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1. Introduction. Let f be a non-dihedral primitive cusp form of weight
k and level N with Fourier expansion f(z) =

∑
n≥1 ane

2πinz, normalized so
that a1 = 1. The Sato–Tate conjecture for modular forms asserts that the
normalized Hecke eigenvalues p−(k−1)/2ap for prime p - N are equidistributed
relative to the measure

dµ∞(x) =

{
π−1

√
1− x2/4 dx for x ∈ [−2, 2],

0 otherwise.

See also [10, Section 21.2] and [15, Chapter 4, Section 7]. The Sato–Tate
conjecture is a consequence of the analytic continuation of symmetric power
L-functions to Re s ≥ 1 (Serre [20], Murty [17]), which in turns follows from
Langlands’ functoriality conjecture. Although Langlands’ conjecture is still
unsettled, the Sato–Tate conjecture is now a theorem by the breakthrough
of Barnet-Lamb, Geraghty, Harris and Taylor (see [1]).

Another viewpoint is the vertical version of the problem: fix a prime p
and determine the distribution of the eigenvalues of the Hecke operator Tp
on a parametric family of cusp forms as the parameter goes to infinity.
Different cases were investigated by several authors: for Maass forms by
Bruggeman [4] and Sarnak [19]; for holomorphic forms by Serre [21] and
Conrey–Duke–Farmer [5]; for Hilbert modular forms by Li [14].

A quantitative version of the distribution of the eigenvalues of Tp on
a family of modular forms was given by Murty and Sinha [16]. Lau and
Wang [13] gave a quantitative version for Maass forms with level 1. In this
paper, we extend their results to Hilbert modular forms and further to some
GL2 automorphic representations whose local components at a finite set of
finite places are specified. The latter perspective is new.
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All the previous results except [14] are based on the classical trace formu-
las for modular forms or Maass forms. Our proof is based on Arthur’s trace
formula on GL2(F ) ([8], [9]), where F is a totally real algebraic number field
with degree r ≥ 2 over Q. For a special class of test functions, we derive a
simple trace formula (3.3) on GL2(F ). The formula gives us an estimation
which suffices for our purpose. Although the formula can be made more ex-
plicit, we do not pursue this direction in this paper. Furthermore, the repre-
sentation theory of GL2 allows us to refine the trace formula. Namely we can
have a trace formula on Hilbert modular forms not only with given weight
and level but also with prescribed local representations at some finite places.
This is otherwise difficult to obtain by classical methods. Our formula (3.3)
is also a generalization of [14, Theorem 3.21]. Other salient points include
Lemma 4.3 and a variant of the Erdős–Turán inequality (Proposition 7.1)
which are our keys to the quantitative result in both level and weight aspects.

Let σ1, . . . , σr be the embeddings of F into R and ∞1, . . . ,∞r be the
corresponding valuations. Let O be the ring of integers of F . For an integral
ideal a, denote by N(a) = |O/a| the ideal norm of a. For α ∈ O, denote
by N(α) = N((α)) the absolute norm of α. For an even integer k ≥ 2, we
denote by πk the discrete series representation of GL2(R) of weight k with
trivial central character.

Let N be an integral ideal of O and k = (k1, . . . , kr) be an r-tuple of
even integers with ki ≥ 4. Let Πk(N) be the set of cuspidal automorphic
representations π in L2

0 for which

1. πfin =
⊗̂

v<∞πv contains a non-zero K0(N)-fixed vector,
2. π∞i = πki for i = 1, . . . , r.

(See Section 2 for the notation.) The set Πk(N) is finite [3]. At each fi-

nite unramified place v of π, πv = Ind
G(Fv)
B(Fv) χ. Here B is the set of upper

triangular matrices of G,

χ

((
a b

d

))
=

∣∣∣∣ad
∣∣∣∣1/2
v

χ1(a)χ2(d)

and χ1, χ2 are unramified characters of Fv. Let $v be a uniformizer of
Fv and write αiv = χi($) for i = 1, 2. The values α1v, α2v are called the
Satake parameters of πv. We define λv(π) = α1v + α2v. For π ∈ Πk(N),
the Ramanujan conjecture was settled (see [2], [18]) and hence |λv(π)| ≤ 2.
In this paper we give a quantitative analysis of λv(π) where some local
representations of π are prescribed.

Let S = {w1, . . . , wι} be a set consisting of non-archimedean valua-
tions and for all i let qi be the prime ideal corresponding to wi. The set
S can be taken to be empty. Let ρwi be a supercuspidal representation of
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Z(Fwi)\GL2(Fwi), where Z is the center of GL2. Let qcii be the conductor
of ρwi . Write ρ = (ρw1 , . . . , ρwι) and

Πk(N, ρ) = {π ∈ Πk(N) : πwi
∼= ρwi for i = 1, . . . , ι}.

Note that Πk(N, ρ) is non-empty only if M |N where M =
∏ι
i=1 q

ci
i . We

associate to the family Πk(N, ρ) two quantities:

(1.1) Ck =
r∏
i=1

ki − 1

4π
and dρ =

ι∏
i=1

dρwi ,

where dρwi is the formal degree of ρwi (see Section 6).

Let p1, . . . , pT be prime ideals /∈ S whose corresponding valuations are
v1, . . . , vT respectively. We will show that the set

{(λv1(π), . . . , λvT (π)) : π ∈ Πk(NM, ρ)} with
(
N,

T∏
t=1

pt

ι∏
i=1

qi

)
= (1)

is equidistributed with respect to the measure
∏T
t=1 dµvt as N(N)+Ck →∞.

Here, for a non-archimedean valuation v with corresponding prime ideal p,
the measure is defined as

(1.2) dµv(x) =
N(p) + 1

(N(p)1/2 + N(p)−1/2)2 − x2
dµ∞(x).

Furthermore the rate of convergence will be estimated. Define the counting
function

NI(p1, . . . , pT ;N, ρ) = #{π ∈ Πk(N, ρ) : (λv1(π), . . . , λvT (π)) ∈ I}

for any I =
∏T
t=1[αt, βt] ⊆ [−2, 2]T .

Our main result is the following.

Theorem 1.1. Let p1, . . . , pT be distinct prime ideals with (p1 · · · pT ,M)
= (1). Let N be an ideal of O with (N, p1 · · · pTM) = (1). Then

(1.3)
NI(p1, . . . , pT ;NM, ρ)

#Πk(NM, ρ)
=

�

I

T∏
t=1

dµvt +O

(
T log N(p1 · · · pT )

log(Ck N(N))

)
where Ck and dµv, for v = v1, . . . , vT , are defined in (1.1) and (1.2) respec-
tively. The implied O-constant depends only on F and ρwi, i = 1, . . . , ι.

