(1 −Nσ0−σ) +Nσ0−σ

N∑

n=1

ann
−(σ0+it)

+ (σ − σ0)

N\
2

( ∑

2≤n≤u

ann
−(σ0+it)

)
u−σ+σ0−1 du

to remove dependence on the real part and apply the theorem. See Chapter
7 of [14] for the details. We end up with

∑

(π,s)∈S

∣∣∣
∑

n≤N

anlπ(n)n−s
∣∣∣
2

≪ QdTδ−1|a1|2 +N1+ε(δ−F + TEδ−1) log logN
∑

n≤N

|an|2n−2σ0 ,

which gives the result provided β > 2(d+ 1).

2.3. A zero density estimate. We are now in a position to prove our
theorem on the zeros of families of automorphic L-functions. Our develop-
ment here closely follows that of [9]. For an automorphic representation π,
σ > 1/2 and T > 0 let N(σ, T, π) denote the number of zeros of L(s, π)
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in the rectangle R(σ, T ) = [σ, 1] × [−T, T ]. We aim to obtain a non-trivial
upper bound for ∑

π∈S(Q)

N(σ, T, π).

As proven in the preceding section, the zeros of L(s, π) and Lc(s, π) in any
such rectangle coincide, so it is sufficient to work with the latter.

Since Lc(s, π) has completely multiplicative coefficients, if we set

MX(s, π) =
∑

n≤X

µ(n)lπ(n)n−s

then

Lc(s, π)MX(s, π) = 1 +
∑

n>X

anlπ(n)n−s where an =
∑

d|n
d≤X

µ(d).

Applying Mellin inversion to Γ (s) we obtain

1

2πi

\
(3)

Lc(s+ w, π)MX(s+ w, π)Γ (w)Y w dw

= e−1/Y +
∑

n>X

anlπ(n)n−se−n/Y .

We take s to be a zero ̺ = β + iγ of Lc(s, π) with 1/2 < β, and shift the
contour of integration to the line Rew = 1/2−β+ c, where c is a small pos-
itive constant whose exact value will be chosen later. Because Lc(̺, π) = 0,
we pick up no residues in shifting the contour. Our formula thus becomes

(15)
1

2πi

\
(1/2−β+c)

Lc(s+ w, π)MX(s+ w, π)Γ (w)Y w dw

= e−1/Y +
∑

n>X

anlπ(n)n−se−n/Y .

Since the Ramanujan–Petersson conjecture implies that |λπ(p)| ≤ 2,
from the complete multiplicativity of lπ it follows that

|lπ(n)| ≤
∏

p|n
2vp(n) ≤ n.

Consequently
∣∣∣
∑

n>lY

anlπ(n)n−̺e−n/Y
∣∣∣ ≤

∑

n>lY

∑

d|n
d≤X

n1−βe−n/Y ≪ Y 3/2e−l(l + 1) log Y

provided l > 1 and X ≤ Y . To obtain this estimate, reverse the order of
summation and approximate the resulting inner sum by an integral. If we
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take l = 2 log Y then in fact the above is

≪ Y −1/2(log Y )2.

The upshot of this is that we have
∣∣∣
∑

n>lY

anlπ(n)n−̺e−n/Y
∣∣∣ <

1

6

for all sufficiently large Y . Likewise, e−1/Y ≥ 5/6 for all sufficiently large Y .
Thus, from (15) we conclude that for all sufficiently large Y ,

(16)
∣∣∣
∑

X<n≤lY

anlπ(n)n−̺e−n/Y
∣∣∣ ≥ 1

3

or

(17)
∣∣∣

\
(1/2−β+c)

Lc(s+ w, π)MX(s+ w, π)Γ (w)Y w dw
∣∣∣ ≥ 2π

3
.

This gives us a means of detecting zeros of Lc(s, π) in R(σ, T ). To estimate
the total number of zeros, we sum the quantities on the left hand sides of
(16) and (17) over (almost) all of the zeros, then bound the resulting sums
using the sieve inequality of the preceding section. Zeros that satisfy (16)
are said to be of class (i) and those that satisfy (17) are said to be of class

(ii). We will treat each class of zeros separately.
We begin by selecting from the collection of all zeros some well spaced

representatives. From Corollary 1 we know that

#{̺ : L(̺, π) = 0, 0 ≤ β ≤ 1, |γ| ≤ T} ≪ T log((T +m)qπ)

where m ≥ 2 is a constant whose value depends only on the infinite part
of π. Consequently, for each π ∈ S(Q) we can choose a subset of the zeros in
R(σ, T ) that have imaginary parts separated by at least 1 and that account
for a proportion ≫ (T log((T +m)Q))−1 of all of the zeros in this rectangle.
We call these zeros the representative zeros, and denote by RA(π) the set of
representative zeros of Lc(s, π) of class A. Let SA denote the set of all pairs
(π, ̺) with π ∈ S(Q) and ̺ ∈ RA(π).

In order to deal with the class (i) zeros effectively we must subdivide
the class. To do this, write (X, lY ] as the union of intervals of the form
Ir = (2rY, 2r+1Y ], the first and last intervals instead being (X, 2r0+1Y ] and
(2r1Y, lY ], respectively. By the triangle inequality we find that for any zero
̺ of class (i) there is an r ∈ [r0, r1] so that

∣∣∣
∑

n∈Ir

anlπ(n)n−̺e−n/Y
∣∣∣ ≥ 1

3(r1 − r0 + 1)
≫ (logY )−1.

A zero satisfying this inequality will be called a class (i, r) zero. Applying
Corollary 2, we see that the representative zeros of class (i, r) number
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≪ (log Y )2
∑

(π,̺)∈S(i,r)

∣∣∣
∑

n∈Ir

anlπ(n)n−̺e−n/Y
∣∣∣
2

≪ (log Y )2(2r+1Y )1+εTE
∑

n∈Ir

|an|2n−2σe−2n/Y

≪ (log Y )2(2r+1Y )1+εTE
∑

n∈Ir

d(n)2n−2σe−2r+1

≪ (log Y )2(2r+1Y )1+εTE(2rY )1−2σ(log(2r+1Y ))4e−2r+1

≪ (log Y )6Y 2(1−σ)+εTE(2r)2(1−σ)+ε(r + 1)4e−2r+1
.

Here we have used summation by parts and the inequality
∑

m≤x

d(m)2m−1 ≪ (log x)4

(see [9, Chapter 2]). Note that in order to apply the corollary we must have
2r+1Y > Qβ for some β > 2(d+ 1), for all r in our range. This is certainly
satisfied if we require X > Qβ.

Summing over all of the possible values for r we find that the number of
representative zeros of class (i) is

≪ (log Y )6Y 2(σ−1)+εTE
∑

r≥r0

(2r)2(1−σ)+ε(r + 1)4e−2r+1

≪ (log Y )6Y 2(σ−1)+εTE
( ∑

r0≤r<0

(r + 1)4 +
∑

r≥0

4r(r + 1)4e−2r+1
)

≪ (log Y )11Y 2(1−σ)+εTE .

Here we have assumed ε ≤ 1. If we choose not to make this restriction,
the final inequality is still valid, but with the implied constant dependent
upon ε.

