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1. Greenberg’s conjecture. In the late 1950’s Iwasawa introduced a
powerful technique for studying class groups and unit groups of number
fields. Motivated by the theory of curves over finite fields, Iwasawa’s theory
of Zp-extensions has since become a widely used tool in algebraic number
theory, Galois theory, and arithmetic geometry. We describe in this section
a conjecture of Greenberg concerning the structure of a classical Iwasawa
module, and we mention a Galois-theoretic consequence concerning free pro-
p-extensions of number fields.

Let K be an algebraic number field and p an odd prime. By a multiple
Zp-extension K∞/K we mean a Galois extension with Galois group Γ ' Zdp
for some positive integer d. In what follows we will be particularly interested
in two such extensions of K for which we reserve the following notation:

• Kcyc/K denotes the cyclotomic Zp-extension of K.
• K̃/K denotes the compositum of all Zp-extensions of K.

Let F be a finite extension of K contained in K∞, and denote by A(F ) the
Sylow p-subgroup of the ideal class group of F . The Galois group of F/K
acts on A(F ) in the natural way, making A(F ) into a Zp[Gal(F/K)]-module.
As F varies over all finite subextensions the A(F ) form an inverse system
(under norm maps) and we denote by A the inverse limit. The group A then
carries a natural structure as a module over the Iwasawa algebra

Zp[[Γ ]] := lim←−
F
Zp[Gal(F/K)].

It is common to study A by identifying the A(F ) with Galois groups as
follows. By class field theory, the group A(F ) is isomorphic to the Galois
group,XF , of the maximal abelian unramified p-extension of F (the p-Hilbert
class field of F ). The isomorphism respects the Galois module structure,
the action of Gal(F/K) on XF being inner automorphism. The XF form
an inverse system (the maps being given by restriction of automorphisms)
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and the limit X is the Galois group of the maximal abelian unramified
pro-p-extension of K∞. So X ' A.

The Iwasawa algebra Zp[[Γ ]] is non-canonically isomorphic to the power
series ring

Λ := Zp[[T1, . . . , Td]],

where topological generators γi of Γ are sent to 1 + Ti. So the Zp[[Γ ]]-
module structure of A is studied via the Λ-module structure of X (noting
that Tix = xγi−1).

For K∞/K any multiple Zp-extension Greenberg [3, Theorem 1] has
shown X to be a finitely generated torsion Λ-module. In particular, the an-
nihilator of X, AnnΛ(X), is non-trivial. Traditionally, annihilators of clas-
sical Iwasawa modules have been of much interest. The main conjecture
of Iwasawa theory gives the factors of the annihilator of X for the cyclo-
tomic Zp-extension of a number field K as essentially the p-adic L-functions
attached to K. There is also a two variable main conjecture for certain
Z2
p-extensions arising from the theory of elliptic curves.

Greenberg [5, Conjecture 3.4] has conjectured that for the cyclotomic
Zp-extension Kcyc/K of a totally real field K, the module X is finite. If a
totally real field K satisfies Leopoldt’s conjecture the extensions Kcyc and
K̃ coincide (i.e. K has only one Zp-extension). Furthermore, when Λ =
Zp[[T ]] it can be shown that a module being finite is equivalent to having
an annihilator of height at least 2. With this in mind the above conjecture
is a special case of the more general conjecture [5, Conjecture 3.5]:

Conjecture 1. Let K be any number field and K̃ the compositum of
all Zp-extensions of K. Then AnnΛ(X) has height at least 2.

A Λ-module whose annihilator has height at least 2 is said to be pseudo-
null, and we will refer to Conjecture 1 above as Greenberg’s conjecture, or
just the pseudo-null conjecture.

The point of this note is two-fold. First, we prove a “going-up” theo-
rem for the pseudo-null conjecture. Namely, if K is a number field, and
F is a finite extension of K in K̃, we give conditions under which Green-
berg’s conjecture for K implies Greenberg’s conjecture for F (Theorem 6).
The result is an exercise in utilizing several equivalent formulations of the
conjecture. Versions of these formulations have appeared in Lannuzel and
Nguyen Quang Do [9, Theorem 4.4] as well as in work of McCallum [11] and
this author [10]. Secondly, as an application of the result, we consider the
example K = Q(ζp) and F = Q(ζpn). We verify the conjecture for a certain
class of such K’s, implying the conjecture for each field in the corresponding
Zp-tower.