Remark 1.2. (i) We see (from (8.3) below) that as N(N) + Ck →∞,

#Πk(NM, ρ) = (1 + o(1)) meas(G(F )\G(A))Ckdρ N(N)
∏
p2v |N

(1− q−2
v ).

(ii) Since the left side of (1.3) is at most 1, it suffices to consider the case

T log N(p1 · · · pT ) ≤ δ log(Ck N(N))

for some small absolute constant δ > 0.
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We immediately deduce some generalizations of [14, Theorem 1.1].

Corollary 1.3. For j = 1, 2, . . . , let k(j) be an r-tuple whose entries
are even numbers ≥ 4 and let N(j) be an integral ideal relatively prime to
p1 · · · pT q1 · · · qι. Suppose N(N(j)) + Ck(j) →∞ as j →∞. Then

{(λv1(π), . . . , λvT (π)) : π ∈ Πk(j)(N
(j)M, ρ)}

is equidistributed with respect to the measure
∏T
t=1 µvt.

Taking S = ∅, we have

Corollary 1.4. Let p1, . . . , pT be distinct prime ideals. Suppose N is
an integral ideal with (N, p1 · · · pT ) = (1). Then

#{π ∈ Πk(N) : (λv1(π), . . . , λvT (π)) ∈ I}
#Πk(N)

=
�

I

T∏
t=1

dµvt +O

(
T log N(p1 · · · pT )

log(Ck N(N))

)
,

where the implied O-constant depends only on F .

2. Notation. Prime ideals are usually denoted by p or q. The prime
ideal corresponding to a non-archimedean valuation v is denoted by pv. For
every non-archimedean valuation v, write qv = N(pv). If a is a fractional
ideal of F , we use [a] to represent the corresponding ideal class in the ideal
class group of F . Write h(F ) for the class number of F . Let A = AF be the
set of adeles, and Ô =

∏
v<∞Ov. Let Afin be the set of finite adeles. For

α = (αv)v<∞ ∈ Afin, the norm N(α) is defined by
∏
v<∞N(pv)

ordv αv .

Let G = GL2 and Z be its center. The identity element of G is de-
noted by e. We write G = Z\G so that Z(A)\G(A) is abbreviated as G(A),
etc. For any S ⊆ G, we write S for the image of S in G. Let K∞i =
SO2(R), which is a compact subgroup in G(F∞i), and K∞ =

∏r
i=1K∞i .

For v < ∞, we take Kv = GL2(Ov), the standard maximal compact sub-
group of G(Fv).

For any valuation v, let dgv be a Haar measure on G(Fv). For a non-
archimedean valuation v, the Haar measure on G(Fv) is normalized by
measKv = 1.

Next, g ∈ G(R) can be expressed as(
1

±1

)
z

(
1 x

1

)(
y1/2

y−1/2

)(
cos θ sin θ

− sin θ cos θ

)
,

y, z > 0, θ ∈ [0, 2π), x ∈ R.
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The measure on G(R) is given by

dg =
dz

z

dxdy

y2

dθ

2π
.

For an archimedean valuation v, the Haar measure on G(Fv) is defined by
identifying G(Fv) with G(R).

Let Y ′ be a positive number and C ′ be a compact subset of R. Put

D =

{(
1 x

1

)(
y1/2

y−1/2

)
: x ∈ C ′, y > Y ′

}
and S′∞ =

∏r
i=1DK∞i . As in [14, Section 3], we have (a variant of) the

Siegel domain

(2.1) S′ = S′∞ ×K ′fin =

r∏
i=1

DK∞i ×
∏
v<∞

K ′v,

where K ′v is an open compact set and is equal to Kv for almost all v. When
C ′ and K ′fin are sufficiently large and Y ′ is sufficiently small, we have

(2.2) G(A) = G(F )S′.

There exists a positive integer P such that K ′fin and K ′−1
fin ⊆ P

−1M2(Ô). Let
Q = P 2. The choices of Y ′, C ′, Q and K ′fin only depend on F . Throughout
the paper, Y ′, C ′, Q,K ′fin are fixed as above and all the implied constants in
�- or O-notation may depend on Y ′, C ′, Q, K ′fin, F unless otherwise stated.

Let L2(G(F )\G(A)) be the space of square integrable functions on
G(F )\G(A), and let L2

0 be the subspace of cuspidal functions. The restric-
tion of the right regular representation R to L2

0 decomposes into a discrete
sum of irreducible cuspidal representations, each of which can be factorized

as a restricted tensor product
⊗̂

vπv.
For a ring R, M2(R) denotes the set of two by two matrices with entries

in R. Let n,N be two integral ideals of O. Define the set

M(nv,Nv) =

{
g =

(
a b

c d

)
∈M2(Ov) : c ∈ Nv, (det g)Ov = nv

}
.

Write M(n,N) =
∏
v<∞M(nv,Nv). Denote by χnv

Nv
the characteristic func-

tion of M(nv,Nv).
Let

K0(Nv) =

{(
a b

c d

)
∈ Kv : c ∈ Nv

}
, K0(N) =

∏
v<∞

K0(Nv),

K(Nv) =

{
g ∈ Kv : g ≡

(
1 0

0 1

)
(modNv)

}
, K(N) =

∏
v<∞

K(Nv).
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Let further

ψ(Nv) = (measK0(Nv))
−1 = [Kv : K0(Nv)](2.3)

=

{
qordv N−1
v (qv + 1) if ordvN > 0,

1 if ordvN = 0.

Globally define ψ(N) =
∏
v<∞ ψ(Nv) = (measK0(N))−1. Plainly one has

(2.4) N(N) ≤ ψ(N) ≤ d(N) N(N)�ε N(N)1+ε.

Here for an integral ideal a of O, the divisor function d(a) is defined as

d(a) =
∏
pv |a

(ordv a + 1).

Here and below, ε denotes an arbitrarily small positive constant whose value
may differ at each occurrence. We extend the divisor function to the set of
fractional ideals by setting d(a) = 0 if a is not an integral ideal.

Write V(N) for the set of valuations dividing N. For ∅ ⊆ S ⊆ V(N)
define

NS = N/
∏
v∈S

pv,(2.5)

ψ̃(N) =
∑

S⊆V(N)

(−1)|S|ψ(NS),(2.6)

where S = ∅ is included in the summation. Then N(N)� ψ̃(N) ≤ N(N) as

(2.7) ψ̃(N) = N(N)
∏
p2v |N

(1− q−2
v ).

3. The trace formula for a class of test functions. Let k be a
positive integer. Let g =

(
a b
c d

)
∈ G(R). Define

fk(g) =

{
k − 1

4π

(det g)k/2(2i)k

(−b+ c+ (a+ d)i)k
if det g > 0,

0 otherwise.

