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1. Introduction. Let K be an imaginary quadratic field of discriminant
∆ < 0. We are interested in orders O of K having discriminant D = c2∆.
The principal order of discriminant ∆ is OK , which is generated by ω =
(1 +

√
∆)/2 if ∆ ≡ 1 (mod 4) resp. ω =

√
∆/2 if ∆ ≡ 0 (mod 4). For any

order O of discriminant D, let KD denote the associated ring class field. It
is well-known that if j denotes the modular invariant, then KD = K(j(cω));
so KD/K ' K[X]/(HD(X)), where the class polynomial HD is the minimal
polynomial of j(cω). It can be used to obtain elliptic curves over finite fields
with a number of points known in advance, with applications to cryptology,
in particular based on the Weil or Tate pairing (cf. [13]), and primality
proving [1].

Since the class polynomial has a rather large height, it is desirable to
find smaller defining polynomials to speed up the computations. There is a
long history of such studies, going back to at least Weber [27]; see, e.g., [2,
26, 20] for connections with the class number 1 problem. Generally modular
functions f and special arguments α ∈ O are considered such that the
singular value f(α) lies in KD, in which case f(α) is called a class invariant.

Our ultimate goal is to build elliptic curves having CM, and this is
done using a so-called modular equation (with integer coefficients) relating
a modular function f to j. For this to be efficient, we need f(α) to have a
small height and the corresponding modular equation to be of small genus
(with a predilection for genus 0).

Part of the literature has concentrated on the functions introduced by
Weber, quotients of two η-functions with a transformation of level 2 applied
to one of them; see [23, 14, 16, 22] besides the already cited sources. This is
a perfect case for us, since the genus of the associated modular curve is 0.

Results on more general η-quotients are given in [18, 17, 19, 14, 10, 12].
All of them are obtained using the modern tool for determining the Galois
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action of the class group of O on singular values of modular functions,
namely Shimura’s reciprocity law [25]. The present article is no exception to
this rule. For the sake of self-containedness and the reader’s ease, we briefly
summarise in §2 the reciprocity law in the version of [22], which is most
suited to actual computations.

In this article, we propose a systematic study of class invariants obtained
as singular values of the generalised Weber functions wN , defined and stud-
ied in §3, which are quotients of two η-functions with a transformation of
level N applied to one of them. These appear in [22, Table 1] and as a spe-
cial case of [19]. While there is some overlapping between this article and
[19], we follow a different approach: The authors of [19] use an ideal in the
class group to transform the η-function, and the norm of the ideal implic-
itly determines the level; they then proceed to prove which root of unity is
needed for twisting the function so that a minimal power of it yields a class
invariant. On the other hand, we start with a fixed level and thus a fixed
generalised Weber function and determine the minimal power yielding class
invariants without using additional roots of unity.

A first result on the “canonical” power ws
N is readily obtained in §4 by a

direct application of Shimura reciprocity. Examining in §5 the Galois action
on the singular values allows us to determine in §6 the precise conditions
under which lower powers we

N with e | s yield class invariants.

While there is always some transformation level N (or, equivalently, an
ideal in the class group) such that the corresponding generalised Weber func-
tion yields a class invariant, fixing the level first as we do it in this study
implies control over the height of the class invariants. Indeed, this height,
an important measure for the complexity of computing a class polynomial,
is asymptotically given as a function of the degrees of the modular polyno-
mial relating the modular function to the j-invariant. Thus, the generalised
Weber functions can be ordered totally with respect to their computational
efficiency (see §7), and the invariants can be compared directly to other
invariants in the literature (cf. [9, 7]).

Unlike [19], we explicitly consider levels N that are not coprime to 6,
a considerable source of complication, which is justified since the corre-
sponding functions tend to yield class invariants of lower height; see the
formulæ in §7.2 and in particular Table 7.1. In other words, the correspond-
ing modular curves, related to 2- and 3-torsion points on elliptic curves, have
a lower genus than would be expected from the size of N alone. This makes
it easier to construct the associated elliptic curves with complex multipli-
cation; in particular, [21] shows how w3 can be used to directly write down
the correct twist of the elliptic curve with the desired number of points over
a finite field.
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Existing results in the literature often only state when a singular value is
a class invariant; to obtain the class polynomial, however, one needs an ex-
plicit description of its algebraic conjugates. These can be worked out using
Shimura reciprocity again; following the approach of N -systems introduced
in [22], we obtain synthetic and simple descriptions of the conjugates, and
moreover determine when the class invariant has a minimal polynomial with
rational coefficients, that is, defines the real subfield of the class field over Q.

2. Class invariants by Shimura reciprocity. In the following, we
denote by f ◦M the action of matrices M =

(
a b
c d

)
∈ Γ = Sl2(Z)/{±1} on

modular functions given by

(f ◦M)(z) = f(Mz) = f

(
az + b

cz + d

)
.

For n ∈ N, let

Γ (n) =

{(
a b

c d

)
≡
(

1 0

0 1

)
(mod n)

}
be the principal congruence subgroup of level n; for a congruence subgroup
Γ ′ such that Γ (n) ⊆ Γ ′ ⊆ Γ , denote by CΓ ′ the field of modular functions
for Γ ′. One of the most important congruence subgroups is

Γ 0(n) =

{(
a b

c d

)
≡
(
∗ 0

∗ ∗

)
(mod n)

}
.

Definition 2.1. The set Fn of modular functions of level n rational
over the nth cyclotomic field Q(ζn) is given by all functions f such that

• f is modular for Γ (n), and
• the q-expansion of f has coefficients in Q(ζn), that is,

f ∈ Q(ζn)((q1/n)),

where q1/n = e2πiz/n.

The function field extension Fn/Q(j) has Galois group isomorphic to
Gl2(Z/nZ)/{±1}, where the isomorphism is defined by the following action
of matrices on functions:

• (f ◦M)(z) = f(Mz) as above for M ∈ Γ ; this implies in particular
that also the q-expansion of f ◦M has coefficients in Q(ζn);

• f ◦
(
1 0
0 d

)
for gcd(d, n) = 1 is obtained by applying to the q-expansion

of f the automorphism ζn 7→ ζdn;
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• any other matrix M that is invertible modulo n may be decomposed
as M ≡M1

(
1 0
0 d

)
M2 (mod n) with gcd(d, n) = 1 and M1,M2 ∈ Γ , and

(f ◦M)(z) =

((
(f ◦M1) ◦

(
1 0

0 d

))
◦M2

)
(z).

Shimura reciprocity makes a link between the Galois group of the func-
tion field Fn and the Galois groups of class fields generated over an imagi-
nary-quadratic field by singular values of modular functions.

Theorem 2.2 (Shimura’s reciprocity law, [22, Th. 5], [24, Th. 5.1.2]).
Let f be a function in Fn, ∆ < 0 a fundamental discriminant and O the or-
der of K = Q(

√
∆) of conductor c. In the following, all Z-bases of ideals are

written as column vectors. Let a =
(
α1
α2

)
Z with basis quotient α = α1/α2 ∈ H

be a proper ideal of O, m an ideal of OK of norm m prime to cn, m its con-
jugate ideal and M ∈ Gl2(Z) a matrix of determinant m such that M

(
α1
α2

)
is a basis of a(m ∩ O). If f does not have a pole in α, then

• f(α) lies in the ray class field modulo cn over K, and
• the Frobenius map σ(m) acts as

f(α)σ(m) = (f ◦mM−1)(Mα).

In the following, we are particularly interested in class invariants, that is,
values f(α) that lie not only in a ray class field, but even in a ring class field.
Using Shimura’s reciprocity law, [22, Th. 4] gives a very general criterion
for class invariants, which is the basis for our further investigations.

Theorem 2.3. Let f ∈ CΓ 0(n) for some n ∈ N be such that f itself
and f ◦ S have rational q-expansions. Denote by α ∈ H a root of the prim-
itive quadratic form [A,B,C] = AX2 + BX + C of discriminant D with
gcd(A,n) = 1 and n |C. If α is not a pole of f , then f(α) ∈ KD.

The conjugates of f(α) are then derived generically in a form that is well
suited for computations in [22, Prop. 3 and Th. 7], [24, Th. 5.2.4].

Theorem 2.4. An n-system for the discriminant D is a complete system
of equivalence classes of primitive quadratic forms [Ai, Bi, Ci] = AiX

2 +
BiX + Ci, i = 1, . . . , h(D), of discriminant D = B2

i − 4AiCi, such that
gcd(Ai, n) = 1 and Bi ≡ B1 (mod 2n). Such a system exists for any n. To
these quadratic forms, we associate in the following the quadratic numbers
αi = (−Bi +

√
D)/(2Ai).

Let f ∈ Fn be such that f ◦S with S =
(
0 −1
1 0

)
has a rational q-expansion.

If f(α1) ∈ KD, then a complete system of conjugates of f(α1) under the
Galois group of KD is given by the f(αi), and the characteristic polynomial
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of f(α1) over K is

HD[f ] =

h(D)∏
i=1

(X − f(αi)).

