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On higher-power moments of F(t)
by

WENGUANG ZHAI (Jinan)

1. Main result. Let ((s) denote the Riemann zeta-function. For ¢t > 2,

define
t

(1.1) E(t) = {[C(1/2 + i) ? du — tlog(t/2m) — (2 — 1)t.
0

It is an important problem to study the upper bound of E(t). The latest
result is

(1.2) E(t) = O(t72/227 10g629/227 1),
due to Huxley [3]. We have the conjecture
(1.3) B(t) = O(#/1+2),
which is supported by the mean square formula
T
(1.4) §E2(t) dt = %ﬁ 32 + O(Tlog” T)

proved by Meurman [8].
Tsang [9] studied the third- and fourth-power moments of E(t). He
proved that the asymptotic formulas

(1.5) (27r) 3Ae T/ 4 O(T7/4 51+€)

(1.6) EA(t)dt = —02T2+O(T2 Sate)

N e N NM

hold with §; > 0 and d9 > 0, where
d(ny)d(ns9)d(n
ae Y dmdmieg
(n1nang)3/
NN
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Tsang [9] proved that (1.5) holds for 6; = 1/36, but did not specify the
permissible value of d2 in (1.6). Ivi¢ [4] proved that (1.5) holds with ; = 1/14
and (1.6) holds with d2 = 1/23. Recently following Ivié¢’s approach, the
author [10] proved that (1.5) holds with 6; = 1/12 and (1.6) holds with
5y = 2/41.

Tsang [9] began with Atkinson’s formula [1] and used the averaging
technique over a short interval. Ivi¢’s argument was different from Tsang’s.
He used a theorem of Jutila [6] (see also Theorem 15.6 of Ivi¢ [5]) to trans-
form the problem into the higher-power moments of A*(x), the error term of
23, <1z (=1)"d(n), where d(n) is the Dirichlet divisor function. The higher-
power moments of A*(x) are easier to handle than those of E(t), since A*(x)
has the Voronoi formula.

Heath-Brown [2] proved that for any 3 < k <9 (k € N), the limit

T

lim T~ %4 | E¥(t) dt
T—o00 5

Cy =

exists. The author [11] got an asymptotic formula for Sg Ek(t)dt for any
5 < k <9, where Jutila’s theorem [6] and power moment results for E(t)
and A(x), the error term of the Dirichlet divisor problem, were used.

However, the exponent 1/12 in the third-power moment of E(t) is the
limit of Jutila’s theorem. In order to reduce this exponent, we have to go
back to Atkinson’s formula and not use Jutila’s theorem. In this paper, we
shall use a different approach, which is a generalization of that in [11], to
study the higher-power moments of E(t). In this approach, we use Atkinson’s
formula for E(t) only. Since for k > 4 the results obtained by this approach
are the same as the previous results (see Zhai [11] for details), we only
consider the case k = 3.

THEOREM. We have
r 6
(1.7) VE3(t)dt = -
5 7

(27T)_3/401T7/4 + O(T7/4_83/393+6).

REMARK. It is well known that many properties of E(t) are similar to
those of A(x). We also have a similar conjecture

(1.8) Alz) < zt/4e]

which seems easier than the conjecture (1.3) by a result of Jutila [7], who
proved that if (1.8) is true, then E(t) = O(t3/10+).
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Theorem 1 of [11] shows that if (1.8) is true, then for any k& > 3 we have
T
(1.9) | ARy dt = CuT ™t 1+ o(T™),
2
where Cj and 7 < 1+ k/4 are explicit constants. This means that (1.8) is
equivalent to the following conjecture: (1.9) is true for any k > 3.
Theorem 5 of [11] shows that if both (1.3) and (1.8) are true, then for
any k > 3 we can get the asymptotic formula
T
(1.10) \ EX () dt = CpT T+ O(1),
2
where C} and 7}, < 14k/4 are explicit constants. Combining the approaches
of this paper and [11], we know that the conjecture (1.8) can be removed in
the above conclusion. Thus we deduce that the conjecture (1.3) is equivalent
to the following conjecture: (1.10) is true for any k > 3.

Acknowledgements. The author deeply thanks the referee for his
valuable suggestions and comments.

NoTATIONS. Throughout this paper, {x} denotes the fractional part of
x, ||z|| denotes the distance from z to the integer nearest to x, n ~ N means
N < n < 2N, € always denotes a small positive constant which may be
different at different places.