(3.1)

For k = (k1, . . . , kr), define

fk =
r∏
i=1

fki .

Let f be a function on G(A) which factorizes into f =
∏
v fv, where fv

is a function of G(Fv). Let f∞ =
∏r
i=1 f∞i = fk. Throughout the paper

ffin =
∏
v<∞ fv is compactly supported modulo the center, locally constant

and for almost all v, fv is the characteristic function of Kv. The right regular
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action of f on L2 is given by

R(f)φ(x) =
�

G(A)

f(g)φ(xg) dg.

Because ffin is compactly supported, there exist g1, . . . , gL ∈M2(Ô) such
that

Supp ffin ⊆
L⋃
i=1

Z(Afin)giKfin.

Taking ni = (det gi) and N = O, we have

(3.2) Supp ffin ⊆
L⋃
`=1

Z(Afin)M(n`,N).

Note that Z(Afin)M(ni,N) = Z(Afin)M(nj ,N) if ni/nj is the square of an
ideal, and they are disjoint otherwise. We can therefore assume that ni/nj
is not the square of an ideal for i 6= j and (3.2) is thus a disjoint union.

Unless otherwise stated, throughout the rest of the paper we assume ffin

satisfies (3.2) with integral ideals N, n1, . . . , nL such that ni/nj is not the
square of an ideal for i 6= j.

Theorem 3.1. Let f = fkffin be given as above. Then

trR(f) = meas(G(F )\G(A))f(e) +
�

G(F )\G(A)

∑
γ elliptic inG(F )

f(g−1γg) dg

(3.3)

and the right hand side is absolutely convergent. Here γ is said to be elliptic
if it is not conjugate to an upper triangular matrix over F .

Proof. The proof of the trace formula for L = 1 is given in [14, Sec-
tion 3]. The proof there can be easily generalized to L ≥ 2 by the linearity
of the trace formula.

See also [6] and [7] for discussions of trace formulas for non-compactly
supported functions.

4. Preliminary treatment of the elliptic term. Let B be a set
of representatives of the class group of F . In particular, the representa-

tives can be chosen such that the norms are ≤ (r!/rr)d
1/2
F , where dF is

the discriminant of F (see [12, Theorem V.4.4]). For ` = 1, . . . , L, let
{b`1, b`2, . . . , b`t`} ⊆ B be the solutions of [b]2[n`] = [(1)]. For all ` and t,
there exists η`t ∈ O such that

(4.1) b2
`tn` = (η`t).
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We can assume η`t satisfies σ1(η`t)� N(η`t) and |σi(η`t)| ≥ 1 for i = 2, . . . , r
by the following proposition.

Proposition 4.1. For any η ∈ O, there exists a unit u ∈ O∗ such that
σ1(ηu)� N(η) and σi(ηu) ≥ 1 for i ≥ 2.

Proof. For x ∈ F ∗, write λ(x) = (log |σ1(x)|, . . . , log |σr(x)|). It is known
that Λ = {(λ(x) : x ∈ O∗} is a lattice in L0 = {(x1, . . . , xr) ∈ Rr :
x1 + · · · + xr = 0} with maximum rank. Let P be a fundamental paral-
lelogram of L/Λ with one of the vertices at the origin and, for i ≥ 2, the
xi-coordinate of all the vertices non-negative and bounded by a constant A.
For η ∈ O, λ(η) − (log N(η), 0, . . . , 0) ∈ L. There exists u ∈ O∗ such that
λ(η)− (log N(η), 0, . . . , 0) + λ(u) ∈ P. Then for i ≥ 2,

log |σi(ηu)| ≥ 0

and

log |σ1(ηu)| = log N(η)−
2∑
i=1

log |σi(ηu)| ≥ log N(η)− (n− 1)A.

We fix a set of representatives of O∗/{u2 : u ∈ O∗}, namely

(4.2) {u1, . . . , u2r}.
For γ ∈ G(F ), denote by [γ] the conjugacy class containing γ. Let Gγ be

the centralizer of γ ∈ G(F ). Suppose o is a conjugacy class in G(F ). Then
det γ has the same value for any γ ∈ o. This value is denoted by det o.

Write E(f) for the elliptic part of the trace formula, i.e., the integral
on the right side of (3.3). By [14, Proposition 2.4] and [11, Section 26], the
elliptic part can be written as

E(f) =
∑

`,t,j,η=η`tuj

1

2

�

G(F )\G(A)

∑
γ elliptic in G(F )

det γ=η

f(g−1γg) dg

=
∑

`,t,j,η=η`tuj

1

2

∑
elliptic conjugacy classes o

of G(F ) with det o = η

�

G(F )\G(A)

∑
γ∈o

f(g−1γg) dg

=
∑

`,t,j,η=η`tuj

1

2

∑
elliptic conjugacy classes [γ]

of G(F ) with det γ = η

×
�

G(F )\G(A)

∑
δ∈Gγ(F )\G(F )

f(g−1δ−1γδg) dg

=
∑

`,t,j,η=η`tuj

1

2

∑
elliptic conjugacy classes [γ]

of G(F ) with det γ = η

�

Z(A)Gγ(F )\G(A)

f(g−1γg) dg.
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Here we use the fact that Gγ(F )\G(F ) = Z(A)Gγ(F )\Z(A)G(F ). The
above then leads to

E(f) =
∑

`,t,j,η=η`tuj

1

2

∑
elliptic conjugacy classes [γ]

of G(F ) with det γ = η

µγ
�

Z(A)Gγ(A)\G(A)

f(g−1γg) dg,

where
µγ = meas(Z(A)Gγ(F )\Gγ(A)).

Note that

(4.3)
�

Z(A)Gγ(A)\G(A)

f(g−1γg) dg =
∏
v

�

Z(Fv)Gγ(Fv)\G(Fv)

fv(g
−1γg) dg.

If γ is not elliptic for some archimedean place ∞i, then by [11, Proposition
26.3], �

Z(F∞i )Gγ(F∞i )\G(F∞i )

f∞i(g
−1γg) dg = 0.

Hence the left hand side of (4.3) is non-zero only if γ is elliptic in any
archimedean embedding in G(F∞i).

Given elliptic γ, γ′ ∈ G(F ), we say that γ and γ′ are conjugate if they
have the same characteristic polynomial. Suppose the characteristic poly-
nomial of γ is x2 − τx + η. Then γ is elliptic in G(F∞i) if and only if
σi(τ)2 < 4σi(η) for i = 1, . . . , r. Furthermore, by [14, Proposition 2.4], if
det γ = η`tuj and f(g−1γg) 6= 0 for some g, then

(4.4) β−1
`t g

−1
fin γgfin ∈

∏
v<∞

M2(Ov),

where β`t ∈ Ô satisfies (β`tv) = b`tv for all non-archimedean valuations v.
Therefore

tr γ ∈ β`tvOv for all v <∞.
We rewrite the above as follows.