The key argument in both results is reduced to a capitulation problem,
namely the need for a set of ideals, or ideal classes, to become principal when
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extended to an appropriate field. For the “going-up” result, the resolution
of this problem is provided by an equivalent form of the conjecture, stating
that all ideal classes capitulate in K̃. In verifying the conjecture for Q(ζp)
capitulation is obtained by more direct means. We state our second result
here.

Let K = Q(ζp), E = O×K and U = O×Kπ , where π is the unique prime
of K above p. Denote by E the closure of E in U . We denote by λp the
Iwasawa lambda invariant of the cyclotomic Zp-extension of Q(ζp). Let vp
denote the p-adic valuation. In Section 4 we prove

Theorem 1. Suppose K = Q(ζp) satisfies the following conditions:

(1) Vandiver’s conjecture.
(2) λp = 1.
(3) vp(|(U/E)[p∞]|) ≤ vp(|A(K)|).

Then for all n ≥ 1 the pseudo-null conjecture holds for Q(ζpn).

We mention here one Galois-theoretic consequence of the pseudo-null
conjecture for cyclotomic fields. The existence of free pro-p-extensions (Ga-
lois extensions with Galois group a free pro-p-group) has been the subject of
much study. See for example the list of known results in [15]. Let K = Q(ζpn)
for some n > 0, and let ΩK denote the maximal pro-p-extension of K which
is unramified at all primes not dividing p. Let GK denote the Galois group.

Since free pro-p-extensions are unramified outside p, such extensions of
K are contained in ΩK . We will see that GK is a free pro-p-group exactly
when p is a regular prime (since the number of relations defining GK is
equal to the p-rank of the class group of K). When p is an irregular prime
the group GK is not free, but we may look for free pro-p-quotients. Let
r2 denote the number of complex places of K. Then Leopoldt’s conjecture
predicts r2 + 1 independent Zp-extensions of K, and so the maximal rank
of a free pro-p-extension of K is bounded above by r2 + 1. The following is
proved in [9], as well as in [11]:

Theorem 2. Suppose that K = Q(ζpn) satisfies Greenberg’s conjecture.
Then GK has a free pro-p-quotient of rank r2 + 1 if and only if p is regular.

We give here a brief outline of the paper. In Section 2, we introduce
several auxiliary Λ-modules and Galois groups needed for the later study.
Theorem 3 and Lemma 1 are the key results of this section, implying a suf-
ficient condition for a standard Iwasawa module to be torsion free (Corol-
lary 1). In Section 3 we recall and provide several equivalent formulations
of Greenberg’s pseudo-null conjecture, and we state and prove one of our
main results (the “going-up” theorem). Finally, in Section 4 we turn to the
example furnished by cyclotomic fields, proving Theorem 1 above.
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2. Auxiliary modules. For a number field K and a prime number p,
we call a field extension of K p-ramified if it is unramified at all primes of
K not dividing p. We fix the following notation:

The fields:

ΩK the maximal pro-p, p-ramified extension of K,

K̃ the compositum of all Zp-extensions of K,

L∞ the maximal abelian unramified pro-p-extension of K̃,

M∞ the maximal abelian p-ramified pro-p-extension of K̃,

N∞ the extension of K̃ generated by p-power roots of p-units of K̃.

The Galois groups:

GK the Galois group of ΩK/K,

Γ the Galois group of K̃/K,

X the Galois group of L∞/K̃,

Y the Galois group of M∞/K̃,

Y ′ the Galois group of N∞/K̃.

The Galois groups Y and Y ′ carry an action of Γ via conjugation, just
as X, making them into Λ-modules. We shall see that for certain base
fields K, the pseudo-null conjecture may be formulated in terms of the
Λ-module structure of Y (in particular, that Y is Λ-torsion free). The mod-
ule Y is known to be finitely generated, and, for K/Q abelian, have Λ-rank
equal to r2, where r2 denotes the number of complex places of K (see [4]).
For a Λ-module M we write TorΛ(M) for the Λ-torsion submodule. The
following result is due to McCallum.

Theorem 3 ([11, Theorem 3]). Suppose there is only one prime of K
above p, and K̃ contains all p-power roots of unity. Then TorΛ(Y ′) = 0.