Having treated the class (i) zeros so carefully, we are allowed greater
flexibility in treating the class (ii) zeros. We choose a rather simple method
here. From expression (17) we see that the number of representative zeros
of class (ii) is

≪
∑

(π,̺)∈S(ii)

∣∣∣
\

(1/2−β+c)

Lc(s+w,π)MX(s+w,π)Γ (w)Y w dw
∣∣∣
2

≪ Y 1−2σ+2c
∑

(π,̺)∈S(ii)

( ∞\
−∞

|Lc(1/2+c+ i(t+γ),π)|2|Γ (1/2−β+c+ it)|dt
)

×
( ∞\
−∞

|MX(1/2+c+ i(t+γ),π)|2|Γ (1/2−β+c+ it)|dt
)
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by Cauchy’s inequality. Since 1/2 < σ ≤ β ≤ 1, |Γ (1/2 − β + c + it)| ≤
(σ − 1/2 − c)−1g(t), where g(t) decays rapidly as t→ ±∞. By Lemma 3,

|Lc(1/2 + c+ i(t+ γ), π)| ≪ c−2|L(1/2 + c+ i(t+ γ), π)|.
From Lemma 2 we have the bound

(18) L(s, π) ≪ q3/4−σ/2
π |s+ 3/2|3/2−σ

for −1/2 ≤ σ ≤ 3/2, where the implied constant depends only on the infinite
part of π. So we see that

|L(1/2 + c+ i(t+ γ), π)|2 ≪ qπ|3 + i(t+ γ)|2

provided c ≤ 1. Continuing the above, we see that the number of represen-
tative zeros of class (ii) is

≪ Y 1−2σ+2c(σ − 1/2 − c)−2Qc−4
( ∞\

−∞
(|t| + T )2g(t) dt

)

×
( ∞\

−∞

∑

(π,̺)∈S(ii)

|MX(1/2 + c+ i(t+ γ), π)|2g(t) dt
)

≪ Y 1−2σ+2c(σ − 1/2 − c)−2QT 2c−4

×
( ∞\

−∞

∑

(π,̺)∈S(ii)

|MX(1/2 + c+ i(t+ γ), π)|2g(t) dt
)
.

We now apply Theorem 4 inside the integral. Note that in dealing with the
class (i) zeros we have already made an assumption about the size of X that
guarantees the theorem is applicable. This gives

≪ Y 1−2σ+2cX1+ε(σ − 1/2 − c)−2QT 2c−4

×
( ∑

n≤X

µ(n)2n−1−2c
) ∞\

−∞
(|t| + T )Eg(t) dt

≪ Y 1−2σ+2cX1+ε(σ − 1/2 − c)−2QTE+2c−5.

Now take c=(log Y )−1, and assume that Y is so large that c≤(1/2)(σ−1/2).
This is not a particularly restrictive condition since we will primarily be
interested in cases where σ can be bounded away from 1/2. We conclude
that the number of representative zeros of class (ii) is

≪ (σ − 1/2)−2(log Y )5TE+2QX1+εY 1−2σ.

Now choose any β > 2(d+ 1) and let

X = Qβ, Y = Qβ+1.

Then the representative zeros of class (i) number

≪ (1 + β)11TE(logQ)11Q2(β+1)(1−σ)+ε
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and the representative zeros of class (ii) number

≪ (1 + β)5(σ − 1/2)−2TE+2(logQ)5Q2(β+1)(1−σ)+βε.

Adding these two and multiplying by T log((T+m)Q) (since we have counted
only representative zeros) we arrive at

Theorem 5. Let S(Q) be as above and assume that

|S(Q)| ≪ Qd

for some d > 0. Let σ ∈ (1/2, 1) and T > 1. Then there are constants E > 5
and m ≥ 2 so that for any ε > 0,
∑

π∈S(Q)

N(σ, T, π) ≪ε (σ − 1/2)−2TE log((T +m)Q)(logQ)11Q(4d+6)(1−σ)+ε

provided Q is sufficiently large.

The most important aspect of this bound it that the power of the con-
ductor Q can be made arbitrarily small by letting σ approach 1. The same
cannot be said about the power of T , however. This is a result of the fact
that the T and Q aspects were not separated in the sieve inequalities of the
previous section. This separation has been achieved for Dirichlet L-functions
[9, 14], and in this respect our estimate is somewhat crude. Nevertheless, it
suffices for what we have in mind. For if we assume further that T grows
more slowly than any power of Q we can deduce the existence of L-functions
that are zero free near s = 1.

Corollary 3. Let S(Q) be as above and assume that

Qe ≪ |S(Q)| ≪ Qd

for some 0 < e < d. Then there is a σ ∈ (1/2, 1) so that for all sufficiently

large Q there exist π ∈ S(Q) so that L(s, π) is free from zeros in [σ, 1] ×
[−(logN)2, (logN)2], N being the conductor of π. Moreover , as Q→ ∞ the

number of such π ∈ S(Q) cannot remain bounded.

Proof. Choose ε > 0 and 1 − σ so small that

f = (4d+ 6)(1 − σ) + ε < e.

Taking T = (logQ)2 in Theorem 5 we find that
∑

π∈S(Q)

N(σ, (logQ)2, π) ≪ Qf .

The result now follows since the number of L-functions is ≫ Qe and since
e > f .
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2.4. Approximating logL(1, π). In this section we show that if an
entire Artin L-function L(s, π) is free from zeros near s = 1 then logL(1, π)
can be approximated by a short sum over primes. In particular, as the length
of the sum we will be able to take a small power of the log of the conductor.
This approximation will be crucial to later applications. The technique we
use is not new, but we provide details for the sake of completeness. We begin
with the following technical lemma.

Lemma 5. Let L(s) be a holomorphic function on Re s > 1/2. Let C0, C1,
A, T > 0, 0 < ∆ < 1/2, and 0 < ε < ∆ with A ≤ T −

√
∆2 + 2∆. Suppose

that L is free from zeros in Ω = {Re s > 1}∪{σ+it : |t| ≤ T , 1−∆ ≤ σ ≤ 1}.
Finally let f(t) be an increasing function and suppose that

|L(2 + it)| ≥ C0, |L(s)| ≤ f(|s|) for Re s > 1/2,
∣∣∣∣
L′(s)
L(s)

∣∣∣∣ ≤ C1 for Re s ≥ 2.

Then

1

2πi

\
(2)

L′(s+ u)

L(s+ u)
xsΓ (s) ds− L′(u)

L(u)

≪ x2e−A/2

(
log(f(A+ 5)/C0)

Aε2
+ C1(A

−1 + 1)

)

+
x1−∆+ε−u

ε2(u− (1 −∆+ ε))

A\
−A

log

(
f(|t| + 5)

C0

)
dt

for 1−∆+ε < u ≤ 7/4−∆+ε and x ≥ 1. The implied constant is absolute.

Proof. Since A ≤ T −
√
∆2 + 2∆ we can cover the rectangle |t| ≤ A,

1 −∆+ ε ≤ σ ≤ 1 with open disks {|s− (2 + it0)| < 1 +∆}, |t0| ≤ A, each
disk lying in Ω. On any such disk

|s| ≤ (3 +∆) + (|t0| + 1 +∆) = |t0| + 4 + 2∆

so that log |L(s)| ≤ log(f(|t0| + 4 + 2∆)), since f is increasing. As L is free
from zeros on the simply connected region Ω, we may define a branch of
logL there, and on any of the disks we thus have

Re(logL(s) − logL(2 + it0)) ≤ log

(
f(|t0| + 4 + 2∆)

C0

)
.

We now appeal to the following classical result.