2. Some preliminary lemmas
LEMMA 2.1. We have
E(t) = Z1(t) + Xa(t) + O(log? t)

with
1
(2.1)  Z1(t) := ﬁn;vh(t,n) cos(f(t,n)),
_ £\ ! ¢ ™
(2.2)  Xy(t) := —2n;w d(n)n 1/2<log %> cos (t log Ty t+ Z),
—1/4
23) e = (a2 (G k) )

(2.4)  g(t,n) := arsinh ((%) W),

(2.5)  f(t,n) == 2tg(t,n) + (2mnt + w2n?)/? — 7 /4,
(2.6) At <N < A't, N':=t/2r + N/2 — (N?/4 4 Nt/2m)/?,
where 0 < A < A’ are any fized constants.

Proof. This is the famous Atkinson formula; see Ivi¢ [5, Theorem 15.1]. =
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LEMMA 2.2. Suppose Y > 1. Define
3 (=1)™*r2 3 d(ng )d(ng)d(ns)
\/a+\/n_2:\/71_3 (’I’L17’L27’L3)3/4
" (=1)mFr2Fmsd(ng )d(ng)d(ns)
Y):=
) Wh/zv;‘z:m*s (n1ngns)3/t

ni,nz,ng<Y

* Pyp—
C1 = s

Y

d(ny)d(nz)d(n
al)= 2 (Qininz))?’gﬁ)'
Vri+y/ne=y/n3

ni,nz,ng<Y

Then
c=c, aly)=c(Y), |a-al) <yt

Proof. The estimate |c; — c1(Y)| < Y ~'*¢ appears on page 70 of Tsang
[9]. The equalities ¢; = ¢} and ¢1(Y) = ¢;(Y) follow from the fact that if
/11 + /ns = /n3, then ny + ny + ng must be an even number. =

LEMMA 2.3. Suppose Y > 1. Then

3/4
Hl (Y) = Z d(nl)d(n2)d(n3)n3 < Y1/2+€.
(n1n2)3/4
AT+ =/

n1,n2,n3<Y

Proof. By a classical result of Besicovitch, if \/ny + /ne = /n3, then
n; = m?h, mi + mg = ms, u(h) # 0. Thus we get

3 d(mih)d(m3h)d((m1 + mg)?h)(my + my)*/?

H(Y) < B3/ (my )2

(m1+m2)2h<Y
< Z 3/ 4+e Z mim;i’r/%s < yl/2+e
h<Y ma<m1<(Y/h)!/?
if we notice d(n) < n°. =
LEMMA 2.4. Let N,M,K > 10, D = max(N, M, K), 0 < |A| <« D2
Let
AN, M, K; A) := Z 1.

n~N,m~M, k~K
Va+y/m—VEI<A

Then
D A(N,M,K;A) < AD"Y2NMK + D™Y2(NMK)/2.
Proof. This is Lemma 2.5 of [10]. =
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LEMMA 2.5. If /n + /m — Vk # 0, then
IV +vm — VE| >

1
Vnmk’
where the implied constant is absolute.

Proof. If n is not a square, then

(2.7) IVnll > 1/v/n.

We omit the proof of (2.7) since it is elementary and easy. Let o = /n +
vm — k. We suppose |a| < 1/10, otherwise the lemma is trivial. Squaring

a+Vk=n+m we get
(2.8) ?+2Vka =n+m+ Vinm — k.

If nm is a square, then the right-hand side of (2.8) is a non-zero integer and
then |a? + 2vka| > 1, which implies |a| > 1/VE. If nm is not a square,
then from (2.8) we have |a? + 2vka| > ||v/4nm||, which combined with
(2.7) implies o] > 1/vVnmk. =

LEMMA 2.6. Suppose (i1,i2) € {0,1}? and Y > 10 is a real number. For
(n1,n2,n3) € N3, define

az = /1 + (=1)"y/n + (-1)2 /s,

c d(ni1)d(n9)d(n
H(Y;inin) = Y. (n1)d( 23)/4( 3)
ny<v,igjes (Man2ns)¥os]
a3750

Then
H(Y iy, ig) < YV4e,

Proof. By a splitting argument and d(n) < n° we get, for some 1 <
N <Y (1<j5<3),

1
Y H(Y;i1,i2) <
oty G e
ag;ﬁ()_ -
1
< (N1N2N3)_3/4 Z —_—
nj~N;, 1<j<3 ||
az#0

If (i1,42) = (0,0), then trivially
(N1N,N3)!/4
maX(Nl,NQ,N3)1/2

Now suppose (i1,i2) # (0, 0). By Lemma 2.5 we have |o3| > 1/(N{ Ny N3)'/2
By a splitting argument again we infer for some 1/(N1NoN3)'/? « A <