Remark 1. The proof of this result involves a detailed analysis of the
filtration

EuF ⊂ EnF ⊂ Eloc
F ⊂ EF ,

where EF denotes the units OF [1/p]× of a finite extension F of K in K̃,
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and the superscripts denote certain classes of universal norms (see Section 4
of [11] for the precise definitions). The torsion submodule of Y ′ is contained
in the kernel of a surjective map of Galois groups. The Pontryagin dual of
this kernel is lim−→F (EF /EuF )⊗Qp/Zp, and is shown to be zero by considering
each graded factor from the filtration.

Remark 2. In particular, the result tells us TorΛ(Y ) fixes the field N∞.
This observation, combined with Lemma 1 below, gives our approach to
verifying the pseudo-null conjecture.

The group GK has a minimal free presentation

1→ R→ Fg → GK → 1,

where Fg is the free pro-p-group on g generators and R is the normal closure
of a finitely generated subgroup (the group of relations for GK). Denote by
s the minimal number of (topological) generators of R. The numbers g and
s are equal to the Fp-dimensions of H i(GK ,Z/pZ), i = 1, 2, respectively (see
Chapter 4 of [13]).

Let Gab
K denote the maximal abelian quotient of GK , andMK the maximal

abelian p-ramified pro-p-extension of K (so Gab
K = Gal(MK/K)). The field

MK is an abelian, p-ramified extension of K̃ (the Galois group of MK/K̃ is
just the torsion subgroup of Gab

K ), and so is contained in the field M∞. Hence
we have a natural map from Y to Gab

K given by restriction of automorphisms.
We refer the reader to [11] for a proof of the following.

Lemma 1 ([11, Lemma 24]). Suppose K satisfies Leopoldt’s conjecture.
If GK is a one-relator group (i.e. s = 1), then the map TorΛ(Y ) → Gab

K is
the zero map if and only if TorΛ(Y ) = 0.

The following is an immediate consequence of Theorem 3 and Lemma 1:

Corollary 1. If K is a number field satisfying the hypotheses of The-
orem 3 and Lemma 1, then

MK ⊂ N∞ implies TorΛ(Y ) = 0.(1)

3. Equivalent formulations. We have introduced the natural Iwasawa
modules X and Y in the last section. The Galois action on each of the XF

is also compatible with regard to extensions of ideal classes, so we may form
the Λ-module lim−→F XF as well. Recall that the groups ExtiΛ(·, Λ) are the
right derived functors of HomΛ(·, Λ).

Theorem 4. Let p be an odd prime and let K be a number field with a
unique prime above p. Then Ext1

Λ(X,Λ) is the Pontryagin dual of lim−→F XF ,
where the F vary over the finite extensions of K in K̃.
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Proof. Let m denote the unique maximal ideal of Λ = Zp[[T1, . . . , Tr]],
and define

ωn(Ti) = (1 + Ti)p
n − 1.

The result is obtained by establishing the isomorphism

Hr
m(X) ' lim−→

F
XF ,(2)

where H i
m(X) denotes Grothendieck’s local cohomology relative to the m-

primary sequences

xn = (pn, ωn(T1), . . . , ωn(Tr)).

The desired result is then a consequence of (a version of) Grothendieck’s
local duality; namely

ExtN−iΛ (X,Λ) ' HomZp(H
i
m(X),Q/Z),

where N denotes the length of the m-primary sequence. A good reference
for this material is Chapter 3 of [1].

The details establishing (2) can be found in Theorem 8 of [11], where
McCallum proves a similar result for the Galois group X ′ of the maximal
abelian unramified pro-p-extension of K̃ in which all primes dividing p are
completely decomposed. The proof translates easily to this case, simply by
replacing the decomposition group with inertia.

Let µn denote the group of nth roots of unity. As above, we let X ′F denote
the Galois group of the maximal abelian unramified extension of F in which
all primes dividing p are completely decomposed. We write X ′ for X ′

K̃
.

Theorem 5. Let p > 5 be a prime and suppose µp is in K. If K has a
unique prime ideal ℘ dividing p, then the following are equivalent :

(a) X is pseudo-null ,
(b) X ′ is pseudo-null ,
(c) TorΛ(Y ) = 0,
(d) lim−→F X

′
F = 0,

(e) lim−→F XF = 0,

where the fields F vary over all finite extensions of K in K̃.

