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Parametrization of low-degree points on a Fermat curve
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Pavlos Tzermias (Knoxville, TN)

1. Introduction. Let Q be the field of rational numbers and Q a fixed
algebraic closure of Q. For a prime p such that p ≥ 5, the Fermat curve of
degree p is the smooth plane curve given by

Fp : Xp + Y p + Zp = 0.

Using results of Faltings ([Fl]), Debarre and Klassen ([DK]) showed that
the set of algebraic points on Fp whose field of definition over Q has degree
d ≤ p − 2 is finite. These points will be called low-degree points in the
following. Debarre and Klassen asked whether all low-degree points on Fp
lie on the line X + Y + Z = 0. Thanks to Wiles and Taylor–Wiles, we can
now exclude any discussion of the case d = 1 in what follows. Thus, from
now on, d ≥ 2. The question of Debarre–Klassen was affirmatively resolved
by Gross and Rohrlich ([GR]) for p ≤ 11 and d ≤ (p− 1)/2, by Klassen and
the author ([KT]) for p = 5 and d ≤ 3 and by the author ([T1]) for p = 7 and
d ≤ 5. Note that the line X + Y +Z = 0 is the unique line in the projective
plane P2 which is invariant under the evident action of the symmetric group
S3 on P2. Note also that S3 is a subgroup of the automorphism group of Fp
for each p. The following weaker version of the question of Debarre–Klassen
can be formulated:

Question 1.1. If P is a low-degree point of degree d ≤ 6 on Fp, is the
Galois orbit of P contained in its S3-orbit?

For p ≤ 7, the answer is affirmative, as explained above. For p ≥ 13, we
refer the reader to [MT], where Question 1.1 is discussed and affirmatively
established in special cases. In this paper, we discuss the case p = 11. Our
main result is the following theorem:

Theorem 1.2. There exist at most 120 points of degree 6 on F11 and
the Galois orbit of each of these points equals its S3-orbit.
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Combined with [GR], this shows that the answer to Question 1.1 is also
affirmative for p = 11. The bound for points of degree 6 on F11 is obtained by
means of Coleman’s effective Chabauty method ([C]). It is not unlikely that
such bounds can be obtained by the same method for any Fermat curve Fp
for which Question 1.1 is affirmatively established. In Section 4, we produce
an explicit curve C defined over Q whose Q-rational points parametrize the
Galois orbits of points of degree at most 6 on F11.

2. Preliminary results. We follow Rohrlich’s notation ([R]). Let ε be
a primitive 2pth root of unity in Q. The points at infinity on Fp are given
by

aj = (0, ε2j+1, 1), bj = (ε2j+1, 0, 1), cj = (ε2j+1, 1, 0),

for 0 ≤ j ≤ p− 1. For convenience, let

∞ := c(p−1)/2 = (−1, 1, 0).

Let K(Fp) be the field of rational functions on Fp. For an integer m let

L(m∞) = {f ∈ K(Fp) : div(f) ≥ −m∞} ∪ {0}.
Also consider the following elements of K(Fp):

x =
X

Z
, y =

Y

Z
.

The following lemma is an easy consequence of the work of Rohrlich ([R]):

Lemma 2.1. If k ∈ {1, . . . , p − 2}, the rational functions xr/(x+ y)s,
where 0 ≤ r ≤ s ≤ k, form a basis for the vector space L(pk∞).

Proof. If r and s are as in the lemma, then, by [R], we have

div
(

xr

(x+ y)s

)
= r

p−1∑

j=0

aj − r
p−1∑

j=0

cj − ps∞+ s

p−1∑

j=0

cj ≥ −ps∞ ≥ −pk∞.

It therefore suffices to show that

dim(L(pk∞)) =
(k + 1)(k + 2)

2
.

It is well known (see for example [ACGH, p. 44]) that the Weierstrass gap
sequence of ∞ is

1, 2, . . . , p− 2, p+ 1, p+ 2, . . . , 2p− 3, 2p+ 1, 2p+ 2, . . . , 3p− 4,

. . . , (p− 4)p+ 1, (p− 4)p+ 2, (p− 3)p+ 1.