3. The generalised Weber functions wN . In this section we examine
the general properties of the function wN , with the aim in mind of applying
Theorem 2.3 to its powers.

Let z be any complex number and put q = e2iπz. Dedekind’s η-function
is defined by (see [5])

η(z) = q1/24
∏
m≥1

(1− qm).

The Weber functions are (see [27, §34, p. 114])

f(z) = ζ−148

η((z + 1)/2)

η(z)
, f1(z) =

η(z/2)

η(z)
, f2(z) =

√
2
η(2z)

η(z)
.

The modular invariant j is recovered via [27, §54, p. 179]:

j(z) =
(f24 − 16)3

f24
=

(f241 + 16)3

f241
=

(f242 + 16)3

f242
.

The functions −f24, f241 , f242 are the three roots of the modular polynomial

Φc2(F, j) = F 3 + 48F 2 + F (768− j) + 4096

that describes the curve X0(2).
For an integer N > 1, let the generalised Weber function be defined by

wN =
η(z/N)

η(z)
.

As shown in the following, there is a canonical exponent t such that wt
N is

modular for Γ 0(N). Its minimal polynomial ΦcN (F, j) over C(j) is a model
for X0(N). The other roots of this polynomial can be expressed in terms
of η too, a topic to which we come back in §7.

We need to know the behaviour of wN under unimodular transforma-
tions, which can be broken down to the transformation behaviour of η(z/K)
for K = 1 or N . This has been worked out in [11, Th. 3].

Theorem 3.1. Let M =
(
a b
c d

)
∈ Γ be normalised so that c ≥ 0, and

d > 0 if c = 0. Write c = c12
λ(c) with c1 odd; by convention, c1 = λ(c) = 1

if c = 0. Define

ε(M) =

(
a

c1

)
ζ
ab+c(d(1−a2)−a)+3c1(a−1)+ 3

2
λ(c)(a2−1)

24 .

For K ∈ N write

ua+ vKc = δ = gcd(a,Kc) = gcd(a,K).
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Then

η

(
z

K

)
◦M = ε

(
a/δ −v
Kc/δ u

)√
δ(cz + d) η

(
δz + (ub+ vKd)

K/δ

)
,

where the square root is chosen with positive real part.

Theorem 3.2. The function wN has a rational q-expansion. Denote by
S =

(
0 −1
1 0

)
the matrix belonging to the inversion z 7→ −1/z. If N is a

square, then wN ◦ S has a rational q-expansion. Otherwise, w2
N ◦ S has a

rational q-expansion.

Let the subscript 1 and the function λ have the same meaning for a
positive integer n as in Theorem 3.1, that is, n = n1 2λ(n) with n1 odd. If

M =

(
a Nb0

c d

)
∈ Γ 0(N),

then wN ◦M = εwN with

(3.1) ε =

(
a

N1

)
ζ
(N−1)(−b0a+c(d(1−a2)−a))
24 ζ

c1(N1−1)(a−1)/2
4 (−1)λ(N)(a2−1)/8.

Let t = 24/gcd(N − 1, 24) measure how far N − 1 is from being divisible
by 24, and let e and s be such that t | s | 24 and e | s. If N1 is a square or e is
even, then we

N is modular for Γ (s/e)∩Γ 0(sN/e). Otherwise, we
N is modular

for Γ (sN1/e) ∩ Γ 0(sN/e). In both cases, we
N ∈ FsN/e ⊆ F24N .

Proof. The q-expansion of wN is rational since that of η is. Let M =(
a b
c d

)
∈ Γ . By Theorem 3.1 applied to K = 1 and N , we have

(3.2) wN ◦M = ε

(
a/δ −v
Nc/δ u

)
ε

(
a b

c d

)−1√
δ η

(
δz + (ub+ vNd)

N/δ

)
/η(z)

with δ = gcd(a,N) = ua+ vNc.

In the special case M = S we obtain δ = N , v = 1, u = 0 and

wN ◦ S =
√
N
η(Nz)

η(z)
,

which proves the assertion on the q-expansion of wN ◦ S.

Assume now that M ∈ Γ 0(N). Letting b = Nb0, we have δ = 1, u = d
and v = −b0 since ad− bc = 1. Thus, (3.2) specialises as

wN ◦M = ε

(
a b0

Nc d

)
ε

(
a b

c d

)−1 η(z/N)

η(z)
= εwN (z)



Generalised Weber functions 315

with

ε =

(
a

c1N1

)(
a

c1

)−1
× ζ(b0−b)a+c(N−1)(d(1−a

2)−a)+3c1(N1−1)(a−1)+ 3
2
(λ(Nc)−λ(c))(a2−1)

24 ,

which proves (3.1).

We need to examine under which conditions εe = 1. The Legendre symbol
vanishes when N1 is a square, e is even or a ≡ 1 (mod N1). The exponent
of ζ24 becomes divisible by s(N − 1) and thus by 24 whenever s/e divides
b0 and c.

In the case of N odd, we have λ(N) = 0 and N = N1, and the condition
on a implies that the exponent of ζ4 is divisible by 4.

In the case of N even, the coefficient a is odd since detM = 1, and

εe = (−1)e(c1
(N1−1)(a−1)

4
+λ(N)a

2−1
8

).

For even e, there is nothing to show. If e is odd, then 8 | t | s implies that
a ≡ 1 (mod 8), which finishes the proof.

4. Full powers of wN . To be able to apply Theorem 2.3 directly to
powers of wN , we are interested in the minimal exponent s such that ws

N
is invariant under Γ 0(N) and ws

N ◦ S has a rational q-expansion. From
Theorem 3.2, we recover the integer t = 24/gcd(N − 1, 24) and recall that
s = 2t if t is odd and N is not a square, and s = t otherwise.

4.1. Arithmetical prerequisites. We begin with the following purely
arithmetical lemma.

Lemma 4.1. Let N be an integer. For a prime p, denote by vp the p-adic
valuation. Let D = c2∆ be a discriminant with fundamental part ∆. Then D
admits a square root B modulo 4N if and only if for each prime p dividing N ,
one of the following holds:

(1)
(
∆
p

)
= +1;

(2)
(
∆
p

)
= −1 and vp(N) ≤ 2vp(c);

(3)
(
∆
p

)
= 0 and vp(N) ≤ 2vp(c) + 1.

Proof. The Chinese remainder theorem allows one to argue modulo the
different prime powers dividing N . The argument is slightly different for p
odd and even, and we give some hints only for p = 2.

When ∆ ≡ 1 (mod 8), ∆ admits a square root modulo any power of 2.

When ∆ is even, then ∆ ≡ 8 or 12 (mod 16), and ∆ is a square modulo 8,
but not modulo any higher power of 2. Therefore, c2∆ is a square modulo 4N
if and only if v2(c

2) + 3 ≥ v2(4N).
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When ∆ ≡ 5 (mod 8), ∆ has a square root modulo 4 but not modulo 8,
so that v2(c

2) + 2 ≥ v2(4N) is needed in that case.

In the following, arithmetical conditions on a prime p to be representable
by the principal form of discriminant D will be needed. We take the following
form of Dirichlet’s theorem from [3, Chap. 4] (alternatively, see [4, Chap. 18,
Sect. G]). For an integer p, let χ4(p) =

(−1
p

)
and χ8(p) =

(
2
p

)
. The generic

characters of D = c2∆ are defined as follows:

(a)
(p
q

)
for all odd primes q dividing D;

(b) if D is even:

(i) χ4(p) if D/4 ≡ 3, 4, 7 (mod 8);
(ii) χ8(p) if D/4 ≡ 2 (mod 8);
(iii) χ4(p) · χ8(p) if D/4 ≡ 6 (mod 8);
(iv) χ4(p) and χ8(p) if D/4 ≡ 0 (mod 8).

Note that if D is fundamental (i.e., c = 1), then case (iv) cannot occur, and
in case (i) we may have D/4 ≡ 3, 7 (mod 8) only.

Theorem 4.2. An integer p satisfying gcd(p, 2cD) = 1 is representable
by some class of forms in the principal genus of discriminant D if and only
if all generic characters χ(p) have value +1. In particular, this condition is
necessary for representability by the principal class.

4.2. Class invariants

Theorem 4.3. Let N be an integer and t = 24/gcd(N − 1, 24). If t is
odd and N is not a square, let s = 2t, otherwise, let s = t. Suppose D
satisfies Lemma 4.1. Consider an N -system of forms [Ai, Bi, Ci] with roots
αi = (−Bi +

√
D)/(2Ai) such that Bi ≡ B (mod 2N), as introduced in 2.4.

Then the singular values ws
N (αi) lie in the ring class field KD, and they

form a complete set of Galois conjugates.

Proof. Once the existence of B is verified, the form [1, B,C] with C =
(B2 −D)/4 is of discriminant D and satisfies N |C. The assertion of the
theorem is then a direct consequence of Theorems 2.3 and 3.2.

Sometimes, the characteristic polynomial of ws
N is real, so that its coeffi-

cients lie in Z instead of the ring of integers of Q(
√
D). It is then interesting

to determine the pairs of quadratic forms that lead to complex conjugates.