Proof. (a)⇔(b). Recall Γ = Gal(K̃/K). We let Γ℘ denote the decompo-
sition group of ℘ in Γ , and let Λ℘ = Zp[[Γ/Γ℘]]. There is a natural surjection
X → X ′ whose kernel is generated as a Zp-module by the Frobenius auto-
morphisms corresponding to the primes above p, and therefore is finitely
generated as a module over Λ℘. As a Λ-module, the annihilator of Λ℘ has
height equal to the Zp-rank of Γ℘ (this is just the augmentation ideal in
Zp[[Γp]]). Since there is only one prime of K above p, its decomposition
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group has finite index in Γ , and therefore our assumption on p makes Λ℘
pseudo-null. Therefore the kernel of the surjection X → X ′ is pseudo-null,
and X and X ′ are pseudo-isomorphic.

(a)⇔(c). This follows from a duality due to Jannsen [8, Theorem 5.4]
relating the Λ-modules X ′ and Y , together with a structure theorem for Y
due to Nguyen Quang Do (Corollary 14 of [11] or Theorem 4.4 of [9]).

(c)⇔(d). In proving the results cited in the previous case, one shows, in
particular, that

TorΛ(Y ) ' Ext1
Λ(X ′, Λ)

[11, Theorem 9]. But Ext1
Λ(X ′, Λ) is known to be the Pontryagin dual of

lim−→F X
′
F [11, Theorem 8]. The result then follows.

(c)⇔(e). Grothendieck’s local duality can be used to show that a tor-
sion Λ-module is pseudo-null if and only if Ext1

Λ vanishes [11, Lemma 6].
This implies, in particular, that Ext1

Λ(X,Λ) and Ext1
Λ(X ′, Λ) are isomorphic,

yielding
TorΛ(Y ) ' Ext1

Λ(X,Λ)

as well. Theorem 4 then finishes the proof.

Remark. Various forms of these equivalences have certainly appeared
elsewhere. In [9], Lannuzel and Nguyen Quang Do prove the equivalence of
(a), (c), and (e) under slightly different hypotheses. Namely, no restriction is
made on the number of primes of K dividing p, but rather it is assumed that
all finite extensions of K in K̃ satisfy Leopoldt’s conjecture. Formulation (c)
has been used by McCallum [11] and this author [10] to verify Greenberg’s
conjecture for certain classes of cyclotomic fields.

The following theorem provides sufficient conditions for when the pseudo-
null conjecture for a number field K implies the conjecture for a finite ex-
tension of K in K̃. We apply this to the cyclotomic tower in Section 4.

Theorem 6. Let p ≥ 5 be a prime and suppose µp is contained in K.
Suppose K has a unique prime ℘ dividing p. Then, if F ⊂ K̃ is a finite
extension of K satisfying

(1) ℘ is non-split in F/K,
(2) dimFp H

2(GF ,Z/pZ) ≤ 1,
(3) Leopoldt’s conjecture,

then Greenberg’s conjecture for K implies Greenberg’s conjecture for F .

Proof. Let K and F be number fields satisfying the above hypotheses,
and assume the pseudo-null conjecture holds for K. We apply the notation
introduced in Section 2 to the field F (so we have ΩF , GF , MF , etc.). If the
Fp-dimension of H2(GF ,Z/pZ) is 0, then GF is a free pro-p-group. A struc-
ture theorem for Y due to Nguyen Quang Do [12, Proposition 1.7] then
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implies TorΛ(Y ) = 0. Hence by formulation (c) of Theorem 5 Greenberg’s
conjecture holds for F .

If the Fp-dimension of H2(GF ,Z/pZ) is 1, then such an F satisfies the
hypotheses of Theorem 3 and Lemma 1, and so Corollary 1 applies. Namely,
Greenberg’s pseudo-null conjecture will hold for F provided MF ⊂ N∞, and
hence it will suffice to show the extension MF /F̃ is generated by p-power
roots of p-units of F̃ .

We consider the field F cyc = FKcyc, the cyclotomic Zp-extension of F .
By assumption, this field contains all p-power roots of unity. Recall the
group Gab

F = Gal(MF /F ). The subgroup Gal(MF /F
cyc) has the same torsion

subgroup (which is just Gal(MF /F̃ )) and Zp-rank 1 less. In particular, we
have a non-canonical isomorphism

Gal(MF /F
cyc) ' Gal(F̃ /F cyc)×Gal(MF /F̃ ).