Lemma 6. Suppose that f(s) is holomorphic in |s− s0| < r and satisfies

there

Re(f(s) − f(s0)) ≤ U.
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Then there is an absolute constant A′ > 0 so that for |s − s0| = r0 < r we

have

|f ′(s)| < A′Ur
(r − r0)2

.

This is proven as Lemma 4 in [13] and as Carathéodory’s lemma in [19].
From it we conclude that∣∣∣∣

L′(s)
L(s)

∣∣∣∣≪
log(f(|t0| + 5)/C0)

ε2

for |s− (2 + it0)| ≤ 1 +∆− ε, |t0| ≤ A. The implied constant is absolute.

We now turn to estimating the integral

1

2πi

\
(2)

L′(s+ u)

L(s+ u)
xsΓ (s) ds.

We shift the portion of the contour with |t| ≤ A to the abscissa σ = 1−∆+
ε − u, picking up the residue L′(u)/L(u) at s = 0. Now we need to bound
integrals over the contours

γ1 : σ = 1 −∆+ ε− u, |t| ≤ A,

γ±2 : 1 −∆+ ε− u ≤ σ ≤ 2, t = ±A,
γ±3 : σ = 2, ±t ≥ A.

On γ1 we have

|Γ (s)| ≪ (u− (1 −∆+ ε))−1, |xs| = x1−∆+ε−u,
∣∣∣∣
L′(s+ u)

L(s+ u)

∣∣∣∣ =
∣∣∣∣
L′(1 −∆+ ε+ it)

L(1 −∆+ ε+ it)

∣∣∣∣≪
log(f(|t| + 5)/C0)

ε2

since |t| ≤ A. Thus

∣∣∣∣
1

2πi

\
γ1

L′(s+ u)

L(s+ u)
xsΓ (s) ds

∣∣∣∣≪
x1−∆+ε−u

ε2(u− (1 −∆+ ε))

A\
−A

log

(
f(|t| + 5)

C0

)
dt

and the implied constant is absolute.

By Stirling’s formula and the fact that Γ (s) has a simple pole at s = 0
we find that

|Γ (s)| ≪ A−1e−A/2

on γ±2 . Moreover, on this contour we have 1 − ∆ + ε ≤ σ + u ≤ 15/4. On
the part of this interval up to σ + u = 3 we can use the bound

∣∣∣∣
L′(s+ u)

L(s+ u)

∣∣∣∣≪
log(f(A+ 5)/C0)

ε2
,

and on the part of the interval with σ + u > 3 (if it is not empty) we can
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bound |L′(s+u)/L(s+u)| by C1. Since the length of γ±2 is ≪ 1 we see that
∣∣∣∣

1

2πi

\
γ±

2

L′(s+ u)

L(s+ u)
xsΓ (s) ds

∣∣∣∣≪ x2A−1e−A/2

(
log(f(A+ 5)/C0)

ε2
+ C1

)

provided x ≥ 1. As before, the implied constant is absolute.
Finally, on γ±3 , Stirling’s formula yields

|Γ (s)| ≪ e−|t|/2

and the L term may again be bounded by C1. Thus
∣∣∣∣

1

2πi

\
γ±

3

L′(s+ u)

L(s+ u)
xsΓ (s) ds

∣∣∣∣≪ C1x
2
∞\
A

e−t/2 dt≪ C1x
2e−A/2

with, as usual, an absolute implied constant.
The conclusion of Lemma 5 now follows immediately.

We will apply this lemma to an entire Artin L-function L(s, L/Q, π)
where L/Q is a finite Galois extension and π is an n-dimensional complex
representation of G(L/Q) of conductor N . We drop L and Q from our no-
tation for convenience. From the Euler product for L(s, π) the following
bounds are easily verified:

|L(2 + it, π)| ≥
(
ζ(4)

ζ(2)

)n

≫n 1, |L(s, π)| ≤ ζ(σ)n for σ > 1,

L′(s, π)

L(s, π)
≪n 1 for σ ≥ 2.

From Lemma 1 we conclude that for 1/2 ≤ σ ≤ 3/2 we have

|L(s, π)| ≪n N
1/2(|s| + 1)n/2.

Therefore, we set f(t) = CnN
1/2(t+ 1)n/2 (for an appropriate Cn > 0) and

conclude that |L(s, π)| ≤ f(|s|) for σ ≥ 1/2. For any 0 < δ < 1 we set
∆ = δ/7 and ε = δ/8. Letting T = (logN)2 and A = logN we arrive at

Corollary 4. Let L/Q be a finite Galois extension and let π be an

n-dimensional complex representation of G(L/Q) of conductor N . Let 0 <
δ < 1. If L(s, π) is entire and is free from zeros in the rectangle [1 − δ/7, 1]×
[−(logN)2, (logN)2] and N is sufficiently large then

1

2πi

\
(2)

L′(s+ u, π)

L(s+ u, π)
xsΓ (s) ds− L′(u, π)

L(u, π)
≪n

x2

δ2N1/2
+

(logN)2

δ3xδ/56

for 1 ≤ u ≤ 3/2 and x ≥ 1.

This corollary allows us to deduce our approximation to logL(1, π). Re-
call the notation λ(m) for the coefficient of m−s in the Dirichlet series ex-
pansion of L(s, π).
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Proposition 2. Let π be as above and let 0 < δ < 1. Suppose that

L(s, π) is free from zeros in the rectangle [1− δ/7, 1]× [−(logN)2, (logN)2].
If N is sufficiently large then for any 0 < α < 112/δ,

logL(1, π) =
∑

p≤(log N)α

λ(p)p−1 +On,α,δ(1).

Proof. Taking the logarithmic derivative of the Euler product gives

L′(s, π)

L(s, π)
= −

n∑

i=1

∑

p

log p
∞∑

k=1

αi(p)
kp−ks.

This together with Mellin inversion applied to Γ (s) implies

1

2πi

\
(2)

L′(s+ u, π)

L(s+ u, π)
xsΓ (s) ds = −

n∑

i=1

∑

p

log p

∞∑

k=1

αi(p)
kp−kue−pk/x.

Substitution of this into the corollary and subsequent integration from u = 1
to u = 3/2 yields

(19)
∑

p

λπ(p)p−1e−p/x − logL(1, π) + logL(3/2, π)

≪n
x2

δ2N1/2
+

(logN)2

δ3xδ/56
+ 1.

Here we have made use of the fact that λ(p) =
∑

i αi(p).

If y < x then
∑

p≤y

p−1(1 − e−p/x) < 1,
∑

p>x2

p−1e−p/x ≪ 1,

∑

y<p≤x2

p−1e−p/x = log

(
2 log x

log y

)
+O(1).

Furthermore, one can show that the formal logarithm of the Euler product
converges, and this can be used to show that logL(3/2, π) ≪ 1. Thus (19)
becomes
∑

p≤y

λπ(p)p−1 − logL(1, π) ≪n
x2

δ2N1/2
+

(logN)2

δ3xδ/56
+ log

(
2 log x

log y

)
+ 1.

We now take x = (logN)112/δ, y = (logN)α with 0 < α < 112/δ to get the
statement of the proposition.

3. NUMBER FIELDS WITH LARGE CLASS NUMBERS

We begin this section with the computation of the L-functions attached
to non-abelian cubic number fields and show that they come from automor-
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phic representations. By constructing appropriate families of fields, we then
apply the zero density estimate of Theorem 5 (specifically Corollary 3) to
prove Theorems 1, 2 and 3.