This implies that

dim(L(p∞)) = 3, dim(L(p(k + 1)∞))− dim(L(pk∞)) = k + 2

for 1 ≤ k ≤ p− 3, so the assertion follows by induction on k.
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For the rest of the paper, let p = 11 and k = 6. Let J11 be the Jacobian
variety of F11. Fix a point P1 of degree 6 on F11 and let Pi, where 1 ≤ i ≤ 6,
be the Galois conjugates of P1. Then the divisor class

D = [P1 + . . .+ P6 − 6∞]

is an element of J11(Q). Also consider the primitive pth root of unity ζ = ε2.
Let us now recall some facts about the geometry of J11. The reader should
consult [Fd], [GR] and [KR] for a thorough account. The automorphisms A
and B of F11 given by

A(X,Y,Z) = (ζX, Y, Z), B(X,Y,Z) = (X, ζY, Z)

give rise to quotient curves of F11. By a theorem of Faddeev ([Fd]), the
Jacobians of three of these curves, namely

F11/〈AB−1〉, F11/〈AB−5〉, F11/〈AB−9〉,
have finite Mordell–Weil group over Q. By the work of Gross and Rohrlich
([GR]) it follows that

10∑

j=0

(AB−t)jD = 0

for t ∈ {1, 5, 9}. Therefore, for each t as above, there exists, by Lemma 2.1,
a polynomial function ft(x, y) of degree 6 such that

div
(
ft(x, y)
(x+ y)6

)
=

10∑

j=0

(AB−t)j(P1 + . . .+ P6)− 66∞.

Thus, by [R],

div(ft(x, y)) =
10∑

j=0

(AB−t)j(P1 + . . .+ P6)− 6
10∑

j=0

cj .

Since F11 is a smooth plane curve, it follows that there exists a curve Mt of
degree 6 in P2 which intersects F11 at the divisor

Mt.F11 =
10∑

j=0

(AB−t)j(P1 + . . .+ P6).

Let Mt : gt(X,Y,Z) = 0, where gt is a homogeneous polynomial of degree 6.

Lemma 2.2. The polynomial gt, where t ∈ {1, 5, 9}, can be written in
the following form:

(a) g1(X,Y,Z) = X3Y 3 +αX2Y 2Z2 +βXY Z4 + γZ6 or Y 6−αX5Z or
X6 − αY 5Z, with α, β, γ in Q.

(b) g5(X,Y,Z) = X3Z3 +αX2Z2Y 2 +βXZY 4 +γY 6 or Z6−αX5Y or
X6 − αZ5Y , with α, β, γ in Q.
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(c) g9(X,Y,Z) = Y 3Z3 +αY 2Z2X2 +βY ZX4 + γX6 or Z6−αY 5X or
Y 6 − αZ5X, with α, β, γ in Q.

Proof. We will only prove part (a). The proof for the other two parts is
similar (alternatively, parts (b) and (c) follow from part (a) if one uses the
fact that the action of a 3-cycle of S3 on J11 induces isomorphisms of the
Jacobians of the three quotient curves of F11 defined above).

Let us first show that g1 can be written as a polynomial with Q-rational
coefficients. Let σ be in Gal(Q/Q). Note that M1.F11 is a Q-rational di-
visor. Therefore, Mσ

1 .F11 = M1.F11. We need to show that M1 = Mσ
1 .

Suppose this is not the case. Since M1 and Mσ
1 have at least 66 points in

common (their points of intersection with F11), Bézout’s theorem implies
that they must have a common component C of maximum degree m with
1 ≤ m ≤ 5. Write M1 = C + D and Mσ

1 = C + E. Then D.F11 = E.F11.
Note that the degree of these intersection divisors equals 11(6−m). There-
fore, the intersection of D and E contains at least 11(6 − m) > (6 − m)2

points, which contradicts Bézout’s theorem and proves the rationality
claim.

Also note thatM1.F11 is a divisor invariant under AB−1. By an argument
similar to the rationality argument above, it follows that M1 is invariant
under AB−1. As in the proof of Lemma 2.1 in [GR], write

g1(X,Y,Z) =
∑

0≤i+j≤6

ai,jX
iY jZ6−i−j.