We let L denote the fixed field of the first factor (so MF = F̃L).
The Galois group Gal(L/F cyc) is isomorphic to the torsion subgroup of

Gab
F , and hence is a finite p-group. Since F cyc contains all p-power roots

of unity, the extension L/F cyc is just a Kummer extension, generated by
p-power roots of elements of F cyc:

L = F cyc(x1/pm1

1 , x
1/pm2

2 , . . . , x1/pmn
n ).

Further, the ideals (xi) are pmith powers of ideals of F cyc, say (xi) = J
pmi
i .

The extension MF /F̃ is also generated by the x1/pmi
i , and the ideals (xi)

are the pmith powers of the ideals Ji extended to F̃ . But here is the key:
the ideal classes [Ji] become principal classes when extended to F̃ . This
follows from the fact that F cyc ⊂ K̃ and, having assumed the pseudo-null
conjecture holds for K (using formulation (e) of Theorem 5), the fact that
all ideal classes become principal in K̃.

For a generator x1/pmi
i of MF /F̃ we now know the ideal (xi) is the pmith

power of a principal ideal, say

(xi) = (yi)p
mi
.

The elements xi and yp
mi

i must differ by a unit, say xi = uyp
mi

i . But clearly,
an extension generated by a pmith root of xi is also generated by a pmith
root of xi/(y

pmi
i ) = u, and so the extension MF /F̃ is generated by p-power

roots of units on F̃ . This implies MF ⊂ N∞, which in turn, by Corollary 1
and Theorem 5, implies Greenberg’s conjecture for F .

4. Cyclotomic fields. We fix p a prime number and consider more
closely the case of the cyclotomic fields K = Q(ζpn). Recall that the group
GK has a minimal presentation as a pro-p-group with g generators and s
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relations, where g and s are equal to the Fp-dimensions of H1(GK ,Z/pZ)
and H2(GK ,Z/pZ) respectively.

Lemma 2. Let p be a prime and let K = Q(ζpn) for some natural num-
ber n. Let α denote the Z/pZ-rank of the p-class group of K. Then

g =
pn + pn−1 + 2

2
+ α, s = α.

Proof. These computations are not new, and we give here just a sketch.
Let Ω′K be the maximal p-ramified extension of K with Galois group G ′K .
Since K contains the group µp, and GK is the maximal pro-p-quotient of
G′K , we have

H i(GK ,Z/pZ) ' H i(G′K , µp).
The Z/pZ-dimensions of the latter groups can be obtained by considering
the sequence

1→ µp → OΩ′K [1/p]×
p−→ OΩ′K [1/p]× → 1.

The p-power map on OΩ′K [1/p]× is surjective by the maximality of Ω′K
over K (since pth roots of p-units generate p-ramified extensions). Taking
cohomology of the sequence with respect to the Galois group G ′K yields a
long exact sequence which may be broken into the following pair of short
exact sequences:

0→ OK [1/p]×

(OK [1/p]×)p
→ H1(G′K , µp)→ C(K)[p]→ 0,

0→ C(K)
pC(K)

→ H2(G′K , µp)→ H2(G′K ,OΩ′K [1/p]×)[p]→ 0,

where C(K) is the ideal class group of K. The group H2(G′K ,OΩ′K [1/p]×)
injects into the Brauer group B(K), and can be shown to be 0 by considering
its behavior in the exact sequence

0→ B(K)→
⊕

v

B(Kv)
∑
inv−→ Q/Z→ 0.

A simple dimension count then gives

g = r2 + 1 + α, s = α,

where r2 = (pn + pn−1)/2, as desired.

If p is a regular prime, α = 0 for Q(ζpn), n ≥ 0. Hence s = 0, imply-
ing TorΛ(Y ) = 0, establishing Greenberg’s conjecture for each field in the
cyclotomic tower.
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The following corollary is an immediate consequence of Theorem 6 and
Lemma 2.

Corollary 2. Let p be an irregular prime. Let n > 0 be such that
Q(ζpn) has a cyclic p-class group. Then Greenberg’s conjecture for Q(ζp)
implies Greenberg’s conjecture for Q(ζpn).