3.1. Non-abelian cubic number fields. By a non-abelian cubic num-

ber field we will mean a field K of degree 3 over Q whose Galois closure K̂
has S3 as its Galois group. Equivalently, K = Q(α) where α is a root of a
monic irreducible cubic polynomial f ∈ Q[x] with disc(f) 6∈ Q2. Correspond-
ing to the normal subgroup A3 we have the associated quadratic subfield
L = Q(

√
disc(f)) of K̂. The main result of this section is Lemma 7. It pro-

vides a factorization of the Dedekind zeta-function of a non-abelian cubic
number field as a product of Riemann’s zeta-function and the L-function of
a cuspidal automorphic representation.

We begin by recalling the relationship between Artin L-functions and
the Dedekind zeta function of a number field. Let k be a number field and
let K be an extension of degree n with Galois closure K̂. Let G = G(K̂/k)

and H = G(K̂/K). Letting G act by left multiplication on the coset space
G/H gives rise to an n-dimensional complex (permutation) representation
̺ of G. This representation is induced from the trivial representation of H,
and therefore

L(s, K̂/k, ̺) = L(s, K̂/K, 1H) = ζK(s).

Taking k = Q and letting K be a non-abelian cubic number field we
find that ̺ ∼= 1 ⊕ π, where π is the unique two-dimensional, irreducible
representation of S3, induced by any non-trivial character δ of A3. Therefore
we have

ζK(s) = L(s, K̂/Q, ̺) = L(s, K̂/Q, 1)L(s, K̂/Q, π)(20)

= ζ(s)L(s, K̂/L, δ).

We aim to show that L(s, K̂/Q, s) = L(s, K̂/L, δ) is automorphic, i.e. is the
L-function of a cuspidal automorphic representation.

As A3 is abelian, we know from class field theory that L(s, K̂/L, δ) is
an entire Hecke L-function (see [17, Chapter VII]). In fact, if χ denotes the
Größencharakter on L obtained by composing δ with the Artin symbol, then
the conductor of χ is precisely the conductor m of the extension K̂/L, χ is
primitive and

L(s, K̂/L, δ) = L(s, χ).

This is in fact true for the completed L-functions as well. By Theorem 7.11
and Lemma 7.9 of [7], there is an automorphic representation π(χ) of GL(2)
over Q so that

L(s, χ) = L(s, π(χ)),
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this equality again holding at the level of completed L-functions as well.
The infinite part of π(χ) depends only on the infinite part of χ (see [7,
p. 144]), which depends only on the signature of L (see [17, p. 538]), hence
only on the signature of K. Moreover, π(χ) is cuspidal provided there is no
Größencharakter ψ of Q so that χ = ψ ◦N where N is the norm map

(21) N : A×
L → A×

Q

defined by N(β) = α, where for any place v of Q,

αv =
∏

w|v
NLw

Qv
(βw).

To show that this is indeed the case, choose any unramified prime p of Q
whose Frobenius in G(K̂/Q) is of order 3. The corresponding Euler factor

in L(s, K̂/Q, π) is then

(1 + p−s + p−2s)−1.

That infinitely many such primes actually exist is a consequence of the
Chebotarev density theorem. If P and p denote primes lying over p in K̂
and L, respectively, we have

1L = Frob(P | p)|L = Frob(p | p),
since the elements of order 3 fix L. Hence, p splits completely in L. If we
assume that χ = ψ◦N then we may also assume that p and p are unramified
for ψ and χ, respectively, since there are only finitely many primes ramified
for each Größencharakter. It then follows that

χp(̟p) = ψp(N
Lp

Qp
(̟p)) = ψp(p)

since Lp = Qp (̟p is a prime element of Lp). As there are two primes of L
lying over p, this would mean that the Euler factor corresponding to p in
L(s, χ) is

(1 − χp1(̟p1)N(p1)
−s)−1(1 − χp2(̟p2)N(p2)

−s)−1 = (1 − ψp(p)p
−s)−2,

which cannot agree with (1 + p−s + p−2s)−1. Hence, it is not the case that

χ = ψ ◦N and so π(χ) is cuspidal. This implies, in turn, that L(s, K̂/L, δ)
is entire.

Finally, equation (20) allows us to deduce the functional equation satis-

fied by L(s, K̂/Q, π) from those satisfied by Dedekind’s ζ-functions. Com-
paring this with Artin’s functional equation we find that the conductor of π
(and of the associated cuspidal automorphic representation) is |disc(K)|.

Lemma 7. Let K be a non-abelian cubic number field. Then

ζK(s) = ζ(s)L(s, K̂/Q, π)

where L(s, K̂/Q, π) is an entire Artin L-function of degree 2 and conductor
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|disc(K)|. In fact , L(s, K̂/Q, π) is the L-function of a cuspidal automorphic

representation of GL(2) over Q whose infinite part depends only on the

signature of K.

3.2. GRH and upper bounds for h. We now deduce the upper
bounds provided by GRH for class numbers of non-abelian cubic number
fields. This is fairly straightforward in the general cases (those correspond-
ing to Theorems 1 and 2) but to get the sharper result for pure cubic fields
we need to refine our argument.

Lemma 8. Let K be a cubic number field and let L(s, K̂/Q, s) be the

L-function of Lemma 7. If this L-function satisfies GRH then

L(1, K̂/Q, π) ≪ (log log |disc(K)|)2.
The implied constant is absolute.

Proof. By Lemma 7, under the assumption of GRH we may apply the
approximation

logL(1, K̂/Q, π) =
∑

p≤(log |disc(K)|)1/2

λ(p) +O(1)

of Proposition 2, the implied constant of the error term being now absolute.
We need to bound the coefficients λ(p). Since π is two-dimensional,

|λπ(p)| ≤ 2 for all p.

Thus

logL(1, K̂/Q,π) =
∑

p≤(log |disc(K)|)1/2

λπ(p) +O(1)

≤ 2
∑

p≤(log |disc(K)|)1/2

1+O(1) = 2log log log |disc(K)|+O(1),

which follows from the asymptotics

(22)
∑

p≤x

p−1 = log log x+O(1).

The result is immediate.

Lemma 9. Let K = Q( 3
√
m), m ∈ Z cube-free, be a pure cubic number

field and let L(s, K̂/Q, s) be the L-function of Lemma 7. If this L-function

satisfies GRH then

L(1, K̂/Q, π) ≪ log log |disc(K)|.
The implied constant is absolute.
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Proof. As in the previous proof, the assumption of GRH yields the ap-
proximation

logL(1, K̂/Q, π) =
∑

p≤(log |dK |)1/2

λ(p) +O(1)

with an absolute implied constant. Our goal is to improve upon the bound
λ(p) ≤ 2 used above.

We claim that for odd primes p, λ(p) ≤ 2 if p ≡ 1 (mod3) and λ(p) ≤ 0
if p ≡ −1 (mod3). Assuming this for the moment, we find that

logL(1, K̂/Q, π) =
∑

p≤(log |d|)1/2

λ(p)p−1 +O(1)

≤ 2
∑

p≤(log |d|)1/2

p≡1 (mod 3)

p−1 +O(1) = log log log |d| +O(1).

Here we have used the relation

(23)
∑

p≤x
p≡1 (mod 3)

p−1 =
1

2
log log x+O(1).

The statement of the lemma now follows.
It remains to prove the claim. Recall that for primes p unramified in K̂,

λ(p) is the trace of the Frobenius element in G(K̂/Q) at p. As π is a
2-dimensional representation with real-valued character, we have λ(p) ≤
|λ(p)| ≤ 2 for unramified primes. So our only concern is with the ramified
primes and those odd primes that are congruent to −1 mod 3.