Theorem 4.4. Under the assumptions of Theorem 4.3, let B ≡
0 (mod N), which is possible whenever N is odd and N |D, or N is even and
4N |D. Then the characteristic polynomial of ws

N is real. More precisely,
if αi and αj are roots of inverse forms of the N -system, then ws

N (αj) =

ws
N (αi).
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Proof. Notice that B ≡ 0 (mod N) and Bi ≡ B (mod 2N) imply −Bi ≡
B (mod 2N), so that [Ai,−Bi, Ci], the inverse form of [Ai, Bi, Ci], satisfies

the N -system constraint; thus ws
N (αj) = ws

N

(
Bi+
√
D

2Ai

)
= ws

N (−αi). On the

other hand, q(−αi) = q(αi), which implies wN (−αi) = wN (αi) since wN

has a rational q-expansion.

These first results, direct consequences of the Shimura reciprocity law,
are meant to set the stage for the detailed and much more involved analysis
of lower powers in the following chapters. For gcd(N, 6) = 1, [19, Theo-
rem 20] determines a 48th root of unity ζ and an exponent e | s such that
ζwe

N yields a class invariant. With a bit of work, it can be shown that

ζs/e = 1 in our context, which provides an alternative proof of Theorem 4.3
without giving the algebraic conjugates of the singular value.

5. Explicit Galois action. Throughout the remainder of this article,
we assume that N is a square or e is even, so that f = we

N and f ◦ S
have rational q-expansions by Theorem 3.2. Let α be a root of the primitive
quadratic form [A,B,C] of discriminant D with gcd(A,N) = 1. By Theo-
rems 3.2 and 2.2, the singular value f(α) lies in the ray class field modulo
c(t/e)N over K, and the Galois action of ideals in OK can be computed
explicitly. We eventually need to show that the action of principal prime
ideals generated by elements in O is trivial, which implies that the singular
value lies in the ring class field KD. Then Theorems 3.2 and 2.4 show that
the conjugates are given by the singular values in a (t/e)N -system.

We are only interested in the situation that N |C. Notice that un-
der gcd(A,N) = 1 this is equivalent to 4N | 4AC = B2 − D, or B2 ≡
D (mod 4N). The remainder of this section is devoted to computing in this
case the Galois action of principal prime ideals (π) with π ∈ O coprime
to 6cN on the singular values according to the arithmetic properties of N
and D. Section 6 applies these results to the determination of class invari-
ants.

To apply Shimura reciprocity in the formulation of Theorem 2.2, we
need to explicitly write down adapted bases for the different ideals. So let
a =

(
Aα
A

)
Z be an ideal of O =

(
Aα
1

)
Z with basis quotient α. Without loss

of generality, we may assume that p = N(π) |C by suitably modifying α:
Indeed, notice that the quadratic form associated to α′ = α−24kN for some
k ∈ Z is given by [A,B′, C ′] = [A,B+2A(24kN), A(24kN)2+B(24kN)+C].
This form still satisfies N |C ′, and furthermore f(α′) = f(α) since f is
invariant under translations by 24N according to Theorem 3.2. Since p splits
in O and is prime to c, the equation AX2 +BX +C has a root x modulo p.
Choosing k ∈ Z such that k ≡ x(24N)−1 (mod p), which is possible since
p - 6N , we obtain p |C ′.
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Let π = u+ vAα with u, v ∈ Z. From

(5.1) p = N(π) = u(u− vB) + v2AC

and p |C we deduce that p divides u or u′ = u− vB. Using Aα = −Aα−B
and N(Aα) = AC, we compute

pa = π

(
Aα

A

)
=

(
uAα+ vAC

uA− vA2α− vAB

)
=

(
u vC

−vA u− vB

)(
Aα

A

)
.

So if p |u, the matrix M of Theorem 2.2 is given by

M=

(
u vC

−vA u− vB

)
=

(
p 0

0 1

)
M1 with M1 =

(
u/p vC/p

−vA u′

)
∈Γ 0(N)

since N |C and p - N .
If f is invariant under M−11 , the rationality of its q-expansion implies

that

f ◦mM−1 = f ◦M−11 ◦
(

1 0

0 p

)
= f,

so that

f(α)σ(p) = f(Mα) = f

(
uα+ vC

−vAα+ u− vB

)
= f

(
πα

π

)
= f(α).

For p |u′, we decompose in a similar manner

M = M2

(
1 0

0 p

)
= M2S

(
p 0

0 1

)
S with M2 =

(
u vC/p

−vA u′/p

)
∈ Γ 0(N),

and the rationality of the q-expansion of f ◦ S allows us to conclude if f is
invariant under M−12 .

So we need the transformation of f under

M−11 =

(
u′ −vC/p
vA u/p

)
.

Rewriting (3.1), the transformation is given by f ◦M−11 = ζeθ24f with

θ = (N − 1)v

(
u′
C

Np
+A

(
u

p
(1− u′2)− u′

))
(5.2)

+ 3v1A1(N1 − 1)(u′ − 1) +
3λ(N)(u′2 − 1)

2
.

We obtain invariance provided eθ ≡ 0 (mod 24). (The treatment of M−12 is
completely analogous and omitted.) In the following, we classify the values
of D and B for which θ is 0 modulo some divisor of 24. It is natural to study
separately θ modulo 3 and θ modulo 2ξ for 1 ≤ ξ ≤ 3 depending on the
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value of N . We will give code names to the following propositions for future
use.

5.1. The value of θ modulo 3. To be able to use some exponent e not
divisible by 3, we need to impose 3 | θ. From the reduction of (5.2) modulo 3,
namely

θ = (N − 1)v

(
u′
C

Np
+A

(
u

p
(1− u′2)− u′

))
(mod 3),

we immediately see that 3 | θ for N ≡ 1 (mod 3) without any further condi-
tion, which is coherent with 3 - s in this case.

For N 6≡ 1 (mod 3), we impose B2 ≡ D (mod 4N) to obtain divisibility
of C by N (see the discussion above), and define r ∈ {0, 1, 2} such that

(5.3) A
C

N
=
B2 −D

4N
≡ r (mod 3).

Notice that r = 1 implies A ≡ C/N (mod 3), while r = 2 implies A ≡
−C/N (mod 3).

5.1.1. The case N ≡ 0 (mod 3)

Proposition 5.1 (PROP30). Let N ≡ 0 (mod 3), B2 ≡ D (mod 4N)
and r be as in (5.3). Then 3 | θ if

(a) 3 |D and r = 1;
(b) D ≡ 1 (mod 3) and r = 2.

In these cases, B satisfies the following congruences modulo 3:

(a) 3 |B;
(b) 3 - B.

Proof. Since 3 |N |C and 3 - p, we have u2 ≡ u′2 ≡ 1 (mod 3) by (5.1)
and

θ ≡ ±v
(
C

Np
−A

)
(mod 3).

(a) If 3 |B, or equivalently 3 |D, then p ≡ u2 ≡ 1 (mod 3) in (5.1). The
desired result follows from (5.3).

(b) If 3 - B, which is equivalent to D ≡ 1 (mod 3), only the case 3 - v
needs to be examined. Then u 6≡ u′ (mod 3) and p ≡ 2 (mod 3), and again
(5.3) allows us to conclude.

5.1.2. The case N ≡ 2 (mod 3)

Proposition 5.2 (PROP32). Let N ≡ 2 (mod 3), B2 ≡ D (mod 4N)
and r ∈ {1, 2} be as in (5.3). If D ≡ r (mod 3), then 3 | θ and 3 |B.
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Proof. Notice that D ≡ r (mod 3) is equivalent to 3 |B by (5.3). Then
u′ ≡ u (mod 3) and

θ ≡ uv
(
C

Np
+
A

p
(1− u2)−A

)
(mod 3).

If 3 divides u or v, we are done.

Otherwise, u2 ≡ v2 ≡ 1 (mod 3), which implies

θ ≡ ±
(
C

Np
−A

)
(mod 3).

Writing p ≡ 1 + AC ≡ 1 − r (mod 3), we see that this case is possible
only for r = 2 and p ≡ 2 (mod 3), and then A ≡ −C/N (mod 3) and
3 |C/(Np)−A.

Note that the proposition does not hold for r = 0, since then 3 |D, 3 |B,
3 |AC, and exactly one of A and C is divisible by 3 (if both were, then
[A,B,C] would not be primitive), causing θ 6≡ 0 (mod 3) unless one of u or
v is divisible by 3.

5.2. The value of θ modulo powers of 2

5.2.1. The case of N odd. Since N1 = N and λ(N) = 0, (5.2) becomes

θ ≡ (N − 1)ρ (mod 8)

for

ρ = v

(
u′
C

Np
+A

(
u

p
(1− u′2)− u′

))
+ 3v1A1(u

′ − 1).

So θ is divisible by 8 if N ≡ 1 (mod 8), which is the case in particular if
N is a square. Otherwise, e is supposed to be even, so eθ is divisible by 4;
if N ≡ 1 (mod 4), eθ is even divisible by 8. So the only remaining case of
interest is N ≡ 3 (mod 4); then for e ≡ 2 (mod 4), 8 | eθ is equivalent to ρ
being even. We have

ρ ≡ v
(
u′C +A(u(1 + u′) + u′)

)
+ u′ + 1 (mod 2).