Proof. In the notation of Theorem 6, with K as above, let F = Q(ζpn) for
some positive integer n satisfying the hypothesis. The field K has a unique
prime π above p, and π is totally ramified in F/K, and hence non-split. The
dimension of H2(GF ,Z/pZ) is less than or equal to 1 by our assumption of
cyclic p-class groups. Since F/Q is abelian, implying Leopoldt’s conjecture
for F , the hypotheses of Theorem 6 are satisfied, as desired.

Finally, we prove Theorem 1 by providing a class of cyclotomic fields
Q(ζp), satisfying the hypotheses of Corollary 2, for which the pseudo-null
conjecture is true. A similar class was first given by McCallum [11, Theo-
rem 1]. He considered such fields with p-class group isomorphic to Z/pZ. We
provide here a slight generalization of that class, allowing for cyclic p-class
groups of arbitrary p-power order, as well as apply Corollary 2 to extend the
conjecture to all fields in the cyclotomic Zp-tower. We restate Theorem 1
here.

Theorem 7. Suppose K = Q(ζp) satisfies the following conditions:

(1) Vandiver’s conjecture.
(2) λp = 1.
(3) vp(|(U/E)[p∞]|) ≤ vp(|A(K)|).

Then for all n ≥ 1 the pseudo-null conjecture holds for Q(ζpn).

Remark 1. Condition (2) is heuristically true for approximately 75% of
all irregular primes and experimentally true for 75% of the irregular primes
up to 12 million, according to [2] (for these primes, λp is just the index of
irregularity of p).

Remark 2. Letting Kn = Q(ζpn+1) and An = A(Kn), the hypotheses
of Vandiver’s conjecture and λp = 1 imply

An ' X/((1 + T )p
n − 1)X,

where X = Zp[[T ]]/(T + pa) (see Theorem 10.16 and Proposition 13.22
of [14]). In particular this yields isomorphisms

An ' Z/pa+nZ
for all n ≥ 0, and so (3) is a condition on cyclic groups of p-power order.

Remark 3. Since A(K) is cyclic, there is only one Bernoulli number
Bi, 2 ≤ i ≤ p − 3, divisible by p. If Bp−j denotes this term (so εjA(K)
is the non-trivial term of the idempotent decomposition of A(K)), then
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Lp(s, ω1−j) is the only non-trivial p-adic L-function attached to K. It follows
from Theorem 8.25 of [14] that

(U/E)[p∞] ' Z/pmZ,
where m = vp(Lp(1, ω1−j)). This valuation may be computed in terms of
the characteristic power series f(T ) of lim←−nA(Kn). Under the assumption
λp = 1 this power series has the form f(T ) = (T + cpa)u, where u is a unit,
pa is the order of the cyclic group A(K), and

f((1 + p)s − 1) = Lp(s, ω1−j).

So the valuation of Lp at s = 1 equals the valuation of f(p) = (p+ cpa)u.

If a > 1, then vp(f(p)) = 1, and condition (3) is satisfied. If, on the
other hand, a = 1, then vp(f(p)) depends on the value of c (mod p). The
valuation will again be 1 provided c 6≡ −1 (mod p). This congruence has
been checked for p < 4000 in [6], although tables are only given for p < 400
and 3600 < p < 4000. For these values the congruence condition is satisfied.

Suppose K = Q(ζp) satisfies (1)–(3) above. Since A(K) is cyclic, say of
order pa, the group G is a one-relator group and Lemma 1 applies. We will
utilize this lemma to show TorΛ(Y ) = 0. In light of Corollary 1, it suffices
to show MK ⊂ N∞, and so we consider the structure of Gab

K in more detail.

Lemma 3. Suppose K satisfies hypotheses (1) and (2) of Theorem 7.
Then the torsion subgroup of Gab

K is cyclic.