Then M1 is also described by the polynomial

AB−1g1(X,Y,Z) = g1(ζX, ζ−1Y,Z) =
∑

0≤i+j≤6

ai,jζ
i−jXiY jZ6−i−j .

Hence, there exists m ∈ {0, 1, . . . , 10} such that AB−1g1 = ζmg1. Therefore,
ai,j = 0, unless i − j ≡ m (mod 11). Since 0 ≤ i, j, i + j ≤ 6, we have the
following cases to consider:

If m = 0 then ai,j = 0, unless i = j. If we had a3,3 = 0 then g1 would be
divisible by Z, which contradicts the fact that no points at infinity can be
in the support of M1.F11. Hence, a3,3 6= 0 and g1 can be written in the form
X3Y 3 + αX2Y 2Z2 + βXY Z4 + γZ6, with α, β, γ in Q.

If 1 ≤ m ≤ 4 then ai,j = 0, unless i = j+m. Since j+m ≥ 1, every non-
zero monomial in g1 is divisible by X, which, as before, is a contradiction.

If m = 5 then ai,j = 0, unless (i, j) ∈ {(5, 0), (0, 6)}. If we had a0,6 = 0,
then g1 would be divisible by Y , which, as before, is a contradiction. Hence
a0,6 6= 0 and g1 can be written in the form Y 6 − αX5Z, with α ∈ Q.

If m = 6 then ai,j = 0, unless (i, j) ∈ {(6, 0), (0, 5)}. As before, we see
that g1 can be written in the form X6 − αY 5Z, with α ∈ Q.
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If 7 ≤ m ≤ 10 then ai,j = 0, unless i − j = m − 11. Since 11 + i −m
≥ 1, every non-zero monomial in g1 is divisible by Y , which, as before, is a
contradiction.

To facilitate our discussion, we make the following definition:

Definition 2.3. We say that M1 (resp. M5, M9) is of type I if g1 (resp.
g5, g9) can be written in the first form stated in Lemma 2.2, part (a) (resp.
(b), (c)). Otherwise, we say it is of type II.

We will now refine Lemma 2.2 (see Lemma 2.5 below). We will depend
on the following well known fact (see for example [W], page 171):

Fact 2.4. If K is a number field, a ∈ K, q is a prime and r ∈ Q is a
root of the polynomial T q − a then either the field extension K(r)/K has
degree dividing q or K(r) = K(ζq), where ζq is a primitive qth root of unity
in Q.

Lemma 2.5. At most one of the curves M1, M5 and M9 is of type II.

Proof. Without loss of generality, assume that M1 and M5 are of type II.
There are four cases to consider:

Case 1. Suppose that

g1(X,Y,Z) = Y 6 − αX5Z, g5(X,Y,Z) = Z6 − βX5Y,

with α, β ∈ Q. Write P1 = (1, c, d). Let L be the field of definition of P1, i.e.
L = Q(c, d). Since P1 lies on both M1 and M5, we get

c6 = αd, d6 = βc.

Therefore, (cd)5 ∈ Q. Since [Q(cd) : Q] divides [L : Q] = 6, Fact 2.4 implies
that cd ∈ Q, hence also (cd)11 ∈ Q. But c11 + d11 = −1 ∈ Q. Hence, there
exists a quadratic extension K of Q such that c11, d11 ∈ K. Since c and d
are in L, degree considerations and Fact 2.4 imply that c, d ∈ K, which is
impossible.

Case 2. Suppose that
g1(X,Y,Z) = Y 6 − αX5Z, g5(X,Y,Z) = X6 − βZ5Y,

with α, β ∈ Q. Write P1 = (c, d, 1) and let L = Q(c, d). Then
d6 = αc5, c6 = βd.

Therefore, c31 ∈ Q. By Fact 2.4, we get c ∈ Q, hence also d ∈ Q, and this is
impossible.

Case 3. Suppose that
g1(X,Y,Z) = X6 − αY 5Z, g5(X,Y,Z) = Z6 − βX5Y,

with α, β ∈ Q. Write P1 = (c, 1, d) and let L = Q(c, d). Then
c6 = αd, d6 = βc5.