Proposition 4.2. The elliptic term in Theorem 3.1 is given by

E(fkffin) =
1

2

∑
η

∑
τ

µγητ
∏
v

�

Z(Fv)Gγητ (Fv)\G(Fv)

fv(g
−1γητg) dg.

Here η runs through

(4.5) η = η`tuj , ` = 1, . . . , L, t = 1, . . . , t`, j = 1, . . . , 2r,

τ runs through

(4.6) τ ∈ β`tÔ ∩ O, σi(τ)2 < 4σi(η) for i = 1, . . . , r,

and γητ =
(

0 −η
1 τ

)
is an elliptic element with characteristic function x2 −

τx+ η.
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The next lemma is our key to bounding the elliptic term uniformly with
respect to weight k.

Lemma 4.3. Let k ≥ 4 be an integer. For elliptic γ ∈ G(R),∣∣∣ �

Z(R)Gγ(R)\G(R)

fk(g
−1γg) dg

∣∣∣ ≤ �

Z(R)Gγ(R)\G(R)

|f4(g−1γg)| dg.

Proof. Write

kθ =

(
cos θ sin θ

− sin θ cos θ

)
.

Let aeiθ and ae−iθ with a, θ ∈ R be the eigenvalues of γ. By [11, (26.6)],

(4.7)
�

Z(R)Gγ(R)\G(R)

fk(g
−1γg) dg

=
�

SL2(R)

fk(g
−1kθg) dg +

�

SL2(R)

fk(g
−1k−θg) dg.

By the calculation in [11, p. 301],

�

SL2(R)

fk(g
−1kθg) dg =

ie−i(k−1)θ

2 sin θ
.

Denote the above expression by Φk(θ). The absolute value of the left side of
(4.7) is

|Φk(θ) + Φk(−θ)| ≤ |Φk(θ)|+ |Φk(−θ)| = |Φ4(θ)|+ |Φ4(−θ)|.
Our assertion follows by |Φ4(θ)| ≤

	
SL2(R) |f4(g−1kθg)| dg and (4.7) with |f4|

in place of fk. Here |f4|(x) = |f4(x)|.

Proposition 4.4. Write 4 = (4, . . . , 4). Then

|E(fkffin)| ≤ 1

2

∑
η

∑
τ

∑
γ

�

S′

|(f4ffin)(g−1γg)| dg.

Here η runs through (4.5), τ runs through (4.6) and γ runs through

(4.8) γ ∈ G(F ) ∩Q−1β`tM2(Ô), tr γ = τ, det γ = η.

Proof. By Proposition 4.2, (4.3) and the previous lemma,

|E(fkffin)| ≤ 1

2

∑
η

∑
τ

µγητ

�

Z(A)Gγητ (A)\G(A)

|(f4ffin)(g−1γητg)| dg

=
1

2

∑
η

∑
τ

�

Z(A)Gγητ (F )\G(A)

|(f4ffin)(g−1γητg)| dg
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=
1

2

∑
η

∑
τ

∑
γ∈[γητ ]

�

G(F )\G(A)

|(f4ffin)(g−1γg)| dg

≤ 1

2

∑
η

∑
τ

∑
γ∈[γητ ]

�

S′

|(f4ffin)(g−1γg)| dg.

If f(g−1γg) 6= 0 for some g ∈ S′, then by (4.4), β−1
`t γ ∈ K ′finM2(Ô)K ′−1

fin

⊆ Q−1M2(Ô). Thus we can replace
∑

γ∈[γητ ] by a summation of γ satisfy-

ing (4.8). This gives the result.

5. Estimation of the elliptic terms. Because in (2.1), K ′v is compact,
there exist α1, . . . , αsv ∈ K ′v such that

K ′v ⊆
sv⋃
i=1

αiKv.

If K ′v = Kv, then we can take sv = 1. So sv = 1 for almost all v.

Proposition 5.1. Let v be a non-archimedean valuation. Let sv be given
as above. Let Nv = pmv where m is a positive integer. Let nv be an integral
ideal of Ov. Let fv = χnv

Nv
. Suppose that γ ∈ G(Fv) is such that det γ ∈ nv

and ∆ = ∆(γ) = (tr γ)2 − 4 det γ 6= 0. If ordv∆ < m, then

�

K′v

|fv(k−1γk)| dk ≤ sv(m+ 1)(1− q−2
v )−1(1− q−1

v )−1 q
ordv ∆/2
v

qmv
.

Proof. First we notice that

�

K′v

|fv(k−1γk)| dk ≤
sv∑
i=1

�

αiKv

|fv(k−1γk)| dk =

sv∑
i=1

�

Kv

|fv(k−1α−1
i γαik)| dk.

Suppose
	
Kv
|fv(k−1α−1

i γαik)| dk 6= 0. Then by [14, Lemma 2.3], there exists
k0 ∈ Kv such that

δ = k−1
0 α−1

i γαik0 ≡
(
a b

d

)
(mod Nv).

Because dk is a Haar measure on Kv and fv is bi-K(Nv)-invariant,�

Kv

|fv(k−1α−1
i γαik)| dk =

�

Kv

|fv(k−1δk)| dk(5.1)

=
∑

k∈Kv/K(Nv)

meas(K(Nv))|fv(k−1δk)|.

Write k =
(
x y
z w

)
∈ Kv. Then k−1δk ∈ K0(Nv) if and only if

(5.2) z((a− d)x+ bz) ≡ 0 (mod Nv).
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Let i = ordv(a − d). Because (a − d)2 ≡ ∆ (mod Nv), ordv∆ = 2i if
ordv∆ < m.

Let j = ordv z. For fixed a, b, d, z, the congruence (5.2) is solvable if and
only if min(i+ j,m) ≤ 2j+ ordv b and the number of solutions of x mod Nv

is q
min(i+j,m)
v .
For fixed j < m, the number of z mod Nv with ordv z = j is ≤ qm−jv .

The number of solutions of x mod Nv of the congruence (5.2) is q
min(i+j,m)
v .

The numbers of w, y mod Nv are both qmv . Hence for such j, the number

of k ∈ Kv/K(N) such that k−1δk ∈ K0(Nv) is ≤ qm−jv q
min(i+j,m)
v q2m

v ≤
qm−jv qi+jv q2m

v = q3m+i.
For fixed j ≥ m, the number of z ∈ Ov/Nv such that ordv z ≥ m is 1.

Hence for such j, the number of k ∈ Kv/K(N) satisfying k−1δk ∈ K0(Nv)
is ≤ qmv q2m

v ≤ q3m+i
v .