Proposition 5.3 (PROP21). Let N be odd. If D is odd, then θ ≡
(N − 1)ρ (mod 8) with ρ even.

Proof. Since B is odd, u′ ≡ u+ v (mod 2).

If one of v, A and C is even, then u and u′ are odd by (5.1) (so that in
fact v is even), and ρ is even.

Otherwise, v, A and C are odd, u′ = u + 1 (mod 2) and ρ is even as
well.
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5.2.2. The case of N even. Let N = 2λ(N)N1 with N1 odd and λ(N)
≥ 1. We study divisibility of θ by 2ξ for increasing values of ξ. The value
ξ = 3 is of interest only when e is odd, in which case N and thus N1 are
squares. We start with an elementary remark.

Lemma 5.4. If 2 |N |C, then

(a) u and u′ are odd and

(5.4) θ ≡ (N − 1)vu′
(
C

Np
−A

)
(mod 4);

(b) if moreover 4 |C, then 2 | vB.

Proof. (a) u and u′ are odd by (5.1), so that u′2 ≡ 1 (mod 8). Since N1

is odd, almost all terms disappear from (5.2).

(b) We have p = u2 + v(−uB + vAC) ≡ u(u − vB) (mod 4). Since u is
odd by (a), we deduce that vB must be even.

As discussed above, N |C is equivalent to B2 ≡ D (mod 4N). Then
AC/N = (B2 −D)/(4N); by gradually imposing more restrictions modulo
powers of 2 times 4N , we fix AC/N modulo powers of 2.

Proposition 5.5 (PROP20). When N is even, θ is even in the following
cases:

(a) B2 ≡ D + 4N (mod 8N);
(b) B2 ≡ D (mod 8N) and D ≡ 1 (mod 8).

Proof. (a) The conditions imply that AC/N is odd, and Lemma 5.4(a)
allows us to conclude since p is odd.

(b) In that case AC/N is even. Since A is prime to N , it is odd and
therefore C/N is even, which implies in turn 4 |C. By Lemma 5.4(b), we
get 2 | vB. Since D is odd, B is odd and v is even, and (5.4) finishes the
proof.

5.3. Divisibility of θ by 4. We begin with a purely arithmetical lemma
that will give us necessary conditions on the parameters for the equation
B2 ≡ D + r(4N) (mod 16N) to have a solution.

Lemma 5.6. Let r ∈ {0, 1, 2, 3} and N be even. Given D, suppose the
equation B2 ≡ D + 4rN (mod 16N) admits a solution in B. Then either
D ≡ 1 (mod 8), which implies B is odd, or D is even and D satisfies one of
the conditions of the following table depending on rN mod 8, which in turn
gives properties of B.
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rN mod 8 Condition on D ⇒ D/4 mod 8 B/2

0 4 mod 32 1 odd

0 16 |D 0 even

2 24 mod 32 6 0 mod 4

2 28 mod 32 7 odd

2 8 mod 32 2 2 mod 4

4 16 |D 0 even

4 20 mod 32 5 odd

6 8 ‖D 0 0 mod 4

6 12 mod 32 3 odd

Proof. Since B2 ≡ D (mod 8), the only possible value for odd D is
D ≡ 1 (mod 8), giving B odd. If D is even, then(

B

2

)2

≡ D

4
+ rN (mod 8)

and since N is even, the above table makes sense.

Remembering that the only squares modulo 8 are {0, 1, 4}, the table is
easily constructed and left as an exercise to the reader.

Now, we are ready to extend the result of Proposition 5.5 by consider-
ing B2 ≡ D + r(4N) (mod 16N) with r ∈ {1, 3}, which yields AC/N ≡
r (mod 4). Note that case (b) cannot be extended and we leave the proof of
this to the reader.

Proposition 5.7 (PROP44). Let N be even, and suppose

B2 ≡ D + 4N (mod 16N)

has a solution. Then θ is divisible by 4 if one of the following conditions is
met:

(a) D ≡ 1 (mod 8);
(b) 16 |D;
(c) 2 ‖N and 4 ‖D.

Proof. If D is odd, the condition follows from Lemma 5.6. Then u′ =
u− vB leads to 2 | v and 4 | θ.

Assuming D even, Theorem 4.2 implies that χ4(p) = 1 (or, equivalently,
p ≡ 1 (mod 4)) when D/4 mod 8 ∈ {3, 4, 7, 0}, which immediately settles
case (b). When D/4 is odd, we see that we cannot have the case 4 |N when
comparing with the table of Lemma 5.6, and this gives us (c).

In the other cases, when p ≡ 3 (mod 4), we get v odd since AC ≡
2 (mod 4) and there is no reason to have θ ≡ 0 (mod 4).
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Proposition 5.8 (PROP412). Let N be even, and suppose

B2 ≡ D + 12N (mod 16N).

Then θ is divisible by 4 if one of the following conditions is met:

(a) D ≡ 1 (mod 8);
(b) 8 ‖D and 2 ‖N ;
(c) 4 ‖D and 4 |N .

In the cases of D even, B satisfies the following congruences modulo 4:

(b) 4 |B;
(c) 2 ‖B.

Proof. The proof for D odd as well as the case distinctions for D even are
the same as in Proposition 5.7. However, we now have AC/N ≡ −1 (mod 4).

In the cases where χ4(p) = 1 (i.e., D/4 ∈ {3, 4, 7, 0}), we get p ≡
1 (mod 4) and C/(Np) − A ≡ 2 (mod 4). Since there is no compelling
reason why v should be even, θ may or may not be divisible by 4.

So we have to turn our attention to the four other cases, i.e., D/4 ∈
{1, 2, 5, 6}, with Lemma 5.6 in mind. If 4 | B, 8 ‖D and 2 ‖N , then 2 ‖C,
and either v is even or p ≡ 3 (mod 4). In both cases, Lemma 5.4 shows that
4 | θ. If 2 ‖B and 4 ‖D, suppose that furthermore 4 |N . Then 4 |AC, and
again v is even or p ≡ 3 (mod 4).

5.4. Divisibility of θ by 8. As discussed at the beginning of §5.2.1, for
generating class fields we are only interested in θ mod 8 when N is a square,
that is, λ(N) is even and N1 is a square; in particular, N1 ≡ 1 (mod 8).
Then the following generalisation of Lemma 5.4 is immediately seen to hold:

Lemma 5.9. If N is an even square dividing C, then

θ ≡ (N − 1)vu′
(
C

Np
−A

)
(mod 8).

From the results obtained for B2 ≡ D + 4rN (mod 16N) for r ∈ {1, 3},
it is natural to look at B2 ≡ D + 4rN (mod 32N) for r ∈ {1, 3, 5, 7}. Then
AC/N ≡ r (mod 8).

Proposition 5.10 (PROP8). Let N be an even square, and suppose

B2 ≡ D + 4rN (mod 32N).

Then θ is divisible by 8 if one of the following conditions holds:

(a) r = 3 or r = 7, and D ≡ 1 (mod 8);
(b) r = 1, and 32 |D;
(c) r = 5, and 16 ‖D.

In the cases of D even, B satisfies the following congruences modulo 8:
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(b1) 4 ‖B if 4 ‖N ;
(b2) 8 |B if 16 |N ;
(c1) 4 ‖B if 16 |N ;
(c2) 8 |B if 4 ‖N .

Proof. Since 4 |N |C, we have p ≡ u(u− vB) (mod 4) by (5.1).
For D odd, B is odd and v is even as seen in Proposition 5.7. If v is

divisible by 4, then θ is divisible by 8 in view of Lemma 5.9. If 2 ‖ v, then
p ≡ 3 (mod 4); if furthermore r ≡ 3 (mod 4), then 4 |C/(Np)−A, and 8 | θ
by Lemma 5.9.

In the remaining cases of the proposition, 16 |D, 4 |B, r ≡ 1 (mod 4)
and p ≡ 1 (mod 4). If v is even, Lemma 5.9 implies that 8 | θ. From now on,
we assume that v is odd. Then p = u2 − uvB + AC (mod 8), and we need
to verify that 8 |C/(Np)−A.

The results now follow from close inspection of

AC ≡ rN (mod 8) and

(
B

4

)2

≡ D

16
+ r

N

4
(mod 8).

Consider first the case r = 1 and 32 |D. By Theorem 4.2, we have χ4(p) =
χ8(p) = 1, which yields p ≡ 1 (mod 8) and implies the desired divisibility of
C/(Np)−A by 8.

Consider now r = 5; it is sufficient to show that p ≡ 5 (mod 8). If 16 ‖D
and 16 |N |C, then B ≡ 4 (mod 8) and p ≡ 5 (mod 8). If 16 ‖D and 4 ‖N ,
then AC ≡ 4 (mod 8) and 32 |D+ 4rN , whence 8 |B and p ≡ 5 (mod 8).