Suppose p ramifies in K̂. As [K̂ : Q] = 6, the ramification index must be
2, 3 or 6. If it is 2, then using multiplicativity of the ramification index in tow-
ers we find that pmust ramify in the quadratic subfield Q(

√
disc(x3 −m)) =

Q(
√
−3) of K̂. Hence p = 3. If the ramification index is 3 or 6 then the in-

ertia subgroup at p, Ip ⊂ S3, must have order at least 3, and hence must
contain A3. However, there are no vectors fixed by the image of A3 under π.
Consequently, the Euler factor is trivial, and so λ(p) = 0.

Now suppose p is unramified in K̂, p 6= 2, 3. If p splits completely in K̂,
then p must also split completely in the quadratic subfield Q(

√
−3). This

means that x2+3 must split completely mod p, which by the law of quadratic
reciprocity means that p ≡ 1 (mod3). Hence, if p ≡ −1 (mod3) is unramified

in K̂ then the Frobenius at p is not trivial and consequently has non-positive
trace, i.e. λ(p) ≤ 0.

Having established the claim, the proof of the lemma is complete.

It is now an easy matter to deduce upper bounds on h for non-abelian
cubic number fields.
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Proposition 3. Let K be a non-abelian cubic number field with dis-

criminant dK and class number h. Assume that the L-function of Lemma 7
satisfies GRH. If K is totally real (i.e. dK > 0) then

h≪ d
1/2
K

(
log log dK

log dK

)2

.

If K is complex (i.e. dK < 0) then

h≪ |dK |1/2 (log log |dK |)2
log |dK | .

If K is, in addition, pure cubic then

h≪ |dK |1/2 log log |dK |
log |dK | .

In each case, the implied constant is absolute.

Proof. We use the preceding lemmas and the class number formula,
which in view of (20) becomes

h =
w|dK |1/2

2r1(2π)r2RK
L(1, K̂/Q, π).

As r1 ≥ 1, K has at least one real embedding. Therefore ±1 are the only
roots of unity in K, so that w = 2. As K has no non-trivial subfields, the
regulator bound of Silverman [23] gives

RK ≫ (log |dK |)r1+r2−1.

The proposition now follows easily.

3.3. Proofs of the theorems. For non-abelian cubic K the class num-
ber formula and (20) give

h =
|disc(K)|1/2

2r1−1(2π)r2R
L(1, K̂/Q, π)

for the class number h of K. Here R is the regulator of K and, as above,
r1 and 2r2 are the numbers of real and complex embeddings of K, respec-
tively. There are two possibilities for the values of the ri. Either we have
r1 = 3 and r2 = 0, or r1 = r2 = 1. These correspond to Theorems 1 and 2,
respectively.

In order to prove our theorems we must construct families of cubic fields
for which L(1, K̂/Q, π) is large and R is small, relative to d. This turns out
to be much simpler to do in the pure cubic case, so we prove Theorem 3
first to demonstrate the method.

Proof of Theorem 3. The following result will be crucial to our construc-
tion.



244 R. C. Daileda

Theorem 6 (Nagell). For D ∈ Z the equation

x3 +Dy3 = 1

has at most one solution in integers x, y different from zero. If D is not a

cube and if x1, y1 is a solution then x1 + y1
3
√
D is either the fundamental

unit of Q( 3
√
D) or its square; the latter can happen for only finitely many

values of D.

For a proof of this theorem see [12, Chapter 3]. For n ∈ Z+ let Kn =
Q( 3

√
n3 − 1). If we write n3 − 1 = Dm3 with D cube-free, then as long

as D 6= 1, Kn is a pure cubic number field with one real and two complex
embeddings with the associated quadratic field Q(

√
−3). If we writeD = ab2

with ab square-free then dn = disc(Kn) = (−3)ka2b2 where k = 1 or 3 (see
[12] or [16]). According to Theorem 6, n−m 3

√
D is either the fundamental

unit in Kn or its square. It follows immediately that the regulator, Rn, of Kn

satisfies

Rn ≪ |log(n+m
3
√
D)|.

We will only need to consider the case in which n3 − 1 = D is cube-free.
In this case the regulator bound above becomes

(24) Rn ≪ logD ≪ log |dn|.
We will need to know how often n3 − 1 is cube-free when n is restricted to
lie in an arithmetic progression. For q ∈ Z+ and x > 0 we let

A(x; q, a) = {1 ≤ n ≤ x : n ≡ a (mod q), n3 − 1 cube-free}
and N(x; q, a) = |A(x; q, a)|. The next result gives an asymptotics for the
size of this quantity.

Lemma 10. Suppose that 6 | q and (a3 − 1, q) = 1. Then there is a con-

stant 1 > cq > 9/10, whose value is given below , so that

N(x; q, a) = cq
x

q
+O(x3/4(log x)2).

Proof. Clearly

N(x; q, a) =
∑

n≤x
n≡a (mod q)

∑

r3|(n3−1)

µ(r) =
∑

r≤ 3√n3−1
(r,q)=1

µ(r)
∑

n≤x
n3−1≡0 (mod r3)

n≡a (mod q)

1.

We may assume that (r, q) = 1 since the condition (a3 − 1, q) = 1 implies
that the inner sum on the right is empty otherwise. For any 0 < y < x the
sum over r > y is

≤
∑

y<r≤x

∑

n≤x
n3−1≡0 (mod r3)

1 ≤
∑

s≤x3/y3

#{(r, n) : n3−sr3 = 1} ≪
∑

s≤x3/y3

1 ≪ x3

y3
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by Theorem 6. Consequently

(25) N(x; q, a) =
∑

r≤y
(r,q)=1

µ(r)
∑

n≤x
n3−1≡0 (mod r3)

n≡a (mod q)

1 +O(x3/y3).

Now let c(m) denote the number of solutions mod m to n3−1 ≡ 0 (modm).
Then c is multiplicative and

c(pk) = 2 +

(−3

p

)

for k ≥ 1, p 6= 2, 3. Thus
∑

r≤y
(r,q)=1

µ(r)
∑

n≤x
n3−1≡0 (mod r3)

n≡a (mod q)

1

=
∑

r≤y
(r,q)=1

µ(r)c(r)

(
x

r3q
+O(1)

)
=
x

q

∑

r≤y
(r,q)=1

µ(r)c(r)r−3 +O
( ∑

5≤r≤y

c(r)
)

=
x

q

∞∑

r=1
(r,q)=1

µ(r)c(r)r−3 +O
(
x
∑

r>y

c(r)r−3
)

+O
( ∑

5≤r≤y

c(r)
)
.

Since c(r) ≤ 3ω(r) and
∑

r>y

3ω(r)r−3 = O(y−2(log y)2),
∑

r≤y

3ω(r) = O(y(log y)2),

we see that

N(x; q, a)

=
x

q

∞∑

r=1
(r,q)=1

µ(r)c(r)r−3 +O(xy−2(log y)2) +O(y(log y)2) +O(x3y−3).

The result follows by taking y = x3/4 and

cq =

∞∑

r=1
(r,q)=1

µ(r)c(r)r−3 =
∏

p∤q

(
1 −

(
2 +

(−3

p

))
p−3

)
.