Because m ≥ 1,

(measK(Nv))
−1 = [Kv : K(Nv)] = [Kv : K(pv)][K(pv) : K(pmv )]

= (q2
v − 1)(q2

v − qv)q4(m−1)
v = q4m

v (1− q−2
v )(1− q−1

v ).

Summing up over j = 0, 1, . . . ,m, the integral (5.1) is

≤ (m+ 1)(1− q−2
v )−1(1− q−1

v )−1 q
3m+i
v

q4m
v

.

The proposition follows easily.

Proposition 5.2. Let η = η`tuj be as in (4.5). Then

(5.3)
∑
τ

∑
γ

�

S′∞

|f4(g−1γg)| � N(η)3/2.

Here τ runs through (4.6) and γ runs through (4.8).

Proof. By (4.8), γ =
( a/Q b/Q
c/Q d/Q

)
with a, b, c, d ∈ O and ad− bc = Q2η.

Let M be a positive number such that [−M,M ]r contains a fundamental
domain of Rr/{(σ1(x), . . . , σr(x)) : x ∈ O}. Let

gi =

(
1 xi

1

)(
y

1/2
i

y
−1/2
i

)
kθi ∈ S′∞i

.

Then by [14, p. 359], for |εi1|, |εi2|, |εi3| ≤M ,

|f4(g−1
i σi(γ)gi)|

≤ 12

π

Q4σi(η)2

((σi(a)− σi(c)xi)2 + (σi(d) + σi(c)xi)2 + (Y ′σi(c))2 + 2Q2σi(η))2

≤ CiQ
4σi(η)

2

((σi(a)−σi(c)xi+εi1)2+(σi(d)+σi(c)xi+εi2)2+(Y ′(σi(c)+εi3))2+2Q2σi(η))2
,
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where

Ci =
12

π

(
1 +

M

Q
√

2σi(η)

)8(
1 +

Y ′M

Q
√

2σi(η)

)4

� 1.

Here we have used Proposition 4.1: σi(η) > 1 for i = 2, . . . , n and σ1(η) �
N(η) ≥ 1.

By [14, p. 359, last line],

(5.3)�
r∏
i=1

�

R

�

R

�

R

σi(η)2 dui dvi dwi
(u2
i + v2

i + (Y ′wi)2 + 2Q2σi(η))2

=
r∏
i=1

σi(η)3/2

√
2QY ′

�

R

�

R

�

R

dui dvi dwi
(u2
i + v2

i + w2
i + 1)2

.

The proposition follows easily.

Proposition 5.3. Let M be an integral ideal and α > 0. Let η be given
as in the previous proposition. Then

(5.4)
∑
τ

∑
γ,∆(γ)∈M

�

S′∞

|f4(g−1γg)| dg � N(η)3/2+α N(M)−α,

where τ runs through (4.6) and γ runs through (4.8) with ∆(γ) ∈M.

Proof. Since |σi(∆(γ))| = 4σi(η)− σi(τ)2 ≤ 4σi(η), N(M) ≤ N(∆(γ)) ≤
4r N(η). By the previous proposition, (5.4) � N(η)3/2 = N(η)3/2+α N(η)−α

� N(η)3/2+α N(M)−α.

Theorem 5.4. Let f = fkffin be given as in Section 3. Suppose Φ is an
upper bound for |ffin|. Then for any ε > 0,

E(f)�ε ΦN(N)−1/2+ε
L∑
`=1

N(n`)
2.

Proof. By Proposition 4.4,

|E(f)| ≤ 1

2

∑
η

∑
τ

∑
γ

�

S′

|(f4ffin)(g−1γg)| dg,

where η runs through (4.5), τ runs through (4.6) and γ runs through (4.8).
We partition γ according to the values mv(γ) = min(ordv∆(γ), ordvN) for
all non-archimedean valuations v. Then

|E(f)| ≤ 1

2

∑
η

∑
τ

∑
M|N

∑
γ,mv(γ)=ordvM

for all v <∞

�

S′

|(f4ffin)(g−1γg)| dg.

Fix η = η`tuj , M and γ with det γ = η. Suppose v is a non-archimedean
valuation such that ordvM < ordvN. By (4.1) and (4.8), det(β−1

`tvγ) ∈ n`v.
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Hence by Proposition 5.1, we have
�

K′v

χn`v
Nv

(g−1
v γgv) dgv =

�

K′v

χn`v
Nv

(g−1
v β−1

`tvγgv) dgv

≤ sv(ordvN + 1)(1− q−2
v )−1(1− q−1

v )−1 q
ordv ∆(γ)/2
v

qordv N
v

.

For other v, we use the trivial estimation
�

K′v

χn`v
Nv

(g−1
v γgv) dgv ≤ measK ′v.

Note that sv = 1, measK ′v = 1 for all but finitely many v, and their values
only depend on our choice in (2.1). So

�

S′

|(f4ffin)(g−1γg)|

�ε Φd(N)(measK ′)
(∏
v<∞

sv

)( ∏
ordvM<ordv N

q
ordvM/2
v

qordv N
v

)
×
( ∏

ordv N>0

(1− q−2
v )−1(1− q−1

v )−1
) �

S′∞

|f4(g−1
∞ γg∞)| dg∞

�ε Φd(N) N(N)ε/2
( ∏

ordvM<ordv N

q
ordvM/2
v

qordv N
v

) �

S′∞

|f4(g−1
∞ γg∞)| dg∞.

Therefore

E(f)�εΦd(N) N(N)ε/2
∑
η

∑
τ

∑
M|N

∑
γ,mv(γ)=ordvM

for all v <∞

( ∏
ordvM<ordv N

q
ordvM/2
v

qordv N
v

)

×
�

S′∞

|f4(g−1
∞ γg∞)| dg∞

≤ Φd(N) N(N)ε/2
∑
η

∑
M|N

( ∏
ordvM<ordv N

q
ordvM/2
v

qordv N
v

)
×
∑
τ

∑
γ,∆(γ)∈M

�

S′∞

|f4(g−1
∞ γg∞)| dg∞

� Φd(N) N(N)ε/2
∑
η

∑
M|N

( ∏
ordvM<ordv N

q
ordv N/2
v

qordv N
v

)
N(η)3/2+α

N(M)α
.
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Here we use Proposition 5.3 in the last step. Let α = 1/2. Then

E(f)�ε Φd(N) N(N)ε/2

×
∑
η

∑
M|N

N(η)2∏
ordvM<ordv N

q
ordv(N/2)
v

∏
ordvM=ordv N

q
ordv N/2
v

≤ ΦN(N)ε/2 N(N)ε/2
∑
η

∑
M|N

N(η)2

N(N)1/2
�εΦN(N)−1/2+ε

L∑
`=1

N(n`)
2.