6. Lower powers of wN . The aim of this section is to determine con-
ditions under which singular values of powers of wN lower than those given
in Theorem 4.3 yield class invariants. When N is not a square, only even
powers are possible by Theorems 3.2 and 2.3. So we specialise the proposi-
tions of §5 according to the value of N mod 12. When N is a square, odd
powers may yield class invariants, and we need to distinguish more finely
modulo 24. Note that then N mod 24 ∈ {0, 1, 4, 9, 12, 16}.

Throughout this section, we use the notation of Theorem 4.3. The num-
ber α is a root of the quadratic form [A,B,C] of discriminant D and N is an
integer such that A is prime to N and B is a square root of D modulo 4N
according to Lemma 4.1, so that N |C. The canonical power s such that
ws
N (α) is a class invariant, that is, ws

N (α) ∈ KD, is defined as in Theo-
rem 4.3, and we wish to determine the minimal exponent e such that we

N (α)
is still a class invariant. The general procedure is as follows: Given the value
of N , we assemble the propositions of §5 (using their code names through-
out) and deduce from them conditions on B as well as the period of D for
which class invariants are obtained. In general, we can combine a condition
on B related to θ mod 3 and another one related to θ mod 2ξ. The Chinese
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remainder theorem is then used to find compatible values. When no partic-
ular condition modulo 3 or powers of 2 is imposed, that is, e and s have
the same 3-adic or 2-adic valuation, then Theorem 4.3 already leads to the
desired conclusion.

Once a power we
N (α) is identified as a class invariant, its conjugates

may be obtained by an M -system for M = (s/e)N containing [A,B,C] as
shown through Theorems 2.4 and 3.2. In more detail, one may proceed as
follows:

1. Determine a form [A,B,C] with root α satisfying gcd(A,M) = 1 and
the constraint on B so that we

N (α) is a class invariant; in general, one
may choose A = 1.

2. Enumerate all reduced forms [ai, bi, ci], i = 1, . . . , h(D), of discrimi-
nant D, numbered in such a way that [a1, b1, c1] ≡ [A,B,C].

3. Let [A1, B1, C1] = [A,B,C]. For i ≥ 2, find a form [Ai, Bi, Ci] ≡
[ai, bi, ci] such that gcd(Ai,M) = 1 and Bi ≡ B (mod 2M), using, for
instance, the algorithm of [22, Prop. 3], [24, Th. 3.1.10].

Then a floating point approximation of the class polynomial can be com-
puted as

hD∏
i=1

(X −we
N (αi))

with αi = (−Bi +
√
D)/(2Ai). Using the algorithms of [8], one obtains a

quasi-linear complexity in the total size of the class polynomial.

Note that the conditions on B of §5 can be summarised as B2 ≡
D + 4rN (mod 4RN), where r is defined modulo R and the only primes
dividing R are 2 and 3. For the sake of brevity, we denote such a condition
by r:R. So if no particular condition beyond B2 ≡ D (mod 4N) is required,
this is denoted by 0:1.

We will give more details for the first non-trivial cases and be briefer in
what follows, since the results rapidly become unwieldy. We add numerical
examples for these cases.

6.1. The case of N odd

6.1.1. The case N 6≡ 0 (mod 3). This is the simplest case. We may use
PROP32, PROP21 or both. Whenever N ≡ 2 (mod 3) and 3 - D, then
PROP32 applies; moreover, the resulting condition 3 |B is automatically
satisfied, and we gain a factor of 3 in the exponent. Similarly if D is odd,
then PROP21 applies without any restriction on B, and we gain a factor
of 2 in the exponent.
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N mod 12 s B D e Proposition(s)

5 6 1:3 D ≡ 1 (mod 3) 2 PROP32

5 6 2:3 D ≡ 2 (mod 3) 2 PROP32

7 4 0:1 2 - D 2 PROP21

11 12 0:1 2 - D 6 PROP21

11 12 1:3 D ≡ 1 (mod 3) 4 PROP32

11 12 2:3 D ≡ 2 (mod 3) 4 PROP32

11 12 1:3 D ≡ 1 (mod 6) 2 PROP32+PROP21

11 12 2:3 D ≡ 5 (mod 6) 2 PROP32+PROP21

Letting D = c2∆, we put ω =
√
∆/4 if 4 |∆ and ω = (1+

√
∆)/2 otherwise.

Here are some numerical examples:

N f −D HD[f ]

5 w2
5 11 X − ω − 1

5 w2
5 4 X − 1− 2ω

7 w2
7 3 X − 3ω + 1

11 w6
11 39 X4 + (27ω − 73)X3 + (1656ω − 8914)X2

+ (7947ω − 139058)X − 515016ω + 1000693

11 w4
11 8 X + 7 + 6ω

11 w4
11 28 X + 8ω − 7

11 w2
11 11 X − 2ω + 1

11 w2
11 7 X − 2ω + 3

6.1.2. The case N ≡ 3 (mod 12). The situation becomes more intricate
when gcd(N, 6) 6= 1. For N ≡ 3 (mod 12), we have s = 12, and N cannot
be a square. Therefore we need an even exponent e. Since already the full
power w12

N can only be used when D is a square modulo 4N , we only have to
consider D mod 12 ∈ {0, 1, 4, 9}. Then PROP30 applies; moreover, PROP21
applies whenever D is odd, resulting in the following table:

N mod 12 s B D mod 12 e Propositions(s)

3 12 0:1 1, 9 6 PROP21

3 12 1:3 0, 9 4 PROP30a

3 12 2:3 1, 4 4 PROP30b

3 12 1:3 9 2 PROP30a+PROP21

3 12 2:3 1 2 PROP30b+PROP21

The entries in the first and last line for D ≡ 1 (mod 12) may seem
redundant; but note that they induce differently severe restrictions on B.
The entry D ≡ 1 (mod 12) in the third line, as well as D ≡ 9 (mod 12)
in the second line, are redundant, however: since PROP21 does not induce
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any additional restriction on B, the lower exponent is available for precisely
the same quadratic forms. In the following, we will present only tables that
have been reduced accordingly.

However, the previous table does not yet contain the full truth. A line in
the table means that if there is a solution to B2 ≡ D+4rN (mod 4RN) with
D in the given residue class D0 modulo 12, then we

N yields a class invariant.
Examining this equation modulo the part of 4RN that contains only 2 and
3 yields further restrictions. Write N = N6N

′ such that the only primes
dividing N6 are 2 and 3 and gcd(N ′, 6) = 1. Then we need to ensure that
D+4rN ≡ D is a square modulo N ′; this is guaranteed by Lemma 4.1, since
otherwise we would not even consider the full power ws

N . We furthermore
need to examine under which conditions

D + 4N6rN
′ is a square modulo 4RN6 and D ≡ D0 (mod 12).

Concerning the second to last line, for instance, the condition becomes

D + 12N/3 is a square modulo 36 and D ≡ 9 (mod 12).

Thus, D + 12N/3 ≡ 9 (mod 36), and depending on N/3 mod 3, only one
value of D mod 36 remains.

For N = 3, for instance, or more generally N/3 ≡ 1 (mod 3), we obtain
the following class invariants:

B D mod 36 e

0:1 0, 12 12

0:1 9, 21 6

1:3 24 4

2:3 4, 16, 28 4

1:3 33 2

2:3 1, 13, 25 2

To illustrate this, we give the following table of examples:

N f −D HD[f ]

3 w12
3 24 X2 − 162X + 729

3 w6
3 15 X2 − 3(2ω − 1)X − 27

3 w4
3 12 X − 3

3 w4
3 8 X − 1− 2ω

3 w2
3 3 X − ω − 1

3 w2
3 11 X − ω

6.1.3. The case N ≡ 9 (mod 12). We have s = 3 for squares in that
family (for instance, N = 32n) and may then reach wN . Otherwise, s = 6,
and the only possible smaller exponent is 2.
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N s B D e Proposition(s)

9 mod 12, 6= � 6 1:3 0 mod 3 2 PROP30a

9 mod 12, 6= � 6 2:3 1 mod 3 2 PROP30b

9 mod 12, = � 3 1:3 0 mod 3 1 PROP30a

9 mod 12, = � 3 2:3 1 mod 3 1 PROP30b

We give two examples, one for N = 21, the second for N = 9. For the
former, we find

B D mod 252 e

0:1 0, 9, 21, 36, 57, 72, 81, 84, 93, 120, 144, 156, 165, 189, 225, 228 6

1:3 60, 105, 141, 168, 177, 204, 240, 249 2

2:3 1, 4, 16, 25, 28, 37, 49, 64, 85, 88, 100, 109, 112, 121, 133, 148, 2

169, 172, 184, 193, 196, 205, 217, 232

N f −D HD[f ]

21 w6
21 24 X2 + (108 + 102ω)X − 6345 + 2754ω

21 w2
21 3 X + ω + 4

21 w2
21 20 X2 + (−2 + 4ω)X − 19− 4ω

For N = 9, we get

B D mod 108 e

0:1 9, 36 3

1:3 0, 45, 72, 81 1

2:3 1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 1

61, 64, 73, 76, 85, 88, 97, 100

N f −D HD[f ]

9 w3
9 72 X2 − 18X + 27

9 w9 27 X − ω − 1

9 w9 8 X − 1− ω

6.2. The case of N even. A look at §5 immediately shows the com-
plexity of the results when N is even. We distinguish the cases λ = 1 (in
which N cannot be a square) and λ ≥ 2 with N a square or not.