There are now two questions we must address. The first is how often we
might have two integers m,n for which both m3 − 1 = E and n3 − 1 = D
are cube-free and Kn = Km. In this case, another application of Theorem 6
shows that for all sufficiently large values ofm and n we must havem− 3

√
E =



246 R. C. Daileda

n − 3
√
D, since both give the fundamental unit in Kn. Subtracting m from

both sides and cubing we are led to the equation

(n−m)3 − (D −E) − 3(n−m)2
3
√
D + 3(n−m)

3
√
D2 = 0,

which implies that m = n. Hence, sufficiently large n for which n3 − 1 is
cube-free give rise to distinct Kn.

This brings us to our second question. Even though the fields Kn for
cube-free n3 − 1 are all distinct, might it be that the associated Artin L-
functions ζKn(s)/ζ(s) coincide for different values of n? The next result
shows that this cannot occur.

Lemma 11. Let Li, i = 1, 2, be finite Galois extensions of Q both with

Galois groups isomorphic to G. Let πi : G → GLn(C), i = 1, 2, be faithful

representations. Then L(s, L1/Q, π1) = L(s, L2/Q, π2) implies that L1 = L2.

Proof. We will show that under the stated hypotheses the identity
L(s, L1/Q, π1) = L(s, L2/Q, π2) implies that the primes that split com-
pletely in L1 also split completely in L2. As the hypotheses are symmet-
ric, it will then follow that a prime splits completely in L1 if and only if
it does in L2. The conclusion is then a straightforward consequence of the
Chebotarev density theorem (see p. 548 of [17]).

Writing both L-functions as Euler products and then as Dirichlet series,
the hypothesis L(s, L1/Q, π1) = L(s, L2/Q, π2) allows us to conclude that
both functions have the same Euler factors. Suppose that p splits completely
in L1. Then the Frobenius σ1,p ∈ G(L1/Q) of p is trivial so that

Lp(s, π2) = Lp(s, π1) = (det(I − π1(σ1,p)p
−s))−1 = (1 − p−s)−n.

Since π2 is faithful, the only way Lp(s, π2) can have degree n is if p is
unramified in L2. Thus if σ2,p ∈ G(L2/Q) is the Frobenius of p then

(1 − p−s)−n = Lp(s, π2) = (det(I − π2(σ2,p)p
−s))−1

so that the only eigenvalue of π2(σ2,p) is 1. Since the only unipotent matrix
of finite order is I, we conclude that π2(σ2,p) = I. The faithfulness of π2

then implies that σ2,p is trivial so that p splits completely in L2.

We are now ready to prove Theorem 3. For each n for which n3 − 1 is
cube-free, associated to the field Kn we have the automorphic representation
πn of GL(2) over Q so that ζKn(s)/ζ(s) = L(s, πn). For x > 1 we let

y =
1

10
log x, q =

∏

p≤y

p.

Then q ≤ x1/5. Lemma 10 shows that we have (for large x)

(26) x4/5 ≪ N(x; q, 0) ≤ x.
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For n ∈ A(x; q, 0), a direct comparison of the field and polynomial discrim-
inants shows that the primes that divide the index of 3

√
n3 − 1 also divide

3(n3 − 1). Consequently, for p | q, p ≥ 5, the factorization of p in Kn can be
determined by factoring x3 − (n3 − 1) mod p. But for these primes, n ≡ 0,
so we are reduced to factoring x3 + 1. This polynomial splits completely if
p ≡ 1 (mod3) and factors into linear and irreducible quadratic factors if

p ≡ −1 (mod3). Thus, if p ≡ 1 (mod3) then p splits completely in K̂n and
so has trivial Frobenius, and if p ≡ −1 (mod3) then p factors as a product
of two distinct primes in Kn and consequently has a Frobenius of order 2.

Let Q = 27x6 and

S(Q) = {πn : n ∈ A(x; q, 0)}.
We have shown that for sufficiently large x we have |S(Q)| = N(x; q, 0) so
that

Q2/15 ≪ |S(Q)| ≪ Q1/6.

By Corollary 3 we conclude that there is a σ ∈ (1/2, 1) so that for all
sufficiently large Q there exist πn ∈ S(Q) so that L(s, πn) is zero-free in
[1− σ, 1]× [−(log |dn|)2, (log |dn|)2]. Additionally, in the associated field Kn

all primes 5 ≤ p ≤ (1/10) logn split as described above. Since (log |dn|)1/2 ≤
(1/10) log x for large x, applying Corollary 4 gives

logL(1, πn) =
∑

p≤(log |dn|)1/2

λπn(p)p−1 +O(1) = 2
∑

p≤(log |dn|)1/2

p≡1 (mod 3)

p−1 +O(1)

= log log log |dn| +O(1).

This together with the bound (24) and the class number formula gives

h≫ |dn|1/2 log log |dn|
log |dn|

with an absolute implied constant. Theorem 3 now follows since as Q→ ∞
we must have dn → ∞ since n ≡ 0 (mod q) and q → ∞.

Proof of Theorem 1. We now move on to the construction of an appro-
priate family of totally real fields. In fact, we will make use of the same
family considered by Duke in his conditional version of this theorem. Let
ft(x) = (x− t)(x− 4t)(x− 9t) − t and for t ∈ Z let Kt be the number field
obtained by adjoining any fixed root of ft(x) to Q. For square-free t > 1,
ft(x) is an Eisenstein polynomial and hence Kt is a cubic number field.
Moreover, since disc(ft) = t2(36t2 +1)(400t2−27) is never a square, we con-

clude that G(K̂t/Q) ∼= S3. This family of cubic number fields is ideal for our
purposes because the regulator of Kt can be effectively controlled. Indeed,
if Rt is the regulator and dt the discriminant of Kt, then by Proposition 1
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of [4],

(27) Rt ≪ (log dt)
2.

By Lemma 7, for square-free t the Artin L-function ζKt(s)/ζ(s) is the
L-function of an automorphic cuspidal representation πt of GL(2) over Q
with conductor dt. We now seek to count how many distinct πt there are.
Let A(x; q, a) denote the set

{1 ≤ t ≤ x : t ≡ a (mod q), t and (36t2 + 1)(400t2 − 27) square-free}
and N(x; q, a) = |A(x; q, a)|. We have the following result concerning the
size of this quantity.

Lemma 12. Let C0>0 and suppose 210 | q and (a(36a2+1)(400a2−27), q)
= 1. Then there is a constant C1, depending only on C0, so that if x ≥
max{C0q

4, C1} then

N(x; q, a) ≥ x

8q
.

The proof of this lemma is similar to the proof of Lemma 10, but slightly
more involved. We realize the set in question as the intersection of several
other sets that are more amenable to estimation. These sets are described
in the next three lemmas, all of which can be proven in the same manner as
Lemma 2 of [5] (see also Lemma 1 of [15]).

Lemma 13. Let q, a ∈ Z+ satisfy (a, q) = 1 and let

N1(x; q, a) = #{1 ≤ t ≤ x : t ≡ a (mod q), t square-free}.
Then for x ≥ 2,

N1(x; q, a) = c1,q
x

q
+O(x1/2),

where

c1,q =
6

π2

∏

p|q
(1 − p−2)−1

and the implied constant is absolute.