6. Prescribed local representations. Recall S = {w1, . . . , wι} and
ρwi is a supercuspidal representation of Z(Fwi)\G(Fwi) with conductor qcii ,
i = 1, . . . , ι. Also, M =

∏ι
i=1 q

ci
i .

Let uwi be a K0(qcii )-invariant unit vector of ρwi . It is unique up to a
scalar multiple of a complex number with norm one. Define

fwi(g) = dρwi 〈ρwi(g)uwi , uwi〉,
where dρwi is the formal degree of ρwi defined by

d−1
ρwi

=
�

G(Fwi )

|〈ρwi(g)uwi , uwi〉|2 dg.

Let n = pm1
1 · · · p

mT
T . Let N be an ideal relatively prime to p1 · · · pT q1 · · · qι.

For v /∈ S, define fv = ψ(Nv)χ
nv
Nv

. Set

(6.1) fnN = fk ·
∏
w∈S

fw ·
∏

v<∞, v /∈S

fv.

Let

Ak(N, ρ) =
⊕

π∈Πk(NM)

Cu∞1 ⊗ · · · ⊗ u∞r ⊗ uw1 · · · ⊗ uwι ⊗
∏

other v

πK0(Nv)
v .

Here u∞i is a lowest weight unit vector and π
K0(Nv)
v is the set of K0(Nv)-

invariant vectors of πv.

Proposition 6.1. Let n, N and f be given as above. Then R(f) maps
L2(G(Q)\G(A)) to Ak(N, ρ) and annihilates Ak(N, ρ)⊥. Moreover

trR(f) = N(n)1/2
∑

π∈Πk(NM,ρ)

d

(
NM

c(π)

) T∏
t=1

Xmt(λvt(π)).

Here d(a) denotes the divisor function (see Section 2), c(π) is the conductor
of π and Xm is the polynomial defined by

Xm(2 cos θ) =
sin(m+ 1)θ

sin θ
.
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Proof. For a square integrable representation πwi of G(Fwi), πwi(fwi) is
the orthogonal projection to Cuwi if πwi

∼= ρwi and is the zero map otherwise.
The proposition can then be proved in a similar fashion to [14, Propositions
2.2 and 3.5]. We also use the fact that for π ∈ Πk(NM, ρ), πwi

∼= ρwi and
thus c(πwi) = Mwi .

Define

(6.2) f̃nN =
∑

S⊆V(N)

(−1)|S|fnNS ,

(see (2.5)). The summation includes S = ∅.

Theorem 6.2.

trR(f̃nN) = N(n)1/2
∑

π∈Πk(NM,ρ)

T∏
t=1

Xmt(λvt(π)).

Proof. By the previous proposition, it suffices to show that for fixed
π ∈ Πk(NM, ρ), ∑

S⊆V(N)

(−1)|S|d

(
NSM

c(π)

)
= 1.

The left hand side can be factorized as∏
v∈V(N)

(
d

(
pordv N
v

c(πv)

)
− d
(

pordv N
v

pvc(πv)

))∏
v∈S

d

(
pordvM
v

c(πv)

) ∏
other v

d

(
O

c(πv)

)
.

For v ∈ V(N), d(pordv N
v /c(πv)) − d(pordv N

v /pvc(πv)) is obviously equal to 1.
For v∈S, because πv ∼= ρv, the conductor of ρv is Mv and so d(pordvM

v /c(πv))
= 1. For all other v, πv is an unramified induced representation and thus
the conductor is Ov. Therefore d(Ov/c(πv)) = 1. The theorem follows
easily.

Since
∏
v∈S fv is a compactly supported function on

∏
v∈S G(Fv), as

in the discussion before (3.2) we can show that there exist integral ideals
m1, . . . ,mL divisible by q1, . . . , qι only such that mi/mj is not a square of an
ideal for all i 6= j and

(6.3) Supp
∏
v∈S

fv ⊆
L⋃
i=1

∏
v∈S

Z(Fv)M(miv,Ov).

So f satisfies (3.2) with ni = nmi.

Theorem 6.3. Suppose n = pm1
1 · · · p

mT
T and m1, . . . ,mL are given as

above. Then
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∑
π∈Πk(NM,ρ)

T∏
t=1

Xmt(λvt(π)) = meas(G(F )\G(A))Ckdρδ2|m N(n)−1/2ψ̃(N)

+Oε

(
dρ N(N)1/2+ε N(n)3/2

L∑
i=1

N(mi)
2
)
.

Here Ck, dρ and ψ̃(N) are respectively defined in (1.1) and (2.6). Moreover,

we set δ2|m = 1 if all the entries of m = (m1, . . . ,mT ) are even and zero
otherwise.

Proof. Note that N(ni) = N(n) N(mi) and

fnNS (e) = f∞(e)
ι∏
i=1

fwi(e)
∏

other v

fv(e) = Ckdρδ2|mψ(NS).

For v 6∈ S we have |fv(g)| ≤ ψ(Nv). For v ∈ S,

|fv(g)| = |dρv〈ρv(g)uv, uv〉| ≤ dρv‖ρv(g)uv‖‖uv‖ = dρv .

Applying Theorem 5.4 with Φ = ψ(NS)dρ to the elliptic part in (3.3), we
have

trR(fnNS ) = meas(G(F )\G(A))Ckdρδ2|mψ(NS)

+Oε

(
dρψ(NS) N(NS)−1/2+ε/2 N(n)2

L∑
i=1

N(mi)
2
)
.

The theorem follows from (6.2) and the fact that∑
S⊆V(N)

ψ(NS) N(NS)−1/2+ε/2 ≤ 2|V(N)|ψ(N) N(N)−1/2+ε/2 �ε N(N)1/2+ε.

7. A variant of the Erdős–Turán inequality. In this section, we
generalize a variant of the Erdős–Turán inequality in Murty and Sinha [16]
to higher-dimensional situations.

Let {xn}∞n=1 be a sequence in the box [0, 1/2]T . Write xn = (x1n, . . . , xTn)
and consider the sequence {xtn}∞n=1. For all t = 1, . . . , T and m ∈ Z, assume
that the limit

ct(m) = lim
V→∞

1

V

∑
n≤V

cos(2πmxtn)

exists and suppose
∞∑
m=1

|ct(m)| <∞.(7.1)

We define a measure µt on [0, 1] by

dµt = 2Ft(x)dx,
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where

Ft(x) =

∞∑
m=−∞

ct(m)e(mx) = 1 + 2

∞∑
m=1

ct(m) cos(2πmx).

