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Divisibility criteria for class numbers of

imaginary quadratic fields

by

Paul Jenkins (Los Angeles, CA) and Ken Ono (Madison, WI)

1. Introduction and statement of results. Throughout, let d ≡ 0, 3
(mod4) be a positive integer, and let Qd denote the set of positive definite
integral binary quadratic forms Q(x, y) = ax2 + bxy + cy2 = [a, b, c] with
discriminant −d = b2 − 4ac (including imprimitive forms if there are any).
The group Γ := PSL2(Z) acts on Qd with finitely many orbits, and if ωQ is
defined by

ωQ =







2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise,

then the Hurwitz–Kronecker class number H(−d) is given by

(1.1) H(d) =
∑

Q∈Qd/Γ

1

ωQ
.

If −d < −4 is a fundamental discriminant, then H(−d) is the class number
of the ring of integers of the imaginary quadratic field Q(

√
−d).

Recently, Guerzhoy has obtained some interesting expressions for
(

1 −
(−d

p

))

H(−d)

as p-adic limits of traces of singular moduli. To make this precise, we first
recall some notation. For positive definite binary quadratic forms Q, let αQ

be the unique root of Q(x, 1) = 0 in the upper half of the complex plane. If
j(z) is the usual SL2(Z) modular function

j(z) =
E4(z)3

∆(z)
= q−1 + 744 + 196884q + · · · ,
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where q = e2πiz, then define integers Tr(d) by

(1.2) Tr(d) =
∑

Q∈Qd/Γ

j(αQ) − 744

ωQ
.

The algebraic integers j(αQ) are known as singular moduli. Guerzhoy proved
(see Corollary 2.4(a) of [5]) that if p ∈ {3, 5, 7, 13} and −d < −4 is a
fundamental discriminant, then one has the p-adic limit formula

(1.3)

(

1 −
(−d

p

))

· H(−d) =
p − 1

24
lim

n→∞
Tr(p2nd).

If
(

−d
p

)

= 1, then this result simply implies that Tr(p2nd) → 0 p-adically
as n tends to infinity. Thanks to work of Boylan, Edixhoven and the first
author (see [2, 4, 6]), it turns out that more is true. In particular, if p is any
prime and

(

−d
p

)

= 1, then

(1.4) Tr(p2nd) ≡ 0 (modpn).

In earlier work [3], Bruinier and the second author obtained certain p-
adic expansions for H(−d) in terms of the Borcherds exponents of certain
modular functions with Heegner divisor. In his paper [5], Guerzhoy asks
whether there is a connection between (1.3) and these results when

(

−d
p

)

6= 1.
In this note we show that this is indeed the case by establishing the following
congruences.

Theorem 1.1. Suppose that −d < −4 is a fundamental discriminant

and that n is a positive integer. If p ∈ {2, 3} and
(

−d
p

)

= −1, or p ∈ {5, 7, 13}
and

(

−d
p

)

6= 1, then

24

p − 1
·
(

1 −
(−d

p

))

· H(−d) ≡ Tr(p2nd) (modpn).

In particular , under these hypotheses pn divides 24
p−1

(

1 −
(

−d
p

))

· H(−d) if

and only if pn divides Tr(p2nd).

Three remarks. 1) Theorem 1.1 includes p = 2. For simplicity, Guerzhoy
chose to work with odd primes p, and this explains the omission of p = 2
in (1.3).

2) Despite the uniformity of (1.4), it turns out that the restriction on p
in Theorem 1.1 is required. For example, if p = 11, n = 1 and −d = −15,
then

(

−15
11

)

= −1, H(−15) = 2, and we have

Tr(112 · 15)

= −13374447806956269126908865521582974841084501554961922745794

≡ 7 6≡ 48

10
· H(−15) (mod11).
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3) There are generalizations of Theorem 1.1 which hold for primes p 6∈
{2, 3, 5, 7, 13}. For example, one may employ Serre’s theory [7] of p-adic
modular forms to derive more precise versions of Corollary 2.4(b) of [5].

2. The proof of Theorem 1.1. The proof of Theorem 1.1 follows
by combining earlier work of Bruinier and the second author with results
of Zagier and a combinatorial formula used earlier by the first author. We
recall some necessary notation.

Let M !
λ+1/2 be the space of weight λ+1/2 weakly holomorphic modular

forms on Γ0(4) with Fourier expansion

f(z) =
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

For 0 ≤ d ≡ 0, 3 (mod4), we let fd(z) be the unique form in M !
1/2 with

expansion

(2.1) fd(z) = q−d +
∑

0<D≡0,1 (mod 4)

A(D, d)qD.

The coefficients A(D, d) of the fd are integers. For completeness, we set
A(M, N) = 0 if M or N is not an integer. These modular forms are described
in detail in [8].

For fundamental discriminants −d < −4, Borcherds’ theory on the in-
finite product expansion of modular forms with Heegner divisor [1] implies
that

q−H(−d)
∞
∏

n=1

(1 − qn)A(n2,d)

is a weight zero modular function on SL2(Z) whose divisor consists of a
pole of order H(−d) at infinity and a simple zero at each Heegner point of
discriminant −d. Using this factorization, Bruinier and the second author
proved the following theorem.

Theorem 2.1 ([3, Corollary 3]). Let −d < −4 be a fundamental dis-

criminant. If p ∈ {2, 3} and
(

−d
p

)

= −1, or p ∈ {5, 7, 13} and
(

−d
p

)

6= 1,
then as p-adic numbers we have

H(−d) =
p − 1

24

∞
∑

k=0

pkA(p2k, d).

Remark. The case when p = 13 is not proven in [3]. However, thanks to
the remark preceding Theorem 8 of [7] on 13-adic modular forms with weight
congruent to 2 (mod12), and Theorem 2 of [3], the proof of [3, Corollary 3]
still applies mutatis mutandis.
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Zagier identified traces of singular moduli with the coefficients A(D, d)
as follows.

Theorem 2.2 ([8, Corollary to Theorem 3]). For all positive integers

d ≡ 0, 3 (mod4),

Tr(d) = A(1, d).

Combining Zagier’s duality ([8, Theorem 4]) between coefficients of mod-
ular forms in M !

1/2 and in M !
3/2 with the action of the Hecke operators on

these spaces, the first author proved the following combinatorial formula.

Lemma 2.3 ([6, Theorem 1.1]). If p is a prime and d, D, n are positive

integers such that −d, D ≡ 0, 1 (mod4), then

A(D, p2nd) = pnA(p2nD, d)

+
n−1
∑

k=0

(

D

p

)n−k−1(

A

(

D

p2
, p2kd

)

− pk+1A

(

p2kD,
d

p2

))

+
n−1
∑

k=0

(

D

p

)n−k−1(((

D

p

)

−
(−d

p

))

pkA(p2kD, d)

)

.

Remark. This result is stated for odd p in [6], but the proof holds for
p = 2 as well.

Proof of Theorem 1.1. Under the given hypotheses, Theorem 2.1 implies
that

(2.2)
24

p − 1
· H(−d) ≡

n−1
∑

k=0

pkA(p2k, d) (modpn).

By letting D = 1 in Lemma 2.3, for these d and p we find that

(2.3)

(

1 −
(−d

p

)) n−1
∑

k=0

pkA(p2k, d) = A(1, p2nd) − pnA(p2n, d).

Inserting this expression for the sum into (2.2), we conclude that

24

p − 1
·
(

1 −
(−d

p

))

· H(−d) ≡ A(1, p2nd) (modpn),

which by Zagier’s theorem is Tr(p2nd).
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