Y H(Y;0,0) < < min(Ny, Ny, N3)V/4 < y1/4,
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HlaX(Nl, NQ, N3)1/2 that

(N1 NoN3)—3/4 Z

Y H(Y:iy,i
(Yii1,i2) < A

1.

nj~N;,1<5<3
A<‘O¢3|§2A

By Lemmas 2.4 and 2.5 we get
(NlNQNg)_3/4 AN Ny N3 + (N1N2N3)1/2

Y H(Y;i1,i2) <

A max (N, Ny, N3)1/2
(N1 N, N3)1/4 (N1 N, N3)~1/4
maX(Nl,NQ,N3)1/2 Amax(Nl,Ng,Ng)l/Q
(N1 Ny N3) /4

max (N7, Ny, N3)1/2 < min(Nl’N2’N3)l/4 <y a
LEMMA 2.7. Suppose f;(t) (1 < j < k) and g(t) are continuous, mono-
tonic real-valued functions on [a,b] and let g(t) have a continuous, mono-
tonic derwative on [a,b]. If |fj(t)] < A; (1 <j < k), |§'(t)] > A for any
t € [a,b], then
b
VA fr()e(g(t) dt < Ap--- AgAT

a

Proof. This is Lemma 15.3 of Ivi¢ [5]. =

LEMMA 2.8. Suppose (i1,i2) € {0,1}2, T > 100 is a large real number,
1<7Z;<Y; < T1/2 (1 < j < 3) are three real numbers such that there are
at least two Z; satisfying Z; > T'/3-¢ Y = max(Y1, Ys, Y3). Define

F(t; nl,ng,ng;il,ig) = f(t, nl) + (—1)i1f(t,n2) + (—1)i2f(t, n3),

Swar) = S0 h(t;n))h(t,na)h(t,ng) cos(F(t; ny,ng, ni i, iz)).
Zj<n;<Y;,1<j<3
az#0
Then
2T
(29) S Siy i (t)dt < TiHey 4+ T17/12+¢
T

Proof. 1t is easy to check that for any n < T/, the function h(t,n) is a
product of monotonic functions and

(2.10) h(t,n) = 21 (=A)d(n) <1 + 0(%))

T oql/A T 3/

For any n < T"/2 it is easy to check that

3/2 . 3/2
(2.11) ft,n) =232ut)2 - L4 1

1 3—\/5 /2 + fi(t,n),
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where

nb/2 nb/2 n5/2
(2.12) fl(t,n)=0<t3ﬁ>7 f{(t’”)zo(m) {’(t,n):O(W)
So we have
(2.13)  F'(t;n1,n2,n3; 11, 72)

B (277)1/2a3 w3/2 O max(nl,ng,n3)5/2
- 11/2 ©3.93/2 43/2 15/2 ’

where (33 := ni’/Q + (—1)i1ng/2 + (—1)i2n§/2.

If (i1,42) = (0,0), then from (2.10) and Lemma 2.7 we get

2T
i d(n1)d(nz)d(ns)
21} Sodr < Zﬂ%:gyj (P (/s + /2 + y753)

< Ty Y4 og? Y « T/8FE,
Now suppose (i1,72) # (0,0). Without loss of generality, suppose (i1,1i2)
= (0,1). By a splitting argument there exist Z; < M; < MJ’ < 2M; <Y
(1 < j < 3) such that

2T
(2.15) log 2T | Sou(t)dt < |1,
T
where
2T
I:= > \ Bt n1)(t, n2)h(t, n3) cos(F (t; n1, ng, ng; 0, 1)) dt.
Mj<ﬂj§M]{,1§j§3 T
asz#0
Write I = I + I, with
2T
I = > | A(t, n0)h(t, n2)h(t, ns) cos(F (£ n1,ng,ns; 0, 1)) dt,
M;j<n;<Mj,1<j<3 T
laz|>1/10
2T
I = > | B(t,n1)h(t, n2)h(t, n3) cos(F (t; 1, na, ns; 0, 1)) dt.
M]-<nj§Mj’-,1§j§3 T
0<|as|<1/10

If |as| > 1/10, then it is easily seen that F’(t;nq,ng,n3;0,1) > |as|T~1/2
via (2.13). By (2.10) and Lemmas 2.7 and 2.6 we get

(2.16) I < T%/4 3 d(”l)d(”é)j(m)
My <ny ST 1253 (n1nang)3/4|asl
a3#0
< TO/A+ey1/4 o pll/ste,
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Now we estimate Io. Suppose ni,no,n3 are three integers which satisfy
M; <mn; < M7 (1<3j<3),[yn1+n2—/n3| <1/10. We first estimate
the integral