Therefore, c31 ∈ Q, so, as in the previous case, we reach a contradiction.
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Case 4. Suppose that

g1(X,Y,Z) = X6 − αY 5Z, g5(X,Y,Z) = X6 − βZ5Y,

with α, β ∈ Q. Write P1 = (c, d, 1) and let L = Q(c, d). Then

c6 = αd5, c6 = βd.

Therefore, d4 ∈ Q. Let K = Q(d). Clearly, [K : Q] ≤ 4. Note that since
c6 = βd, we get c6 ∈ K. Since c11 + d11 = −1, we also have c11 ∈ K.
Therefore, c = (c6)2/c11 has to be in K, hence L = K, which is absurd, by
degree.

3. Galois action. In this section we prove the assertion about the Ga-
lois orbit of P1 in Theorem 1.2. By Lemma 2.5, we may assume, without
loss of generality, that both M1 and M5 are of type I. As before, write
P1 = (c, d, 1) and let L = Q(c, d).

Lemma 3.1. The degree [Q(cd) : Q] equals 3.

Proof. Since g1(c, d, 1) = 0, the degree of cd over Q is at most 3. If it were
at most 2, then both the sum and product of c11 and d11 are in a quadratic
extension of Q. So there exists a quartic extension K of Q containing both
c11 and d11. By Fact 2.4 and degree considerations we deduce that c, d ∈ K,
which is impossible.

Now note that g1 is symmetric with respect to X and Y . Therefore,
since M1.F11 contains the point P1 = (c, d, 1), it must also contain the point
Q1 = (d, c, 1). Hence

(d, c, 1) = Q1 = (ζmcσ, ζ−mdσ, 1),

for some integer m and some embedding σ : L ↪→ Q. Therefore, cd = (cd)σ,
so σ fixes Q(cd). By Lemma 3.1, the extension L/Q(cd) has degree 2, so
it is normal, which means that Lσ = L. But then ζm = dσ/c is also in L.
This can only happen if ζm = 1. This shows that Q1 = P σ1 . Note also that
if Q1 = P1 then c and d are 11th roots of −1/2, which is impossible since
[L : Q] = 6. Hence Q1 equals Pi for some i ∈ {2, . . . , 6}.

Similarly, note that g5 is symmetric with respect to X and Z. By repeat-
ing the argument above, it follows that there exists an embedding τ : L ↪→ Q
such that Lτ = L and R1 := (1, d, c) = P τ1 . Hence R1 is also a Galois con-
jugate of P1, different from P1 and Q1.

Note that the automorphisms σ and τ of L satisfy

cσ = d, dσ = c, cτ = 1/c, dτ = d/c.

Since [L : Q] = 6, it easily follows that the orbit of P1 under the group
of automorphisms of L generated by σ and τ consists of the following six
distinct elements:
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P1, P σ1 , P τ1 , P στ1 = (1, c, d), P τσ1 = (d, 1, c), P στσ1 = (c, 1, d).

These points are exactly the images of P1 under the action of the subgroup
S3 of the automorphism group of F11 and our assertion is proved. Note that
we have also shown that L is necessarily normal over Q with Galois group
isomorphic to S3 and generated by σ and τ . It is now easy to show that the
curves M1, M5 and M9 are all of type I, but we will not need this.

4. Explicit parametrization. Let C denote a smooth projective model
of the curve obtained as the quotient of F11 by the action of S3. Since the
latter action is Q-rational, it follows that C and the natural projection map
φ : F11 → C of degree 6 are also defined over Q. Since we now know that the
answer to Question 1.1 is affirmative for p = 11, it follows that the Galois
orbits of points of degree at most 6 on F11 are in bijective correspondence
with the Q-rational points on C. Let J be the Jacobian of C.

Lemma 4.1. The genus of C equals 5 and the Mordell–Weil rank of J
over Q equals 1.