6.2.1. The case λ = 1. Three values appear, namely N mod 12 ∈
{2, 6, 10}. We have s = 24 for N mod 12 ∈ {2, 6}, whereas s = 8 for
N ≡ 10 (mod 12).
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N mod 12 s B D e Proposition(s)

2 24 1:2 — 12 PROP20a

2 24 0:2 1 mod 8 12 PROP20b

2 24 1:3 1 mod 3 8 PROP32

2 24 2:3 2 mod 3 8 PROP32

2 24 1:4 1, 4 mod 8; 0 mod 16 6 PROP44

2 24 3:4 1 mod 8; 8 mod 16 6 PROP412ab

2 24 1:2 ∧ 1:3 1 mod 3 4 PROP20a+PROP32

2 24 1:2 ∧ 2:3 2 mod 3 4 PROP20a+PROP32

2 24 0:2 ∧ 1:3 1 mod 24 4 PROP20b+PROP32

2 24 0:2 ∧ 2:3 17 mod 24 4 PROP20b+PROP32

2 24 1:4 ∧ 1:3 1, 4 mod 24; 16 mod 48 2 PROP44+PROP32

2 24 1:4 ∧ 2:3 17, 20 mod 24; 32 mod 48 2 PROP44+PROP32

2 24 3:4 ∧ 1:3 1 mod 24; 40 mod 48 2 PROP412ab+PROP32

2 24 3:4 ∧ 2:3 17 mod 24; 8 mod 48 2 PROP412ab+PROP32

6 24 1:2 — 12 PROP20a

6 24 0:2 1 mod 8 12 PROP20b

6 24 1:3 0 mod 3 8 PROP30a

6 24 2:3 1 mod 3 8 PROP30b

6 24 1:4 1, 4 mod 8; 0 mod 16 6 PROP44

6 24 3:4 1 mod 8; 8 mod 16 6 PROP412ab

6 24 1:2 ∧ 1:3 0 mod 3 4 PROP20a+PROP30a

6 24 1:2 ∧ 2:3 1 mod 3 4 PROP20a+PROP30b

6 24 0:2 ∧ 1:3 9 mod 24 4 PROP20b+PROP30a

6 24 0:2 ∧ 2:3 1 mod 24 4 PROP20b+PROP30b

6 24 1:4 ∧ 1:3 9, 12 mod 24; 0 mod 48 2 PROP44+PROP30a

6 24 1:4 ∧ 2:3 1, 4 mod 24; 16 mod 48 2 PROP44+PROP30b

6 24 3:4 ∧ 1:3 9 mod 24; 24 mod 48 2 PROP412ab+PROP30a

6 24 3:4 ∧ 2:3 1 mod 24; 40 mod 48 2 PROP412ab+PROP30b

10 8 1:2 — 4 PROP20a

10 8 0:2 1 mod 8 4 PROP20b

10 8 1:4 1, 4 mod 8; 0 mod 16 2 PROP44

10 8 3:4 1 mod 8; 8 mod 16 2 PROP412ab

The case N = 2 corresponds to Weber’s classical functions. We present
the case N = 6 in more detail, illustrating the complexity of the process.
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B D mod 288 e

0:1 0, 36, 96, 132, 144, 180, 240, 276 24

1:2 60, 252 12

1:3 48, 84, 192, 228 8

2:3 4, 16, 52, 64, 100, 112, 148, 160, 196, 208, 244, 256 8

3:4 24, 72, 168, 216 6

1:4 9, 33, 81, 105, 153, 177, 225, 249 6

1:4 108, 204 6

1:2 ∧ 1:3 156 4

1:2 ∧ 2:3 28, 124, 220 4

3:4 ∧ 1:3 120, 264 2

1:4 ∧ 1:3 57, 129, 201, 273 2

1:4 ∧ 1:3 12 2

3:4 ∧ 2:3 40, 88, 136, 184, 232, 280 2

1:4 ∧ 2:3 1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265 2

1:4 ∧ 2:3 76, 172, 268 2

N f −D HD[f ]

6 w24
6 12 X + 186624

6 w12
6 36 X2 − 3888ωX + 1259712

6 w8
6 60 X2 + (432ω − 720)X + 20736

6 w8
6 32 X2 + (112 + 64ω)X − 1088− 3584ω

6 w6
6 72 X2 − 216X − 5832

6 w6
6 39 X4 + (3ω − 42)X3 + (486ω + 108)X2

+ (−648ω + 9072)X + 6561ω − 45198

6 w6
6 84 X4 + (324 + 60ω)X3 + 14688X2

+ (69984− 12960ω)X + 46656

6 w4
6 132 X4 + (144− 12ω)X3 + 2196X2

+ (5184 + 432ω)X + 1296

6 w4
6 68 X4 + (−32 + 4ω)X3 + (−204− 96ω)X2

+ (1152− 144ω)X − 752 + 256ω

6 w2
6 24 X2 − ωX − 6

6 w2
6 15 X2 + (−2ω − 2)X + 3ω − 3

6 w2
6 276 X8 + (−12− 4ω)X7 + (132 + 6ω)X6

− 144X5 − 576X4 − 864X3 + (4752− 216ω)X2

+ (−2592 + 864ω)X + 1296

6 w2
6 8 X + 2 + ω

6 w2
6 23 X3 − 6X2 + (−ω + 15)X + ω − 15

6 w2
6 20 X2 + (2− 2ω)X − 4− 2ω
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6.2.2. The case λ ≥ 2. We have to study three values of N mod 12,
namely, 0, 4 and 8, for which s = 24, 8, and 24, respectively. The cases
N ≡ 0 or 4 allow squares, so that the results become somewhat lengthy.

When N ≡ 4 (mod 12), we find

N s B D e Proposition(s)

4 mod 12 8 1:2 — 4 PROP20a

4 mod 12 8 1:2 1 mod 8 4 PROP20b

4 mod 12 8 1:4 1 mod 8 2 PROP44a

4 mod 12 8 1:4 0 mod 16 2 PROP44b

4 mod 12 8 3:4 1 mod 8 2 PROP412a

4 mod 12 8 3:4 4 mod 8 2 PROP412c

4 mod 12, = � 8 3:8 1 mod 8 1 PROP8a

4 mod 12, = � 8 7:8 1 mod 8 1 PROP8a

4 mod 12, = � 8 1:8 0 mod 32 1 PROP8b

4 mod 12, = � 8 5:8 16 mod 32 1 PROP8c

When N ≡ 8 (mod 12), it cannot be a square, and the results are:

N mod 12 s B D e Proposition(s)

8 24 1:2 — 12 PROP20a

8 24 1:2 1 mod 8 12 PROP20b

8 24 1:4 1 mod 8 6 PROP44a

8 24 1:4 0 mod 16 6 PROP44b

8 24 3:4 1 mod 8 6 PROP412a

8 24 3:4 4 mod 8 6 PROP412c

8 24 1:3 1 mod 3 8 PROP32

8 24 2:3 2 mod 3 8 PROP32

8 24 1:2 ∧ 1:3 1 mod 3 4 PROP20a+PROP32

8 24 1:2 ∧ 2:3 2 mod 3 4 PROP20a+PROP32

8 24 1:2 ∧ 1:3 1 mod 24 4 PROP20b+PROP32

8 24 1:2 ∧ 2:3 17 mod 24 4 PROP20b+PROP32

8 24 1:4 ∧ 1:3 1 mod 24 2 PROP44a+PROP32

8 24 1:4 ∧ 2:3 17 mod 24 2 PROP44a+PROP32

8 24 1:4 ∧ 1:3 16 mod 48 2 PROP44b+PROP32

8 24 1:4 ∧ 2:3 32 mod 48 2 PROP44b+PROP32

8 24 3:4 ∧ 1:3 1 mod 24 2 PROP412a+PROP32

8 24 3:4 ∧ 2:3 17 mod 24 2 PROP412a+PROP32

8 24 3:4 ∧ 1:3 4 mod 24 2 PROP412c+PROP32

8 24 3:4 ∧ 2:3 20 mod 24 2 PROP412c+PROP32
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Finally, for N ≡ 0 (mod 12), we obtain the following results:

N s B D e Proposition(s)