2T
| (n1,n2,m3) = | h(t,n1)h(t, na)R(t, ng) cos(F(t; 1, 2, n3; 0, 1)) dt.
T
Suppose H > 100 is a parameter to be determined later and divide the
interval [T, 2T into two disjoint parts J; and Ja, where

Ji = {t € [T,2T] : |F'(t;n1,n2,n3;0,1)| < |ag|/HT'/?},

Jy = {t € [T,2T] : |F'(t; n1,n2,n3;0,1)| > ||/ HT'/?}.
Correspondingly, let

| = | n(t,n1)R(t, na)n(t, ng) cos(F(t;n1,m2, m3; 0, 1)) dt,

J1 J1
| = | A(t, n1)A(t, no)h(t, ng) cos(F(t; n1, m2, n3; 0, 1)) dt.
Jo Jo
If J; is empty, then Jy = [T, 27]. By (2.10) and Lemma 2.7 we get
(2.17) | =0,

Ji
S HT5/*d(ny)d(ng)d(n3)
(ningnz)3/4as|

(2.18)
J2
We suppose now that J; is not empty. Let

G(t) = t1/2F'(t; ni,ng,ng;0,1), Ty =infJ;, Ty =supJj.

From n:l,,/2 = n}/Q + né/Q — a3 we get

O3 :n?/2+ng/2—n§/2
1/2 1/2 1/2

= =3(mn2)2(ny"* + 0% + 31" + ny*)ag — 3(my? + ny*)ad + o,
which implies
(2.19) 83| = (ninans)'/?

if we notice |as| < 1/10.
From (2.12), (2.13) and (2.19), we get
G'(t) = B3/T%,  as/B3=1/T.
Thus from the relation G(Ts) — G(T1) = O(Jas|H~!) and the mean value
theorem we get |J;| = T» — 171 < T'/H, which combined with (2.10) implies
T7/4d(n1)d(TZ2)d(TZ3)
H(n1n2n3)3/4 .

(2.20)
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Since Jo = [T, T1) U (T2, 2T], by (2.10) and Lemma 2.7 we get (2.18) again.
From (2.18) and (2.20) we have

(2.21) I, < Y3+ X4,
where
A 3 d(n1)d(nz)d(n3)
ST H - (ningng)3/* 7
Mj<n;<M!,1<5<3
as/Bs=<1/T
d d d
5, = HTO/ ¥ (1) (n23)4(n3)'
. ¢ (ninang)3/|as|
§<nj<M;,1<5j<3
asz#0
Let M = max(M;, My, M3); then T3¢ « M < Y. By Lemma 2.4 we get
b)) T/t A(My, My, Ms; (My My Ms)' /2771
< , Mo, M3; B
3 H(M1M2M3)3/4 ( 1 2 3 ( 14VLQ 3) )
< T7/4+€ ((M1M2M3)3/2T_1M_1/2+(M1M2M3)1/2M_1/2)
H(M1M2M3)3/4

< T3/4+EH71(M1M2M3)3/4M71/2 +T7/4+€H71(M1M2M3)71/4M71/2
< T3/4+Ey7/4H—1 + T7/4—1/6+8M—1/2
< T3/4+EY7/4H71 4 T17/12+€.
By Lemma 2.6 we have
24 < HT5/4+EY1/4.
Take H = max(Y3/*T~1/4,100); we get
1'2 < YT1+E +T17/12+E

which combined with (2.15) and (2.16) gives
2T
(2.22) | Soa(t)dt < YT 4 TV,
T
For (i1,42) = (1,0), (1, 1), we can get the same estimates. This completes
the proof of Lemma 2.8. u

3. Beginning of proof. Suppose T" > 100 is a large real number. We
shall evaluate the integral S?FT E3(t)dt. Let yy := T2 . For any T < t < 2T,
define

Ri(t) := % Z h(t,n)cos(f(t,n)), Ra(t):= E(t) — Ri(t).

n<y
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Define the following integrals:

2T

(3.1) 7,(T) = | Rit)dt,
a1

(3.2) To(T) == | RI(H)Ra(t) dt,
5;

(3.3) I3(T) == | Ri(t)R3(t) dt,
a1

(3.4) Z,(T) == | R3(t) dt.
T

We shall evaluate Z;(7") in Section 5 and estimate Z(T'),Z3(T"),Z4(T) in
Section 4 and Section 6.