Proof. Let g be the genus of C. Since the gonality of F11 (i.e. the min-
imum degree of a morphism F11 → P1) equals 10, it follows that g cannot
equal 0. Therefore, by Picard functoriality, φ induces an isogeny of J onto a
non-trivial abelian subvariety of J11. Since, by [KR], every absolutely simple
isogeny factor of J11 has dimension 5, it follows that g is a positive multiple
of 5. Now note that the genus of F11 equals 45. If R is the ramification di-
visor of φ the Riemann–Hurwitz formula gives 12g+ degR = 100, so g ≤ 8.
Therefore, g = 5 and J is isogenous to one of the simple factors of J11.
By [GR], the Mordell–Weil rank of J over Q is at most 1. The fact that it
equals 1 follows from the observation that the Gross–Rohrlich divisor class
(see [GR]) is, up to torsion, invariant under the action of S3, hence it induces
a point of infinite order in J(Q).

Remark 4.2. The isogeny between J and a simple factor of J11 over Q is
not an isomorphism. To see this, note that, by [GR], it suffices to show that
J(Q) has no element of exact order 11. Suppose D were such an element.
The composite map

J
φ∗−→ J11

φ∗−→ J

equals multiplication by 6 on J . Hence, φ∗(φ∗(D)) 6= 0, which is a contra-
diction, since, by [T2], φ∗(D) is supported on the three Q-rational points
on F11. This implies that there is no non-constant morphism defined over
Q from C to one of the Fermat quotient curves (since all these curves have
genus 5, such a morphism would necessarily be an isomorphism). In partic-
ular, it does not seem likely that the Q-rational points on the latter curves
can be used to determine the Q-rational points on C.
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We will now produce an explicit model for C which will be used in the
next section to give a bound for the number of points of degree 6 on F11.

Proposition 4.3. An affine model for C is given by

E : r11 + 22r10− 11r9s+ 121r9− 187r8s+ 44r7s2− 374r8− 616r7s+ 528r6s2

− 77r5s3 − 4004r7 + 3432r6s+ 605r5s2 − 550r4s3 + 55r3s4 + 1672r6

+ 13332r5s− 7590r4s2 + 440r3s3 + 154r2s4 − 11rs5 + 39523r5

− 30481r4s− 3905r3s2 + 3597r2s3 − 319rs4 − 30250r4 − 45331r3s

+ 31064r2s2 − 3652rs3 − 108009r3 + 117557r2s− 20625rs2

+ 164450r2 − 57453rs− 63151r − 1 = 0.

Proof. Let h(r, s) be the left-hand side of the above equation. Consider
the rational map

	 : C2 → C2 given by (x, y) 7→ (r, s)

where

r = −x− y − 1
x
− 1
y
− x

y
− y

x
− 2,

s = xy +
1
xy

+
x2

y
+

y

x2 +
y2

x
+

x

y2 − 6.

Let F11 be the affine curve x11 + y11 + 1 = 0. It suffices to show that 	
induces, by restriction, a rational map ψ : F11 → E whose fiber above (r, s)
equals

{(x, y), (y, x), (1/x, y/x), (1/y, x/y), (y/x, 1/x), (x/y, 1/y)}
for all but finitely many (r, s) ∈ E(C). First we compute the fibers of 	. Fix
(r, s) ∈ C2 and (x, y) ∈ 	−1(r, s). We claim that

	−1(r, s) = {(x, y), (y, x), (1/x, y/x), (1/y, x/y), (y/x, 1/x), (x/y, 1/y),

(1/x, 1/y), (1/y, 1/x), (x, x/y), (y, y/x), (x/y, x), (y/x, y)}.
It is clear that all of the above twelve points are in 	−1(r, s). Now note that
for any (c, d) ∈ 	−1(r, s), we have

cd = −(c+ d) + (c+ d)2

r + (c+ d)

and c+ d satisfies the following polynomial equation in T :

T 6 + (2r + 4)T 5 + (r2 + 2r + 12 + s)T 4 + (16 + 6r + rs+ 2s− 2r2)T 3

+ (2rs+ 8 + 11r + s− 3r2 − r3)T 2 + (rs+ 8r − 2r2)T + r2 = 0.

Thus there are at most six possible values for the pair (c+ d, cd), hence at
most twelve possible values for the pair (c, d) and this proves the claim.
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Now a straightforward but tedious calculation (which can be easily done
using MAPLE) shows that

h(	(x, y)) = −(x11 + y11 + 1)(1/x11 + 1/y11 + 1).