Lemma 14. Let q, a ∈ Z+ satisfy (36a2 +1, q) = 1 and suppose that 6 | q.
Let

N2(x; q, a) = #{1 ≤ t ≤ x : t ≡ a (mod q), 36t2 + 1 square-free}.
Then for x ≥ 2,

N2(x; q, a) = c2,q
x

q
+O(x2/3 log x),

where

c2,q =
∑

r≥1
(r,q)=1

µ(r)c(r)r−2 =
∏

p∤q

(
1 −

(
1 +

(−1

p

))
p−2

)

and the implied constant is absolute.
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Lemma 15. Let q, a ∈ Z+ satisfy (400a2 − 27, q) = 1 and suppose that

30 | q. Let

N3(x; q, a) = #{1 ≤ t ≤ x : t ≡ a (mod q), 400t2 − 27 square-free}.
Then for x ≥ 2,

N3(x; q, a) = c3,q
x

q
+O(x2/3 log x),

where

c3,q =
∏

p∤q

(
1 −

(
1 +

(
3

p

))
p−2

)

and the implied constant is absolute.

Proof of Lemma 12. Let A1(x; q, a) (resp. A2, A3) denote the set of inte-
gers considered in Lemma 13 (resp. 14, 15). For any t ∈ Z the only prime that
can divide (36t2 +1, 400t2−27) is 7, since 100(36t2 +1)−9(400t2−27) = 73.
Since 7 | q the hypothesis (a(36a2 + 1)(400a2 − 27), q) = 1 implies that

(28) A(x; q, a) =
3⋂

i=1

Ai(x; q, a).

Since 210 | q it is easy to deduce from their definitions that

(29) 3/4 < ci,q < 1

for all i. Equations (28) and (29) together with Lemmas 13–15 now give

N(x; q, a) = |A(x; q, a)| ≥
[
x

q

]
−

3∑

i=1

([
x

q

]
−Ni(x; q, a)

)
+O(1)

=
x

q

(
1 −

3∑

i=1

(1 − ci,q)
)

+O(x2/3 log x)

≥ x

q

(
1 − 1

4
− 1

4
− 1

4

)
+O(x2/3 log x) =

x

4q
+O(x2/3 log x)

and the result follows.

Square-free t for which (36t2 + 1)(400t2 − 27) is also square-free are
important for the following reason. Primes dividing such t do not divide the
index (see p. 61 of [16]), so we must have

dt = disc(ft) = t2(36t2 + 1)(400t2 − 27).

As a function of t, disc(ft) is one-to-one. Hence distinct t will produce dis-
tinct dt, and consequently distinct πt. Moreover, since the index is 1, the
factorization in K of any rational prime p can be determined by factoring
ft(x) mod p.
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In the proof of Theorem 3 we controlled the size of the coefficients ap-
pearing in the approximation to logL(1, πn) by controlling the splitting of
certain primes in Kn, and this was done by knowing how the polynomial
giving rise to Kn factored mod p. In order to implement this step in the
current situation we need analogous information for the polynomial ft(x).
We obtain this information by showing there are enough points on a certain
curve over Z/pZ, provided p is sufficiently large. This requires the use of the
Weil’s bound (the Riemann hypothesis for curves over finite fields).

Proposition 4. Let ft(x) = (x− t)(x− 4t)(x− 9t)− t. Then there is a

κ > 0 so that for all primes p ≥ κ there is at least one tp mod p for which

ftp(x) splits completely in Fp[x].

Proof. We reformulate the splitting of the polynomial in terms of split-
ting of primes in a certain number field, and reduce this problem to a cer-
tain curve having points over Fp. For square-free t ∈ Z the polynomial
ft(x) is Eisenstein and hence irreducible over Q. For such t let αt be a
root of ft(x) and let Kt = Q(αt). Fix a prime p. As long as p ∤ disc(ft) =
t2(400t2 − 27)(36t2 +1) the splitting of p in Kt is controlled by the splitting
of ft(x) in Fp[x]. Thus, for such p we see that ft(x) splits completely in Fp[x]
if and only if p splits completely in Kt. However, a prime splits completely
in a number field if and only if it splits completely in its Galois closure.
Thus, provided p ∤ t2(400t2 − 27)(36t2 + 1), the polynomial ft(x) will split

completely in Fp if and only if p splits completely in K̂t, the Galois closure
of Kt.

The polynomial

ht(x) = x6 − 294t2d(t)x4 + 21609t4d(t)2x2 − t2(286t2 + 27)2d(t)3,

where d(t) = t2(400t2 − 27)(36t2 + 1), has the property that any of its roots

generate K̂t. Consequently, if p ∤ disc(ht) (which is an integral polynomial

in t of degree 120) then p splits completely in K̂t if and only if ht(x) splits

completely in Fp[x]. However, as K̂t is Galois over Q, the inertial degrees of

all primes in K̂t lying over p are the same. Hence, all of the irreducible factors
of ht(x) in Fp[x] have the same degree (and each occurs with multiplicity 1 as

the condition p ∤ disc(ht) ensures that p does not ramify in K̂t). Therefore,
ht(x) splits completely in Fp[x] if and only if ht(x) has at least one root
in Fp.

Combining the arguments of the preceding paragraphs, we see that for
a given t mod p, if p ∤ disc(ft)disc(ht) then ft(x) splits completely in Fp[x]
if and only if ht(x) has a root in Fp (the splitting completely condition
depends only on the residue class of t mod p, and as every residue class
mod p contains infinitely many square-free integers, the square-free condition
on t may be dropped). The result will follow if we can show that for all
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sufficiently large p the curve 0 = ht(x) = F (x, t) has points over Fp satisfying
p ∤ disc(ft)disc(ht).

Since disc(ft)disc(ht) is a polynomial of fixed degree, the number of
points on the curve 0 = F (x, t) with p | disc(ft)disc(ht) is bounded by a
constant, N . As long as p 6= 2, 3, F (x, t) is absolutely irreducible over Fp,
and the Riemann hypothesis for curves over finite fields (see also [22, p. 92,
Theorem 1A]) implies that the number of points on F (x, t) = 0 over Fp

tends to infinity with p. Hence there is a κ > 0 such that for p ≥ κ the curve
F (x, t) = 0 has more than N points over Fp and the result follows.

We now conclude the proof of Theorem 1. Let κ > 0 and tp for p ≥ κ be
as in Proposition 4. If p = 2, 3, 5 or 7 is less than κ, then we choose tp so
that disc(ftp) 6≡ 0 (modp). Given x, let

y =
1

8
log x, q = 210

∏

κ≤p≤y

p.

Choose a ≡ tp (modp) for κ ≤ p ≤ y and p = 2, 3, 5, 7. Then all primes
κ ≤ p ≤ y split completely in Kt for t ∈ A(x; q, a). Let C > 0 be chosen so
that disc(ft) ≤ Ct6 for t ≥ 1. Finally, let Q = Cx6 and S(Q) = {πt : t ∈
A(x; q, a)}. Then |S(Q)| = N(x; q, a). We have (a(36a2 + 1)(400a2 − 27), q)
= 1 since disc(fa) 6≡ 0 (modp) for any p | q. Since q ≪ x1/4 we may apply
Lemma 12 to conclude that

Q1/8 ≪ |S(Q)| ≪ Q1/6

for all sufficiently large x. Again applying Corollary 3 we conclude that
there exists a σ ∈ (1/2, 1) so that for all large Q there exist πt ∈ S(Q) so
that L(s, πt) is zero-free in [1−σ, 1]× [−(log dt)

2, (log dt)
2]. Moreover, in the

associated totally real fields Kt all primes κ ≤ p ≤ y split completely, so
that applying Corollary 4 we get

logL(1, πt) =
∑

p≤(log dt)1/2

λπt(p)p
−1 +O(1) = 2

∑

κ≤p≤(log dt)1/2

p−1 +O(1)

= 2 log log log dt +O(1).