12 24 1:2 — 12 PROP20a

12 24 1:2 1 mod 8 12 PROP20b

12 24 1:4 1 mod 8 6 PROP44a

12 24 1:4 0 mod 16 6 PROP44b

12 24 3:4 1 mod 8 6 PROP412a

12 24 3:4 4 mod 8 6 PROP412c

12 24 1:3 0 mod 3 8 PROP30a

12 24 2:3 1 mod 3 8 PROP30b

12 24 1:2 ∧ 1:3 0 mod 3 4 PROP20a+PROP30a

12 24 1:2 ∧ 2:3 1 mod 3 4 PROP20a+PROP30b

12 24 1:2 ∧ 1:3 9 mod 24 4 PROP20b+PROP30a

12 24 1:2 ∧ 2:3 1 mod 24 4 PROP20b+PROP30b

12 24 1:4 ∧ 1:3 9 mod 24 2 PROP44a+PROP30a

12 24 1:4 ∧ 2:3 1 mod 24 2 PROP44a+PROP30b

12 24 1:4 ∧ 1:3 0 mod 48 2 PROP44b+PROP30a

12 24 1:4 ∧ 2:3 16 mod 48 2 PROP44b+PROP30b

12 24 3:4 ∧ 1:3 9 mod 24 2 PROP412a+PROP30a

12 24 3:4 ∧ 2:3 1 mod 24 2 PROP412a+PROP30b

12 24 3:4 ∧ 1:3 12 mod 24 2 PROP412c+PROP30a

12 24 3:4 ∧ 2:3 4 mod 24 2 PROP412c+PROP30b

12 24 3:8 1 mod 8 3 PROP8a

12 24 7:8 1 mod 8 3 PROP8a

12 24 1:8 0 mod 32 3 PROP8b

12 24 5:8 16 mod 32 3 PROP8c

12 24 3:8 ∧ 1:3 9 mod 24 1 PROP8a+PROP30a

12 24 3:8 ∧ 2:3 1 mod 24 1 PROP8a+PROP30b

12 24 7:8 ∧ 1:3 9 mod 24 1 PROP8a+PROP30a

12 24 7:8 ∧ 2:3 1 mod 24 1 PROP8a+PROP30b

12 24 1:8 ∧ 1:3 0 mod 96 1 PROP8b+PROP30a

12 24 1:8 ∧ 2:3 64 mod 96 1 PROP8b+PROP30b

12 24 5:8 ∧ 1:3 48 mod 96 1 PROP8c+PROP30a

12 24 5:8 ∧ 2:3 16 mod 96 1 PROP8c+PROP30b
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For N = 4, these results translate as follows:

B D mod 128 e

0:1 ≡ 4 (mod 32) 8

1:2 16, 32, 80, 96 4

3:4 ≡ 20 (mod 32) 2

1:4 64 2

3:8 ≡ 1 (mod 8) 1

1:8 0 1

5:8 ≡ 48 (mod 64) 1

N f −D HD[f ]

4 w8
4 28 X − 48ω + 32

4 w4
4 32 X2 − 8ωX − 16

4 w2
4 12 X − 2ω

4 w2
4 64 X2 + (−4− 4ω)X + 4ω

4 w4 7 X − ω
4 w4 128 X4 + (−4− 2ω)X3 + 6ωX2 + (8− 4ω)X − 4

4 w4 16 X − 1− ω

The precise results for N = 16 are the following:

B D mod 512 e

0:1 ≡ 16 (mod 128) 8

1:2 64, 128, 320, 384 4

3:4 ≡ 4 (mod 32) 2

1:4 256 2

3:8 ≡ 1 (mod 8) 1

1:8 0, 192, 448 1

5:8 ≡ 80 (mod 128) 1

N f −D HD[f ]

16 w8
16 112 X2 + (12288ω − 8192)X − 196608ω − 917504

16 w4
16 128 X4 + (128 + 192ω)X3 + 6656ωX2

+ (−32768 + 49152ω)X − 65536

16 w2
16 28 X + 2ω − 4

16 w2
16 256 X4 + (16− 48ω)X3 + (−288 + 288ω)X2

+ (768− 256ω)X − 256ω

16 w16 7 X − ω − 1

16 w16 64 X2 − 4X + 4

16 w16 48 X2 + 4X + 4
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6.3. Reality of class polynomials. The reasoning of the proof of
Theorem 4.4 carries over to the lower powers of wN and shows that the
class polynomial is real whenever for some form [A,B,C] in the (s/e)N -
system the inverse form [A,−B,C] satisfies the congruence constraints of
the system as well. This is precisely the case when B is divisible by (s/e)N .
In particular, this implies that N |D, and inspection of the previous results
proves the following theorem.

Theorem 6.1. Under the general assumptions of §6, the characteristic
polynomial of we

N (α) is real whenever N |D and (s/e)N |B. For e < s, this
is possible only in the following cases:

(a) N odd:

N s B D e

5 mod 12 6 1:3 1 mod 3 2

5 mod 12 6 2:3 2 mod 3 2

11 mod 12 12 1:3 1 mod 3 4

11 mod 12 12 2:3 2 mod 3 4

3 mod 12 12 1:3 6 mod 9 4

9 mod 12, 6= � 6 1:3 18 mod 27 2

9 mod 12, = � 3 1:3 18 mod 27 1

(b) 2 ‖N and 4 |D:

(b1) s/e is even and 8 ‖D,
(b2) s/e = 3;

(c) 4 |N and 16 |D.

Proof. We again start from B2 ≡ D + 4rN (mod 4RN), where in fact
R = s/e is a non-trivial divisor of 24. Then the hypotheses of the theorem
translate as B = NRB′ and D = ND′, so that

(6.1) NR2B′
2 ≡ D′ + 4r (mod 4R).

This immediately implies

D′ ≡ −r (mod 3) if 3 |R,(6.2)

4 |D′ if 2 |R.(6.3)

(a) The assertions are a direct consequence of (6.2) and (6.3), together
with the tables in §6.1.

(b) If N is even, from N |D we immediately have 4 |D.

If R is even, then moreover (6.3) yields 8 |D. Going through the first
table in §6.2.1 shows that r is then odd, and (6.1) implies that D′ ≡ −4r ≡
4 (mod 8) and 8 ‖D.

(c) If 4 |N , then (6.1) shows that 4 |D′, whence 16 |D.
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We end this section with related results concerning the functions
√
Dwe

N .

Since
√
D ∈ O, a singular value

√
Dwe

N (α) is a class invariant if and only
if we

N (α) is, and integrality of the class polynomial coefficients carries over.

In some cases, however, the additional factor
√
D may lead to rational class

polynomials.

Lemma 6.2. Let N 6≡ 1 (mod 8), α = (−B +
√
D)/2 and e be such that

s/e is even, (s/2e)N |B and (s/e)N - B. Then wN (α)e ∈ iR.

Proof. Write wN = f0f1, where f0 = q−
N−1
24N and f1 is a power series in

q1/N . Notice that if N |B, then q1/N (α) = e2πiα/N ∈ R. So we
N (α) is real up

to the factor f0(α)e, which itself is real up to the factor e
2πi
4
· s(N−1)

24
· 2eB
sN . This

is an odd power of i under the hypotheses of the lemma; N 6≡ 1 (mod 8) is
needed to ensure that s(N − 1)/24 is odd.

Lemma 6.3. Let f be a modular function and α ∈ O be such that f(α)
is a class invariant and a real number. Then HD[f ] ∈ Q[X].

Proof. This is a trivial application of Galois theory. The complex conju-
gate f(α) is a root of HD[f ]. Since f(α) = f(α), this implies that HD[f ] is
a multiple of the minimal polynomial HD[f ] of f(α), so both are the same,
and HD[f ] has coefficients in K ∩ R = Q.

Combining the lemmata yields the following result.

Theorem 6.4. Under the general assumptions of §6, the characteristic
polynomial of

√
Dwe

N (α) is real whenever N 6≡ 1 (mod 8), N |D, s/e is
even, (s/2e)N |B and (s/e)N - B.

For instance, we may apply this theorem to the cases N ∈ {2, 3, 4, 7}, in
which Propositions 5.3 or 5.5 hold:

N D B e

2 12 mod 16 ±2 12

2 24 mod 96 ±12 6

3 9 mod 12 ±3 6

7 21 mod 28 ±7 2

4 0 mod 32 ±4 4

As numerical examples, we find:

H−72[
√
−72w6

2] = X2 + 720X + 576,

H−51[w
6
3](X) = X2 + 6

√
−51X − 27,

H−51[
√
−51w6

3](X) = X2 − 306X + 1377.
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7. Heights and comparison with other invariants. Let f be a mod-
ular function yielding class invariants, and Φ[f ](F, J) the associated modular
polynomial such that Φ[f ](f, j) = 0. It is shown in [9] that asymptotically
for |D| → ∞, the height of the class invariant f(α) is c(f) times the height
of j(α), where

(7.1) c(f) =
degJ(Φ[f ])

degF (Φ[f ])

depends only on f . It is then clear that c(f r) = rc(f) for rational r. So
to obtain c(we

N ), it is sufficient to determine the degrees of the modular
polynomials of the full power ws

N , where s is as defined in Theorem 4.3.

7.1. Modular polynomials for ws
N . Since ws

N is modular for Γ 0(N)
by Theorem 3.2, we have

Φc
N := Φ[ws

N ] =
∏

M∈Γ 0(N)\Γ

(F −ws
N ◦M).

So degF Φ
c
N = ψ(N) = N

∏
p prime, p|N (1 + 1/p). The degree in J is obtained

by examining the q-developments of the conjugates ws
N ◦M of ws

N .