4. Estimates of Z3(T) and Z4(T)

4.1. Higher-power moments of R1(t). In this subsection we study the
higher-power moments of R;(t). Since the proof is very similar to those of
Theorems 13.8 and 13.9 of Ivié [5], we only mention the important points.
From Huxley [3], we have

(4.1) Ri(t) < TT2/227+¢,

Suppose T' < t; < -+ < ty < 2T are points which satisfy |t, — ts| >V
(r #s < N), TV* < V <« T™/227¢ and |Ry(t,)] > V forr = 1,...,N.
We shall give an upper bound of N.

Suppose M < y/2. Take £ = {£,}°2, with &, = (=1)"d(n)n=3/* for
M < n < 2M and zero otherwise, and let ¢, = {¢,,}22, with

Orn = nY UV 2mn + 1/4) VA9t n)e(f (¢, n))

for M < n < 2M and zero otherwise. Divide [T, 27] into subintervals of
length not exceeding Ty > V. Let Ny denote the number of ¢,’s lying in an
interval of length not exceeding Tp. Then

(42) N L No(l + T/T())

By (A.40) of Ivi¢ [5] we get
2
(4.3)  NoV2 < TY’logT max Y ‘ ST h(t ) e(f(tn))
M=y/2 "0 men<am

< TY?logT 2 ,#s)l,
og T max max |[] s;;o!(@r s)l
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where
2= 3 @2 < M 2 10g M,
M<n<2M
—~1/4 —1/4
(rs0s) Z " (27771 * 4) (27T’I’L 3 g (trm)
M<n<2M
x g~ (s ) (trts) " Ae(f (e, ) — flts,m))
= Z G(n;r,s)e(F(n;r,s)),

M<n<2M

say.

It is easily seen that for any r, s < Ny, G(n;r, s) is a product of monotonic
functions of n and G(n;r,s) < 1. The contribution of the terms with r = s
is
(4.4) < T'?1ogT max M'?log® M <« (Ty)1/2 log T.

M<y/2
By partial summation, the contribution of the terms with r # s is

log® M
1/2 g } . ‘
(4.5) <T logT&n%)/(w{ré% A2 g E G(n;r, s)e(F(n;r,s))
s<No, s#r M<n<2M

<<T1/210gT max max 1(])51/]\24 Z ‘ Z F(n;r,s) ‘
M<y/2r<No s<Nows£r  nel(ms)

where I(r, s) is a subinterval of [M,2M]. It is easy to check that
|FOD (@7, )| = |tV/2 —t/2 M0 j=0,1,...,6.

So the exponential sum S =3, . ;y e(F(n;r,s)) can be estimated by the
theory of exponent pairs. Using the first derivative test to estimate S for
|FU)(z;7,5)] < 1/2 and the exponent pair (4/18,11/18) to estimate S for
|FO) (257, 8)] > 1/2, we get

T1/2 logT max max 1?53;5\24’ Z ‘ Z n r s
M<y/2r<No s<No, s#r nel(r,s)

< TV 'og® T + NoTy/ T/ 18 1og* T,
which combined with (4.3)—(4.5) gives
(4.6) NoV2log P T < (Ty)/? + TV~ + NI,/ B 77/18,
Choose Ty = V9T~ "/*1og™2° T’; then T > V and (4.6) reduces to
No < (Ty)Y*V=210g> T + TV 31log T,
which combined with (4.2) gives

(47)  Nlog™™®T < (Ty) PV =2 + TV 3 4 T3/ 2y ~1L 4 pls/ty =12,
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Now we estimate the integral S;T |R1(t)|A dt, where A > 2 is a fixed real
number. Similarly to (13.70) of Ivi¢ [5] we may write

2T
(4.8) | [Ri()| A dt < TED A og T+ 3"V Y [R(8:)]4,
T V <Ny

where TV4 <V =2m < T7/227+¢ 'V < |Ry(t,)| <2V (r=1,...,Ny) and
|tr—ts| > Viorr #s < N = Ny.If A< 10, then by (4.1) and (4.7) we have

(4.9 VY [Ri(te)|* < NyVAH

r<Nv & (Ty)V/2TT2A-D/2T+e | TI+T2(A-2)/22T+e

£ TEHA/A1/2 10640 | PLHA/A 040
< T1+A/4+6
for any 2 < A < Ap :=515/61.
Thus for 2 < A < Ay we have
2T
(4.10) | [Ri(t)| " dt < THHA/E,
T

4.2. Higher-power moments of Ra(t). We first consider the mean square
of Ro(t). By Lemma 2.1 (take N = T'/7) we have

Rao(t) = R3(t) + Xa(t) + O(log? t),
i 1
RE(t) := % S h(t,n) cos(f(t,n)).