Here we have used the fact that (log dt)
1/2 ≤ (1/8) logx for large x. Equation

(27) and the class number formula now imply that

h≫ d
1/2
t

(
log log dt

log dt

)2

with an absolute implied constant. The proof of Theorem 1 is now completed
by noting that we can arrange that t→ ∞ (and hence dt → ∞) as Q→ ∞,
since otherwise we would contradict the last statement in Corollary 3.

Proof of Theorem 2. We begin again with the construction of fields. For
t ∈ Z\{0} let ft(x) = x3 +tx2 +t and let Kt = Q(αt) where αt is the unique
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real root of ft(x) (ft has exactly one real root as disc(ft) = −t2(4t2 + 27)
< 0). If t > 1 is square-free then ft is an Eisenstein polynomial, and hence
Kt is a complex cubic field. In order to bound the regulator in Kt we will
need the following lemmas. The first provides us with a unit in Kt and the
second allows us to compare the regulator to this unit.

Lemma 16. Let t ∈ Z \ {0}. Then α3
t /t ∈ O×

Kt
.

Proof. Since ft(αt) = 0 it follows that

α3
t

t
= −α2

t − 1 ∈ Z[αt] ⊂ OKt .

It also follows that
(
α3

t

t

)2 (αt + t)3

t
=

(ft(αt) − t)3

t3
= −1.

Moreover

(αt + t)3 ≡ α2
t (αt + t) (mod t) = ft(αt) − t ≡ 0 (mod t)

so that (αt + t)3/t ∈ OKt as well.

Lemma 17. Let K ⊂ R be a complex cubic number field. If ε ∈ O×
K ,

ε 6= ±1, then

RegK ≤
∣∣log |ε|

∣∣.
Proof. Suppose first that ε is the fundamental unit in K. As ε ∈ R it

follows that its Galois conjugates are of the form β, β and satisfy ±1 =
N(ε) = ε|β|2. Thus

RegK =

∣∣∣∣∣det

(
log |ε| 2 log |β|
1/3 2/3

)∣∣∣∣∣ =
1

3

∣∣∣∣ log
|ε|2
|β|2

∣∣∣∣ =
∣∣log |ε|

∣∣.

In general, however, we will have ε = ±(ε′)n with ε′ the fundamental unit.
Thus ∣∣log |ε|

∣∣ ≥
∣∣log |ε′|

∣∣ = RegK.

Putting these two lemmas together we find that for square-free t,

(30) RegKt ≤
∣∣log |α3

t /t|
∣∣≪ log |disc(ft)|.

This follows from the fact that t = −α3
t /(1 + α2

t ).

As in the proof of Theorem 1, we will need to know how often one of the
factors of disc(ft) is square-free when t is restricted to lie in an arithmetic
progression.

Lemma 18. Let q, a ∈ Z+ satisfy (4a2 +27, q) = 1 and suppose that 6 | q.
Let

N4(x; q, a) = #{1 ≤ t ≤ x : t ≡ a (mod q), 4t2 + 27 square-free}.
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Then for x ≥ 2,

N4(x; q, a) = c4,q
x

q
+O(x2/3 log x)

where

c4,q =
∑

r≥1
(r,q)=1

µ(r)c(r)r−2 =
∏

p∤q

(
1 −

(
1 +

(−3

p

))
p−2

)

and the implied constant is absolute.

As before, we refer the reader to Lemma 2 of [5] or Lemma 1 of [15] for
the method of proof.

Combining this with Lemma 13 above and proceeding as in the proof of
Lemma 12 we deduce the next result.

Lemma 19. Let C0 > 0 and suppose 6 | q and (a(4a2 + 27), q) = 1. Let

N(x; q, a) = #{1 ≤ t ≤ x : t ≡ a (mod q), t and 4t2 + 27 square-free}.
Then there exists a constant C1, depending only on C0, such that if x ≥
max{C0q

4, C1} then

N(x; q, a) ≥ x

16q
.

The formalism of the rest of the proof of Theorem 2 is now totally anal-
ogous to that of Theorem 1, and we will therefore be content to provide
just a sketch. For square-free t > 1, Kt is a complex cubic number field
and primes dividing t do not divide the index of εt in OKt (see p. 61
of [16]). Consequently, if moreover 4t2 + 27 is square-free it follows that
dt = disc(Kt) = disc(ft) = −t2(4t2 + 27). For such t we also have the as-
sociated automorphic representation πt so that ζKt(s)/ζ(s) = L(s, πt). As
before, the Riemann hypothesis for curves over finite fields can be used to
show that there is a κ > 0 so that for all p ≥ κ there exists tp (mod p)
for which ftp(x) splits completely in (Z/pZ)[x]. The argument is exactly the
same as before, but this time uses the polynomial

ht(x) = x6 − 6t2d(t)x4 + 9t4d(t)2x2 − t2(2t2 + 27)2d(t)3

where d(t) = disc(ft) = −t2(4t2 + 27).
Now for x > 1 let

y =
1

8
log x, q = 6

∏

κ≤p≤y

p

so that q ≪ x1/4. Choose C > 0 so that t2(4t2 + 27) ≤ Ct4 for all t and let
Q = Cx4. Finally, choose a so that a ≡ tp (modp) for all κ ≤ p ≤ y (and
a ≡ 1 (mod2, 3) if 2, 3 < κ) and let

S(Q) = {πt : 1 ≤ t ≤ x, t ≡ a (mod q), t and 4t2 + 27 square-free}.
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Then |S(Q)| = N(x; q, a) so that by Lemma 19 we have

Q3/16 ≪ |S(Q)| ≪ Q1/4.

Theorem 2 now follows from Corollaries 3 and 4, the class number formula
and equation (30).
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[3] H. Davenport, Multiplicative Number Theory, Grad. Texts in Math. 74, Springer,
2000.

[4] W. Duke, Extreme values of Artin L-functions and class numbers, Compos. Math.
136 (2003), 103–115.

[5] —, Number fields with large class groups, in: Number Theory (CNTA VII), CRM
Proc. Lecture Notes 36, Amer. Math. Soc., 2004, 117–126.

[6] W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean value

estimates for automorphic representations, Invent. Math. 139 (2000), 1–39.
[7] S. S. Gelbart, Automorphic Forms on Adele Groups, Ann. Math. Stud. 83, Princeton

Univ. Press, 1975.
[8] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed.,

Oxford Univ. Press, 1960.
[9] M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972.

[10] —, The large sieve inequality for algebraic number fields. III. Zero-density results,
J. London Math. Soc. (2) 3 (1971), 233–240.

[11] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, Geom.
Funct. Anal. 2000, Special Volume, Part II, 705–741.

[12] W. J. LeVeque, Topics in Number Theory, Vol. II, Addison-Wesley, 1956.
[13] J. E. Littlewood, On the class number of the corpus P (

√

−k), in: Collected Papers
of J. E. Littlewood, Vol. II, Oxford Univ. Press, 1982, 920–934.

[14] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math.
227, Springer, 1971.

[15] H. L. Montgomery and P. J. Weinberger, Real quadratic fields with large class num-

ber, Math. Ann. 225 (1977), 173–176.
[16] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN –

Polish Scientific Publishers, 1973.
[17] J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss. 322, Springer,

1999.
[18] H. Rademacher, On the Phragmén–Lindelöf theorem and some applications, in: Col-
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