If Ft is a non-negative function, then µt is a probability measure on the
interval [0, 1/2]. (Note that µt[0, 1/2] = 1.) Define the product measure

µ =
T∏
t=1

µt,

whose total volume on [0, 1/2]T is 1. Here we are concerned with the discrep-
ancy between {xn} and µ. For any (Lebesgue) measurable set S ⊂ [0, 1/2]T ,
we write

NS(V ) = #{n ≤ V : xn ∈ S} and DS(V ) = |NS(V )− V µ(S)|.
Let a = (a1, . . . , aT ) and b = (b1, . . . , bT ). Whenever at ≤ bt for all t, we

write [a, b] =
∏T
t=1[at, bt] ⊂ RT . Our aim is to estimate DI(V ) for I = [a, b]

in terms of

∆t(m,V ) =
∣∣∣∑
n≤V

cos(2πmxtn)− V ct(m)
∣∣∣ (for m ∈ Z),

∆(m,V ) =
∣∣∣∑
n≤V

cos(2πm � xn)− V c(m)
∣∣∣ (for m ∈ ZT ),

where for m = (m1, . . . ,mT ),

cos(2πm � xn) =

T∏
t=1

cos(2πmtxtn) and c(m) =

T∏
t=1

ct(mt).

Then we have the following result; its proof is postponed to Section 9.

Proposition 7.1. Given a sequence {xn}∞n=1 in [0, 1/2]T and I = [a, b]
⊂ [0, 1/2]T , we have

DI(V ) ≤
∑

m∈([−M,M ]∩Z)T

w(m)∆(m,V )

+ 10
T

M + 1

∑
1≤m≤M

max
1≤t≤T

∆t(m,V ) + 12CF
V T

M + 1

for any integers V,M ≥ 1, where

w(m) = (2π)T
T∏
t=1

(
min

(
1

π|mt|
, bt − at

)
+

2

M + 1

)
,

CF = max
1≤t≤T

‖Ft‖∞ +

T∏
t=1

‖Ft‖∞

with ‖Ft‖∞ = maxx∈[0,1] |Ft(x)|.
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Remark 7.2. ∆(0, V )=0 if V is an integer, and ∆t(m,V )=∆(met, V )
where ej is the standard basis vector whose jth entry is 1 and others are 0.
For later use, we note that for M � 1,∑

m∈([−M,M ]∩Z)T

w(m)� (5 logM)T .

8. Proof of Theorem 1.1. Let θv(π) be θ∈ [0, 1/2] such that 2 cos(2πθ)
= λv(π) (1). Given I ⊂ [−2, 2], we choose I ′ ⊂ [0, 1/2] so that θv(π) ∈ I ′
if and only if λv(π) ∈ I. In view of Proposition 7.1, we are led to evaluate
∆t(m,V ) and ∆(m,V ).

Let v = vt where 1 ≤ t ≤ T and consider

(8.1)
∑

π∈Πk(NM,ρ)

cos(2πmθv(π)).

Let Xm be defined as in Proposition 6.1. Note X−1 ≡ 0 and X−2 ≡ −1. For
m ≥ 0, we have

(8.2) 2 cosmθ = Xm(2 cos θ)−Xm−2(2 cos θ).

Take n = pmt in Theorem 6.3 and write

V = |Πk(NM, ρ)|.

For m = 0 we obtain

(8.3) V = meas(G(F )\G(A))Ckdρψ̃(N) +Oε

(
dρ N(N)1/2+ε

L∑
i=1

N(mi)
2
)
.

(With (2.7) Remark 1.2(i) follows.) Moreover, for m ≥ 1, the sum in (8.1)
equals

V

2
δ2|m(N(pmt )−1/2 −N(pm−2

t )−1/2)

+Oε

(
dρ N(N)1/2+ε N(pmt )3/2

L∑
i=1

N(mi)
2
)
.

Hence we set ct(0) = 1, and for m 6= 0,

ct(m) =

{
1
2(N(pt)

−|m|/2 −N(pt)
−|m|/2+1) if 2 |m,

0 otherwise.

(1) The same symbol π is used for the mathematical constant and the automorphic
representation but it is clear from the context.
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The condition in (7.1) is clearly fulfilled and

Ft(x) = 1 + (1−N(pt))
∑
m≥1
2|m

N(pt)
−m/2 cos(2πmx)

=
2(N(pt) + 1) sin2(2πx)

(N(pt)1/2 + N(pt)−1/2)2 − 4 cos2(2πx)
.

With the change of variable y = −2 cos(2πx), the measure dµt on [0, 1/2] is
pushed forward to dµvt on [−2, 2].

Finally we prove the following.

Proposition 8.1. For any m ∈ ZT and θ(π) = (θv1(π), . . . , θvT (π)) ∈
[0, 1/2]T ,∣∣∣ ∑
π∈Πk(NM,ρ)

cos(2πm � θ(π))− V c(m)
∣∣∣� dρ N(N)1/2+ε N(n)3/2

L∑
i=1

N(mi)
2,

where n = pm1
1 · · · p

mT
T , and the implied constant depends on F only.

Proof. Let m = (m1, . . . ,mT ). Evidently we may assume all mt are non-
negative. Partition the index set {t : t = 1, . . . , T} into three sets S0, S1, S

′

according as mt = 0, mt = 1 or mt ≥ 2 respectively. By (8.2) we write

cos(2πm � θ(π))

= 2|S0|−T
∑
S⊆S′

(−1)|S|
∏

t∈S1∪(S′\S)

Xmt(λvt(π))
∏
t∈S

Xmt−2(λvt(π)).

Summing over π ∈ Πk(NM, ρ), from Theorem 6.3 we get

V δ2|m N(n)−1/2
∏
p|n

1

2
(1−N(p)) +Oε

(
dρ N(N)1/2+ε N(n)3/2

L∑
i=1

N(mi)
2
)
.

The main term is obviously V
∏T
t=1 ct(mt) = V c(m).

Let I ⊂ [−2, 2]T . Then by the discussion at the beginning of this section∣∣∣∣NI(p1, . . . , pT ;NM, ρ)

#Πk(NM, ρ)
−

�

I

T∏
t=1

dµvt

∣∣∣∣
equals V −1DI′(V ) for some I ′ ⊂ [0, 1/2]T . From Propositions 7.1 and 8.1,
this is

(8.4) � T

M + 1
+V −1(5 logM)Tdρ N(N)1/2+ε N(p1 · · · pT )3M/2

L∑
i=1

N(mi)
2,
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where the implied constant depends only on F . Let

M =

[
log(Ck N(N))

8 log N(p1 · · · pT )

]
.

The first term in (8.4) dominates by (8.3) and (2.4). (Recall Remark 1.2(ii).)
Theorem 1.1 follows readily.

9. Proof of Proposition 7.1. Finally we complete the postponed
proof, based on some auxiliary results in [13]. We follow the notation therein.