y<n<T/m

(4.11)

Hence we get

2T 2T 2T
(4.12) \ R3t) dt < | [R3(t)[7dt+ | |Za(t)|* dt + Tlog T
T T T
We have the estimate
2T
(4.13) | [Z2(t)? dt < Tlog T,
T

which is (15.61) of Ivié [5)].
For m # n, it is easy to check that | f/(t,m)— f'(t,n)| > |\/n—/m|/T"/2.
Thus from (2.10) and Lemma 2.7 we have

2T 2T
414) [ IRs@Pdt< > | ht,n)?dt
T y<n<T/m T
2T

+ Y ‘ | h(t,n)h(t,m)e(f(t,n) — f(t,m))dt

y<m<n<T/x T
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2T

+ ¥ ] \ At n)h(t, m)e(f(t,n) + f(t,m))dt

y<mn<T/m T

(0 dn)d(m)
DR PR DR e T v

y<n<T/m m<n<T/m

< T3y~ 121063 T,
which combined with (4.12) and (4.13) gives
2T
(4.15) S R3(t) dt < T3y~ 21083 T
T
Ivi¢ [5, Theorem 15.7] proved that
T
(4.16) VIE@)|Adt < THA/e
1
for 0 < A < 35/4. From (4.10) and (4.16) we deduce that for any 2 < A <
Ay = 515/61,

T T T
@17)  ([Ra@)*dt < (1B dt+ [ IRy (1) dt < T4+,
1 1 1
For any 2 < A < Ay, from (4.15), (4.17) and Hoélder’s inequality we get
27 2T
(4.18) S |R2(t)|A dt = S |R2(t)|2(Ao—A)/(Ao—2)+Ao(A—2)/(Ao—2) dt
T T
27 27
(Ao—A)/(Ao—-2) (A=2)/(A0—2)
<( [R3wat) (§I1Ra()] % at)
T T

& TIHA/A+ey—(A0=A)/2(40-2)
which implies
(4.19) Tu(T) < TT/A+ey=(A0=3)/2(A0=2),

From (4.10), (4.18) and Holder’s inequality we get
27
(4.20) Z3(T) < | [R1()R3(2)| dt
T
2r 1/40 /2T (Ag—1)/A
< ([ IRaar) (] Rate)P A A0 ) T
T T

< T7/4+€y7(A0*3)/2(A0*2) )
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5. The evaluation of Z;(T). Let yo := T'/37¢. We write Ri(t) =
Ri1(t) + Ri2(t), where

Rii(t — (t,n)cos(f(t,n)),
5
1
Ria(t) = 7 Z h(t,n) cos(f(t,n)).
Yo<n=<y
5.1. On the integral S R3,(t) dt. By the elementary formula
1 ) )
(5.1) cosacosbcosc = — Z cos(a + (=1)b+ (=1)2¢),

(i1,i2)€{0,1}2
we can write

R (t) = 23/22 Z thnl (t,n2)h tngncos (t,nj))

n1<yo n2<yo n3<yo

:27% S 3 ST ST Rt n)h(tna)h(t, n)

(41,i2)€{0,1}2 n1<yo n2<yo n3<yo
X cos(F(t;nl,ng,ng;il,ig))
27/2 (S1(t) + Sa(t)),
where

Si(t):= > > h(t,m)h(t, ng)h(t, ns)

(i1,i2)€{0,1}2 n;j<yo,1<5j<3
a3=0

x cos(F'(t;ny,ng,ng;i1,12)),
So(t) = Y > h(t,m)h(t, na)h(t,n3)

(i1,i2)€{0,1}2 n;j<yo,1<j<3
a3#0

x cos(F(t;ny,na,ng;i1,12)).
We first consider the contribution of Si(t). It is easy to see that a3 =0
implies (i1,72) = (0,1) or (1,0) or (1,1). Let

Si(tyin,ig) = Z h(t,n1)h(t,n2)h(t, ng) cos(F(t;n1,n2, n3;i1,i2)).
nj<yo, 1<j<3
a3=0

We consider the case (i1,i2) = (0,1). Suppose n; < yo (j = 1,2,3) is such

that az = 0 for (i1,42) = (0, 1), namely, \/n1 + /n2 = /n3. From (2.11) we
have

(5.2)  cos(F(t;n1,n2,n3;0,1))

- 032 32
_ 3 1/2
_COS(_Z+O(t1/2>>_2 / +O<t1/2>
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From (2.10), (5.2) and Lemmas 2.2 and 2.3 we get