Proof. Let JK denote the idele group of K, with K× embedded diago-
nally. Let U be the subgroup of ideles which are units at π (the prime of K
above p) and 1 elsewhere, and let U ′ be the subgroup of ideles which are 1
at π and units elsewhere. Class field theory gives an isomorphism

Gab
K ' pro-p-completion of JK/(K×U ′),

where the overline denotes the closure.
If we let E denote the closure of the embedding of the units of K in U ,

then in fact we have an exact sequence

0→ U1/E1 → Gab
K → A(K)→ 0,

where the subscript 1 indicates we are taking units congruent to 1 modulo π.
Since U1 has Zp-rank [K : Q] = p − 1 and E1 has Zp-rank (p − 3)/2 (by
Leopoldt’s conjecture, which holds for K), the Zp-rank of Gab

K is (p + 1)/2
(p 6= 2 by the assumption λp = 1).

We claim that the torsion in Gab
K comes from U1/E1, and show this by

considering an idele (av) whose image in Gab
K is a torsion element, say of

order pm. So
(av)p

m ∈ K×U ′,
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say (av)p
m

= α(uv) (where we abuse notation writing α for both the element
of K× as well as its diagonal image in JK). This implies α is a pmth power
in Kπ, the π-adic completion of K. Let a then be the ideal of K such that
ap
m

= (α). We want to show the class of a is principal.
Let Km−1 = Q(ζpm), so Km−1(α1/pm) is an unramified extension. Since

the class of a lies in A(K)− (by Vandiver’s conjecture), the Kummer pairing
implies the Galois group of Km−1(α1/pm)/Km−1 is trivial. Hence α must be
a pmth power in Km−1 as well, which means the ideal class of a is principal
when extended to Km−1 (represented by a principal ideal generated by a
pmth root of α). But the map from A(K) to A(Km−1) is injective [14,
Proposition 13.26], and so a must have represented a principal class in A(K)
as well. Hence the torsion in Gab

K maps to 0 in A(K).
We now just need to determine the torsion subgroup of U1/E1. We

may consider each factor of the idempotent decomposition separately. Since
εiE1 = 0 for i = 0 and for i odd, and each εiU1 ' Zp, we obtain

U1/E1 ' (Zp)(p+1)/2 ⊕
⊕

i even

εiU1/εiE1.

For even i the terms εiU1/εiE1 are equal to εiU+
1 /εiE

+
1 , where the super-

script + indicates we are looking at units in the local subfield fixed by
the automorphism of order 2. Vandiver’s conjecture implies the cyclotomic
units C+

1 have index prime to p in E+
1 [14, Theorem 8.2], and so it suffices

to consider the quotients εiU+
1 /εiC

+
1 . But Theorem 8.25 of [14] states

[εiU+
1 : εiC+

1 ] = pvp(Lp(1,ωi)).

Since A(K) is cyclic there is only one non-trivial Lp(s, ωi), and hence only
one cyclic factor, say of order pm, in the torsion subgroup of U1/E1.

Proof of Theorem 7. The field K̃ is in fact the fixed field of the torsion
subgroup of Gab

K , and so the extension MK/K̃ is a Kummer extension with
Gal(MK/K̃) ' Z/pmZ. With A(K) ' Z/paZ, condition (3) of the theorem
just states m ≤ a.

To show that MK is contained in N∞, we need to show that MK/K̃ is
generated by a pth power root of a unit of K̃. The argument, as in the proof
of Theorem 6, is reduced to a capitulation problem.

Consider the extension MK/Km−1. There is a non-canonical isomor-
phism

Gal(MK/Km−1) ' Gal(K̃/Km−1)×Gal(MK/K̃).

We let L denote the fixed field of the first factor. The extension L/Km−1 is
a Kummer extension, and we may write

L = Km−1(x1/pm)
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for some x in Km−1, the ideal (x) being of the form (x) = Jp
m
P , where P

is the principal ideal of Km−1 lying above p.
Since, in particular, J represents a class of order dividing pm in A(Km−1),

condition (3) implies that the class of J is an extension of a class from
A(K) (recall that the map A(K)→ A(Km−1) is just an injection Z/paZ ↪→
Z/pa+m−1Z). We let A be a representative ideal of the class that extends to
the class of J.

Since the p-Hilbert class field of K is contained in K̃, the class of A, and
therefore J, becomes principal in K̃. The extension MK/K̃ is also generated
by a pmth root of x, and the ideal (x) in K̃ is now the pmth power of a
principal ideal,

(x) = (y)p
m
.

The elements x and yp
m

then differ by a unit, i.e. x = uyp
m

. But clearly the
extension MK is also generated by the pmth root of x/yp

m
= u, and so the

field MK is contained in N∞.
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