Suppose firstly I = [a, b] is a subset of the open box (0, 1/2)T . As
in [13, Section 2], we write briefly ϕ̃t for the periodic function ϕ̃ut,vt of pe-
riod 1, which coincides with the characteristic function of the union [ut, vt]∪
[−vt,−ut] except for the end-points of the two intervals at which the values
of ϕ̃t are 1/2. Adopting the definition in [13, (2.9)], we write

Φu,v(x) =

T∏
t=1

ϕ̃t(xt).

We pick u1, v1, u2, v2 ∈ ((M + 1)−1Z ∩ [0, 1/2])T so that if Ii = [ui, vi] (i =
1, 2), then I1 ⊂ I ⊂ I2 with

∣∣µ(I) − µ(Ii)
∣∣ ≤ 2T max1≤t≤T ‖Ft‖∞/(M + 1)

for i = 1, 2, and

(9.1)
∑
n≤V

Φu1,v1(xn) ≤ NI(V ) ≤
∑
n≤V

Φu2,v2(xn).

This reduces to evaluating

(9.2)
∣∣∣∑
n≤V

Φu,v(xn)− V µ(I)
∣∣∣

for I = [u, v] with u, v ∈ ((M + 1)−1Z ∩ [0, 1/2])T , and DI(V ) differs from
(9.2) for (u, v) = (u1, v1) or (u2, v2) by no more than 2CFV T/(M + 1). The
function ϕ̃t is well approximated by a trigonometric sum α̃t,

α̃t(x) = α̂t(0) +
∑

1≤|m|≤M

α̂t(m) cos(2πmx),

where

(9.3) |α̂t(m)| ≤ 2πmin

(
1

π|m|
, vt − ut

)
.

(This follows from [13, (2.7)] with the facts |t(1−t) cotπt| ≤ 1/2 for 0 < t < 1
and |e(θ)− 1| ≤ 2 min(1, π|θ|).)

Set

α̃(x) =
T∏
t=1

α̃t(xt) =
∑

`∈([−M,M ]∩Z)T

T∏
t=1

α̂t(`t) cos(2π` � x).
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Plainly one observes

µ(I) =
T∏
t=1

ϕ̃t ∗ Ft(0) =
T∏
t=1

1�

0

ϕ̃t(x)Ft(−x) dx

(see the proof of [13, Lemma 4.2]). Then,

(9.4)
∣∣∣∑
n≤V

Φu,v(xn)− V µ(I)
∣∣∣ ≤∑

1
+
∑

2
+
∑

3
,

where ∑
1

=
∑
n≤V
|Φu,v(xn)− α̃(xn)|,

∑
2

=
∣∣∣∑
n≤V

α̃(x)− V
T∏
t=1

α̃t ∗ Ft(0)
∣∣∣,

∑
3

= V
∣∣∣ T∏
t=1

α̃t ∗ Ft(0)−
T∏
t=1

ϕ̃t ∗ Ft(0)
∣∣∣.

For
∑

1, we invoke [13, Proposition 1]:

(9.5) |Φu,v(x)− α̃(x)| ≤ B(x),

where B(x) =
∑T

t=1 β̃t(xt). Every β̃t is a non-negative trigonometric sum

β̃t(x) = (2M + 2)−1
∑
|m|≤M

β̂t(m) cos(2πmx)

that satisfies |β̂t(m)| ≤ 4 (by [13, (2.7)] again) and
	1
0 β̃t(x) dx = 2/(M + 1).

Thus, we have

β̃t ∗ Ft(0) = (2M + 2)−1
∑
|m|≤M

β̂t(m)ct(m),(9.6)

|β̃t ∗ Ft(x)| ≤ 2

M + 1
‖Ft‖∞(9.7)

and∑
n≤V

β̃t(xtn) ≤
∣∣∣∑
n≤V

β̃t(xtn)− V β̃t ∗ Ft(0)
∣∣∣+ V |β̃t ∗ Ft(0)|

≤ 2

M + 1

∑
|m|≤M

∣∣∣∑
n≤V

cos(2πmxtn)− V ct(m)
∣∣∣+

2V

M + 1
‖Ft‖∞.

Together with (9.5) we obtain∑
1
≤ 2T

M + 1
max

1≤t≤T

∑
1≤m≤M

∆t(m,V ) +
2V T

M + 1
max

1≤t≤T
‖Ft‖∞.
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Next likewise with (9.6) for α̃t ∗ Ft(0), we infer that∑
2
≤

∑
m∈([−M,M ]∩Z)T

T∏
t=1

|α̂t(mt)|∆(m,V ).

For
∑

3, we apply the simple inequality∣∣∣ T∏
t=1

At −
T∏
t=1

Bt

∣∣∣ ≤ T∑
t=1

|At −Bt|
∏
r 6=t

max(|Ar|, |Br|),

where At, Bt ∈ C. Then, as both 0 ≤ α̃t, ϕ̃t ≤ 1 from [13, (2.8)], we deduce
with (9.5) (specialized to ϕ̃t) and (9.7) that∑

3
≤ V

T∑
t=1

|(α̃t − ϕ̃t) ∗ Ft(0)|
∏
r 6=t
‖Fr‖∞ ≤

2V T

M + 1

T∏
t=1

‖Ft‖∞,

as in the proof of [13, Lemma 4.2]. Inserting the above estimates for
∑

i and
(9.3) into (9.4), we get

(9.8)
∣∣∣∑
n≤V

Φu,v(xn)− V µ(I)
∣∣∣

≤ 2CF
V T

M + 1
+

2T

M + 1

∑
1≤m≤M

max
1≤t≤T

∆t(m,V )

+
∑

m∈([−M,M ]∩Z)T

(2π)T
T∏
t=1

(
min

(
1

π|mt|
, vt − ut

))
∆(m,V ).

Now consider the case that I contains a boundary point of [0, 1/2]T . For
small positive ε, we replace at by ε when at = 0 and bt by 1/2 − ε. Let Iε
be the new box. Then

DI(V ) ≤ DIε(V ) +

T∑
t=1

Nt,ε(V ) + 4εV CF ,(9.9)

where

Nt,ε(V ) = #{n ≤ V : xtn ∈ [0, ε] ∪ [1/2− ε, 1/2]}.
As the value of ϕ̃t equals 1/2 at the end-point, we see that

Nt,ε(V ) ≤ 2
∑
n≤V

ϕ̃0,ε(xtn) + 2
∑
n≤V

ϕ̃1/2−ε,1/2(xtn).

By (9.8), we have

(9.10)

T∑
t=1

Nt,ε(V ) ≤ 8CF
V T

M + 1
+

8T

M + 1

∑
1≤m≤M

max
1≤t≤T

∆t(m,V ) + o(1)
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as ε → 0+. Finally we can replace vt − ut in (9.8) by bt − at + 2/(M + 1).
The result follows from (9.8)–(9.10) and the discussion below (9.2).
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