2T
(5.3) | Si(t;0,1)at
T
2T
= Z S h(t,n1)h(t,n2)h(t, n3) cos(F(t;n1,n2,n3;0,1)) dt
nin2,n3<yo T
ViiHy/nz=/n3
99/4

=i 2

n1,n2,n3<Yo

/2=

27 s 372
3/4 —1/2 3
x ;H <1+O<T>><2 /+O<—Tl/2>>dt
3/2

27/4 (D)™t d(ny)d(ng)d(ng) & n

o /4 3

= 34 Z< (n1n2n3)3/4 S 3 <1+O<T1/2 )) dt
n1,n2,n3<Y0 T

NS =

(=1)mtm2¥m3d(ng )d(ng)d(n3)
(n1ngns)3/4

ni—+n2+n3 7
v 8 i (Lniigl)zjim)d(ng) | ¥4 dt+0 (T Hy(yo))

27/4
= g3/

n1,n2,n3<Yo

NGENV =N

_ X £3/4 dt + O(T7/4+5y0—1 +T5/4+6yé/2)

— S t3/4 dt+0(T17/12+€).
T

We can get the same result for Sq(¢;1,0), S1(¢;1,1). Thus

20 3.07/4¢, 2T
(5.4) S Si(t)dt = s S £3/4 dt + O(T17/12+5).
s
T T

Now we consider the contribution of S3(t). From Lemma 2.5 and (2.13)
we get |F'(t;n1,n2,n3;11,42)] > |asz|/TY? if we notice yo = T/3~¢. By
Lemmas 2.7 and 2.6 we have

2T
d(n1)d(n2)d(ns)
5/4
03 VBT 2 iy Tunan e
T (i1,i2)€{0,1}2 nl,nQ,ZE%Syo 17827°3 3
as

= T°/4 Z H(yo;i1,12) < T5/4+":yé/4 < T3+,
(i1,i2)€{0,1}2
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From (5.4) and (5.5) we get

2T 2T

3c
3 e T 3/4 17/12+¢
(5.6) ; Ru(t)dt = o § 34 dt + O(T ).

5.2. On the integral S?FT R2,( t)ng(t) dt. By (5.1) we can write

Riy () Ra(t) = 27/2 (S3(t) + Sa(t) + S5(1)),

Sa(t):= Y > > h{t,m)h(t,n)h(t, ns)

(41,i2)€{0,1}2 yo<ni1<y m2,n3<yo
a3=0

x cos(F(t;my,ng,ng;i1,12)),

Sut) = > > > h(t,m)h(t, ng)h(t, ns)

(41,i2)€{0,1}2 yo<n1<50yo n2,m3<yo
a3#0

x cos(F(t;n1,ng,ng;i1,i2)),

Ss(t):= > > > h(t,m)h(t, n)h(t, ng)

(41,i2)€{0,1}2 50yo<n1<y n2,m3<yo
a3#0

x cos(F(t;ny,ng,n3;i1,102)).

We first consider the contribution of S3(t). Since na,n3 < yo < n1 < y,
the condition a3 = 0 implies (i1,42) = (1,1) and n; < 4yp. So by (2.10) and
Lemma 2.2 we get

2T 2T
67 | Ssdt< > d(m)d(m)f)%@ | 34 at
T Vi (MAn2s) T

n1>Y0
< T7/4|Cl _ Cl(y0)| < T7/4+syal < T17/12+€.

Concerning the contribution of S4(t), similarly to (5.5), by Lemmas 2.7
and 2.6 we get

2T
na2)d(ns)
5.8) | Su(t)dt < T%/*
(5.8) | Su(t)dt < ) 2 Z (n1nang) 3/4!043|
T (i1,i2)€{0,1}? yo<n1=50y0 m2,n3<yo

3740
<TNT H(50y0; i1, i2) < Tyt < T3,
(i1,i2)€{0,1}2
Now we consider the contribution of S5(t). Since ny > 50y9, n2,ng < yo, we
have |F'(t;n1,ng, ng; iy, is)| > n}/2T_1/2. Thus from (2.10) and Lemma 2.7
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we get
T d(n1)d(ny)d(ns)
(5.9) | Ss(t)ydt <15 Y LA AN
3/d,,1/2
T n1>50yo na2,n3<yo <n1n2n3) nq

< T5/4+sy(1)/4 < TA/3+e,
From (5.7)—(5.9) we deduce
27

(5.10) | RY () Rua(t) dt < TV7/12F=,
T

5.3. On the integrals S;T R11(t)R3,(t) dt and S2TT R3,(t) dt. By (5.1) we
can write
1
Rui()Ri,(t) = 773 (J6(t) + 57 (1)),

Set) =" > > >t na)h(t,n2)h(t, n3)

(11,i2)€{0,1}2 n1<yo yo<nz,n3<y
a3=0

x cos(F(t;n1,n2,n3;41,12)),

Set):= > > >t na)h(t,n2)h(t,n3)

(i1,i2)€{0,1}2 n1<yo yo<nz,n3<y
az#0

x cos(F(t;ny,ng,ng;i1,12)).