In particular, ψ is a rational map from F11 to E and for (r, s) ∈ E(C) it
follows that, for each (x, y) ∈ 	−1(r, s), either (x, y) or (1/x, 1/y) is on F11.
Note that, with the exception of finitely many cases, only one of the latter
two points can lie on F11. By the above calculation of the fibers of 	 and
the evident symmetry of ψ, the assertion follows.

5. Consequences of the parametrization. Now we are ready to es-
tablish the bound stated in Theorem 1.2 on the number of points of degree 6
on F11. Note that F11 has good reduction at 13, hence so does C. Let C̃ de-
note a smooth projective model of the reduction of C at 13. By Lemma 4.1,
Coleman’s effective Chabauty method ([C]) applies and gives

#C(Q) ≤ #C̃(F13) + 8.

We first show that there are exactly 14 F13-rational points on C̃. Let F̃11
be the reduction of F11 at 13. Also let Ẽ denote the projectivization of the
singular model of C̃ obtained by reducing E at 13. We have morphisms of
curves

F̃11
φ̃−→ C̃

π̃−→ Ẽ
where π̃ is the normalization map and φ̃ is the reduction of φ at 13. It
is straightforward to check that Ẽ has exactly 14 points defined over F13,
namely the points (r, s) with coordinates (1, 0), (1, 1), (1, 3), (1, 6), (2, 11),
(3, 8), (4, 5), (4, 12), (5, 11), (8, 10), (10, 2), (10, 9), (12, 8) and the unique
point at infinity. Now each of the thirteen affine points listed above is a
non-singular point of Ẽ , so its fiber under π̃ consists of a unique F13-rational
point on C̃. The point at infinity on Ẽ is singular. We claim that, among the
points in its fiber under π̃, there is exactly one which is defined over F13. To
see this, note that any such point lifts under φ̃ to a point at infinity on F̃11
of degree at most 6 over F13. Since the cyclotomic polynomial of degree 10
remains irreducible over F13, it follows that the latter point has to equal
(0,−1, 1), (−1, 0, 1) or (−1, 1, 0), which proves the claim.

Therefore, there are at most 14+8 = 22 Q-rational points on C. Now the
three Q-rational and the two quadratic points on F11 project to two distinct
Q-rational points on C under the morphism φ. Therefore there are at most
20 Q-rational points on C which lift to points of degree 6 on F11. Therefore,
there are at most 20 · 6 = 120 points of degree 6 on F11. This completes the
proof of Theorem 1.2.

We conclude the paper with the following proposition:
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Proposition 5.1. There are exactly six integral points of degree 6 on
the affine subvariety x11 + y11 + 1 = 0 of F11. They all have the form
(c,−1− c, 1), where c is a root of the irreducible polynomial

X6 + 3X5 + 7X4 + 9X3 + 7X2 + 3X + 1.

Proof. Let (c, d, 1) be such a point and let L = Q(c, d). By Theorem 1.2,
the norms of the algebraic integers c and d satisfy NL/Q(c) = NL/Q(d) = 1,
so c and d are units in L. Therefore, by the proof of Proposition 4.3, r and
s are in Z. Since r is an integer root of a monic polynomial with integer
coefficients and constant term equal to −1, we get r = −1 or r = 1. It is
now straightforward to check that the only possibilities for (r, s) are (1, 0)
and (1, 1). The former possibility gives c2 +c+1 = d2 +d+1 = 0 (the Gross–
Rohrlich points), which contradicts the assumption that L is of degree 6 over
Q. Hence (r, s) = (1, 1), which gives c+d+1 = 0. Thus d = −c−1, L = Q(c)
and c is of degree 6 over Q. The equation c11 + d11 + 1 = 0 therefore implies
that c6 + 3c5 + 7c4 + 9c3 + 7c2 + 3c+ 1 = 0.

Remark 5.2. Using valuation arguments, one can show that if (r, s) is
a Q-rational point on E then there exist pairwise coprime integers u, v and
w such that either r = ±w5v, s = u/(wv2), with w not divisible by 11, or
r = ±w5/(11v), s = u/(wv2), with w divisible by 11. We have not been able
to determine whether r and s are necessarily in Z.
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