Proposition 7.1 (Oesterlé). The cosets of Γ 0(N)\Γ can be split into
the following three families:

T ν =

(
1 ν

0 1

)
, 0 ≤ ν < N,

S =

(
0 −1

1 0

)
,

Mk,k′ =

(
k kk′ − 1

1 k′

)
with 1 < k < N , gcd(k,N) > 1 and 0 ≤ k′ < µ(k) where µ(k) is the smallest
integer for which gcd(µ(k)k − 1, N) = 1.

Using (3.2), we find

Proposition 7.2.

(ws
N ◦ T )(z) = wN (z + ν)s, 0 ≤ ν < N,

(ws
N ◦ S)(z) =

(√
N
η(Nz)

η(z)

)s
,

(ws
N ◦Mk,k′)(z) =

(
ζk,k′

√
δk
η
( δkz+ck,k′

N/δk

)
η(z)

)s
,
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where δk = gcd(k,N), ζk,k′ is a 24th root of unity and ck,k′ is a rational
integer.

The proposition shows in particular that all conjugates of ws
N have inte-

gral q-expansions and that ws
N and ws

N ◦S have rational q-expansions. The
q-expansion principle now implies that Φc

N ∈ Z[F, J ] (cf. [6, §3]).

Theorem 7.3.

degJ Φ
c
N =

s

24
(N − 1 + S(N))

where

(7.2) S(N) =
∑

k:1<k<N, 1<δk=gcd(k,N)<
√
N

µ(k)

(
1−

δ2k
N

)
.

Proof. Consider Φc
N as a polynomial in F with coefficients in Z[J ]. Fol-

lowing the same reasoning as in [11], we see that the coefficient of highest
degree in J is obtained when all conjugates are multiplied together whose q-
expansions have strictly negative order; since the q-expansion of j starts with
q−1, the degree in J is then the opposite of this order. The wN (z+ ν)s have
negative order −s(N − 1)/(24N) and contribute a total of −s(N − 1)/24.
The function ws

N ◦ S has positive order. The conjugates coming from Mk,k′

have order s
24(δ2k/N − 1), which is negative whenever δk <

√
N .

Let us record a list of useful corollaries.

Proposition 7.4. When N = `n for a prime ` and n ≥ 1, then

S(N) =

{
(`m − 1)2 if n = 2m+ 1,

(`m − 1)(`m+1 − 1) if n = 2m+ 2.

Proof. The k occurring in (7.2) are the (k1 + `k2)`
r with 1 ≤ k1 < `,

1 ≤ r ≤ m and 0 ≤ k2 < `n−r−1 (so that k < N); they yield δk = `r and
µ(k) = 1. Hence,

S(N) =

m∑
r=1

(`− 1)`n−r−1(1− `2r−n) = (`n−m−1 − 1)(`m − 1).

Corollary 7.5. When N is prime or the square of a prime, then
degJ Φ

c
N = s(N − 1)/24.

Proposition 7.6. When N = p1p2 for two primes p2 ≥ p1, then S(N)
= p2 − p1.

Proof. The case p1 = p2 is already proven. So it remains to consider
p1 <

√
N < p2; then the integers k contributing to S(N) are the k̃p1 with

1 ≤ k̃ < p2. Among these, only one is such that gcd(k − 1, N) 6= 1, namely
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the k with k̃ ≡ 1/p1 (mod p2); for this one, µ(k) = 2. Therefore

S(N) = ((p2 − 2) · 1 + 1 · 2)

(
1− p21

N

)
= p2 − p1.

With some more effort, the constant coefficient Φc
N (0, J) could be ob-

tained as the product of all conjugates, but this is not needed in the follow-
ing.

7.2. Heights. Knowing the degrees of the modular polynomials, we
can compare class invariants obtained from we

N among themselves and with
others by using (7.1). Of special interest is the infinite family of invariants
obtained in [10] from the double η-quotients

wσ
p1,p2(z) =

(
η
(
z
p1

)
η
(
z
p2

)
η
(

z
p1p2

)
η(z)

)σ
,

where p1, p2 are (not necessarily distinct) primes and σ = 24
gcd(24,(p1−1)(p2−1)) .

These functions yield class invariants whenever
(
D
p1

)
=
(
D
p2

)
= 1, and in some

cases when
(
D
p1

)
= 0 or

(
D
p2

)
= 0 (see [10, Cor. 3.1]). The degrees of their

modular polynomials have been worked out in [11, Th. 9], and we summarise
the results in the following table, in which ` and p1 < p2 are supposed to be
prime numbers:

f c(f) degJ Φ
c
N

we`
e(`− 1)

24(`+ 1)

s(`− 1)

24

we`2
e(`− 1)

24`

`2 − 1

24
if ` > 3

wep1p2
e(p2 − 1)

24(p2 + 1)

s(p2 − 1)(p1 + 1)

24

weN
e(N − 1 + S(N))

24ψ(N)

s(N − 1 + S(N))

24

we`,`
e(`− 1)2

12`(`+ 1)

σ(`− 1)2

12

wep1,p2
e(p1 − 1)(p2 − 1)

12(p1 + 1)(p2 + 1)

σ(p1 − 1)(p2 − 1)

12

Notice that asymptotically for ` or p1, p2 → ∞, the factors c(f) tend

to e/2
12 for we

` (here, e is necessarily even), e/12 for the double η quotients
and e/24 for we

`2 . For any discriminant D, there are suitable choices of
primes in arithmetic progressions modulo D such that e/2 = 1 resp. e = 1
are reachable, and c(f) may become arbitrarily close to 1/12 resp. 1/24.
However, at the same time, the degrees of Φc

N in F and J tend to infinity,
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which may be undesirable in complex multiplication applications where the
modular polynomial needs to be factored over a finite field.

Table 7.1. Comparison of class invariants: height factor and degree in J

w2
72, 1 > w4

48, 1 >
w2,73

37, 6 >
w2,97

147/4, 8
> w9

36, 1 =
w2

2
36, 1

> w16
32, 6 > w25

30, 1 >
w3,13

28, 2 = w49
28, 2 > w81

27, 12 >
w112

132/5, 5

>
w132

26, 7 >
w172

51/2, 12 >
w3,37

76/3, 6
=

w192

76/3, 15 >
w3,61

124/5, 10
>

w5,7

24, 2

=
w3

2
24, 1 =

w2
6

24, 6 =
w2

4
24, 1 =

w2
3

24, 1 >
w5,13

21, 4 =
w2

2,13

21, 2

>
w2

12

144/7, 14 >
w5,19

20, 6 >
w5,31

96/5, 10
>

w5,37

19, 12 =
w2

2,37

19, 6 >
w7,13

56/3, 6

>
w2

2,61

93/5, 10
>

w7,17

18, 8 =
w2

15
18, 8 =

w2
8

18, 8 =
w4

2
18, 1 =

w2
5

18, 1

=
w2

10
18, 4 >

w11,13

84/5, 10
>

w2
3,7

16, 2 =
w2

35
16, 18 =

w2
21

16, 6 =
w2

40
16, 18

=
w2

14
16, 18 =

w2
16

16, 6 =
w2

28
16, 12 =

w2
7

16, 1 =
w3

3
16, 1 =

w3
6

16, 6

>
w2

45

108/7, 14 >
w13,13

91/6, 12
>

w2
55

72/5, 10 =
w2

77

72/5, 20 =
w2

22

72/5, 10 =
w2

11

72/5, 5

=
w2

33

72/5, 10 =
w2

27

72/5, 15 >
w2

91
14, 16 =

w2
65

14, 18 =
w2

13
14, 1 >

w3
12

96/7, 14

>
w3

2,17

27/2, 4
=

w2
85

27/2, 8 =
w2

34

27/2, 16 =
w2

17

27/2, 4 >
w2

3,19

40/3, 6
=

w2
133

40/3, 12

=
w2

57

40/3, 18 =
w2

19

40/3, 3 >
w2

23

144/11, 11

In Table 7.1, we list in decreasing order of attractiveness the functions
f together with the factors 1/c(f) they allow to gain in height compared
to j and with the degree of the modular polynomial in J , thus completing
the tables of [9] and [7, p. 21]. We limit ourselves to functions gaining a
factor of at least 13 and with degree in J at most 20. The function w2 is in
fact the Weber function f1, and leads to the same height as the other two
Weber functions f and f2. Notice that, as indicated by the explicit formulæ,
transformation levels divisible by 2 or 3 (or, in general, small primes) tend
to yield smaller class invariants.

8. Outlook. The presented results concern singular values of powers of
wN as class invariants. It is possible to obtain smaller invariants by letting
24th roots of unity enter the game. This was already done by Weber for
N = 2 (the classical f -functions) and by Gee [15] for N = 3. For instance,
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ζ4w
2
7 is an invariant for D = −40, leading to the minimal polynomial

X2 + (−5 + 2ω)X + 3− 4ω.

Similarly, when N is not a square and e is odd, then we
N ◦ S has a q-

expansion that is rational up to a factor
√
N , so that Theorems 2.3 and 2.4

are not applicable anymore. Nevertheless, we
N may yield class invariants;

this is well-known for Weber’s original functions in certain cases.
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