By (2.10) and Lemma 2.2 we have
27

| ss(tyat <17t Y d(n1)d(na)d(ns)
(n1n2n3)3/4
4 N N Y]

n3>yo
< T ey — er(yo)| < TV/12Fe,
By Lemma 2.8 we get

2T
| S7(t)dt < TVrey 4 71T/
T
Thus
2T
(5.11) | Rut(t)R3, () dt < TVHey 4 T1T/124e,
T
Similarly,
2T
(5.12) | RYy(t) dt < TVrey 4+ TV

T
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5.4. The asymptotic formula for Z1(T). From (5.6) and (5.10)—(5.12)
and by writing

R3(t) = R, (1) + 3R (HR12(t) + 3R11(H)Ria(1) + Ry (1)
we get
2T 2T

3c . E
(513) X R?(t) dt = 27/47:3/4 S t3/4 dt + O<Tl+ y+ T17/12+ )
T T

6. Estimate of Z5(7"). We first estimate the integral S?FT RA(t)R5(t) dt.
By (5.1) again we can write

RAORA) = a7 (S5(0) + So(t) + Swo(1)),

Ss(t):= > > > bt na)h(t,n2)h(t, na)

(i1,i2)€{0,1}2 y<n1 <T/w n2,n3<y
a3=0

x cos(F (t;n1,n2,n3;511,12)),

So(t):= > > > h(t,n1)h(t,n2)h(t, n3)

(i1,i2)€{0,1}2 y<n1<50y yo<max(ng,n3)<y
a3#0

x cos(F(t;n1,ng,ng;i1,12)),

so= Y (X oo+ XY )t

(i1,i2)€{0,1}2  y<n1<50y max(na,n3)<yo  50y<ni<T/m n2,n3<y
a3750 a3#0

X h(t,n2)h(t,ng) cos(F(t;ni,ng, n3;i1,i2)).
We first consider the contribution of Sg(t). Since no,ng <y <n; < T/,

the condition a3 = 0 implies (i1,i2) = (1,1) and n; < 4y. By (2.10) and
Lemma 2.2 we get

2T
(6.1) | Ss(t)dt <774 >

T y<ni<dy,ng,n3<y

JAT=/i+/i
L T ey — ey(y)] < TTA+ey=1 « TA/3%,

d(n1)d(n2)d(n3)
(n1n2n3)3/4

By Lemma 2.8 we have

2T
(6.2) | So(t)dt < TV ey 4 T1T/12HE,
T
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Similarly to (5.9), from (2.10) and Lemma 2.7 we have

2T
(6.3) S Sio(t) dt < T4 Z d(n1)d(ng)d(n3)
| 3/4,,1/2
T n1>50y no,n3<y (anIQTlg) ny
< T5/4+Ey1/4 < T11/8+E'

From (6.1)-(6.3) we have

27
(6.4) | REORs (1) dt < THHey + T17/124e,
T
From (4.10), (4.13) and Cauchy’s inequality we get

2T 2T 1/2 2T 1/2
(65) | Ri@PIZ@ldt < (§ Ruo) ar) (1 Za(0)ar)
T T T

< T3/t
which combined with (4.11) and (6.4) yields
2T
(6.6) To(T) < | RAUORs(t) dt < THey + TI/2F,
T

7. Completion of proof. We write
E(t) = Ri(t) + 3RT()Ra(t) + 3R1(H)R3(¢) + R3(t).
So from (4.19), (4.20), (5.13), (6.6) we get

2T
(7.1) | B3(t)dt = T, (T) + 3T5(T) + 3Z3(T) + Zu(T)
T 30 2T
_ 9o 3/4
T 97/473/4 S e dt
T

+ O(T7/4+€yf(Ao*3)/2(Aof2) + T1+Ey + T3/2+€)

2T
B % S 34 dt + O(T7/4-83/393+2)
™
T

Applying (7.1) repeatedly to the intervals [T'/29F1, T/27] (j > 0) and sum-
ming we get (1.7). =
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