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Class numbers of totally real fields and applications to the
Weber class number problem
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John C. Miller (Piscataway, NJ)

1. Introduction. Although the class number is a fundamental invariant
of number fields, the problem of determining the class number is rather
difficult for fields of large discriminant. Even cyclotomic fields of relatively
small conductor have discriminants too large for their class numbers to be
calculated.

The difficulty is that the Minkowski bound for a totally real field of
degree n,

M(K) =
n!

nn

√
|d(K)|,

is often far too large to be useful. For example, to prove that the real cy-
clotomic field of conductor 256 has class number 1 using the Minkowski
bound, we would need to check that every prime integer below the Minkowski
bound factors into principal prime ideals, requiring us to check more than
1078 primes!

The approach of using Odlyzko’s discriminant bounds can handle fields
of larger discriminant than using the Minkowski bound, but this technique,
as applied by Masley [4] and van der Linden [3], encountered a barrier:
Odlyzko’s discriminant lower bounds could only establish an upper bound
for the class number of a totally real field of degree n if its root discriminant,
the nth root of the discriminant, was sufficiently small.

We will overcome this barrier by establishing lower bounds for sums over
the prime ideals of the Hilbert class field.

2. Application to the Weber class number problem. Weber [9]
studied the class numbers of the real cyclotomic fields Q(ζ2k + ζ−1

2k
), and

proved that they are odd for all k. Fukuda and Komatsu [2] went much fur-
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ther and proved that no prime less than 109 can divide these class numbers,
which suggests that the class numbers of these fields may in fact all be 1.
This conjecture, known as Weber’s class number problem, is also supported
by the Cohen–Lenstra heuristics [1].

Using Odlyzko’s discriminant bounds, van der Linden [3] proved that
the class number of Q(ζ128 + ζ−1128) is 1, and, under the assumption of the
generalized Riemann hypothesis (GRH), he proved that Q(ζ256 + ζ−1256) has
class number 1. However, due to their rather large discriminants, his method
could neither unconditionally prove that Q(ζ256 + ζ−1256) has class number 1,
nor could it be applied to Q(ζ512 + ζ−1512), even under the assumption of the
generalized Riemann hypothesis.

However, by counting sufficiently many prime ideals of the Hilbert class
field, we overcome the problem of the large discriminants, and prove the
following:

Theorem 2.1. The class number of the real cyclotomic field Q(ζ256+ζ−1256)
is 1.

Theorem 2.2. Under the assumption of the generalized Riemann hy-
pothesis, the class number of the real cyclotomic field Q(ζ512 + ζ−1512) is 1.

The above theorems, together with knowledge of the relative class num-
ber [8, p. 412], allow us to determine the class number of the full cyclotomic
field.

Corollary 2.3. The class number of the cyclotomic field Q(ζ256) is

10,449,592,865,393,414,737.

Corollary 2.4. Under the generalized Riemann hypothesis, the class
number of the cyclotomic field Q(ζ512) is

6,262,503,984,490,932,358,745,721,482,528,922,841,978,219,389,975,605,329.

The latter field has degree 256 and a discriminant of approximately
3 × 10616. The author is unaware of any other number field of such large
degree or discriminant for which the class number has been calculated under
the generalized Riemann hypothesis.

It is striking that the class number of the real subfield is so small com-
pared to the class number of the full cyclotomic field.

3. Upper bounds for class numbers of fields of small discrimi-
nant. In this section we briefly review the theory of root discriminants and
the application of Odlyzko’s discriminant bounds to find upper bounds for
class numbers of totally real fields. Further details can be found in [3], [4]
and [5].
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Definition 3.1. Let K denote a number field of degree n over Q. Let
d(K) denote its discriminant. The root discriminant rd(K) of K is defined
to be:

rd(K) = |d(K)|1/n.

Proposition 3.2. Let L/K be an extension of number fields. Then

rd(K) ≤ rd(L),

with equality if and only if L/K is unramified at all finite primes, i.e. no
prime ideal of K ramifies in L.

Proof. The discriminants of K and L are related by the formula

|d(L)| = N(d(L/K))|d(K)|[L:K],

where d(L/K) denotes the relative discriminant ideal and N denotes the
absolute norm of the ideal, from which the first statement follows. A prime
of K ramifies in L if and only if the prime divides the relative discriminant
d(L/K). Thus, L/K is unramified if and only if d(L/K) is the unit ideal,
proving the second statement.

Corollary 3.3. Let K be a number field. Then the Hilbert class field
of K has the same root discriminant as K.

Odlyzko constructed a table [6] of pairs (A,E) such that a totally real
field K of degree n has a lower bound for its discriminant,

|d(K)| > Ane−E .

If we apply Odlyzko’s discriminant bounds to the Hilbert class field of K
and use the above corollary, we get

log rd(K) > logA− E

hn
.

If rd(K) < A, then we obtain an upper bound for the class number h,

(3.1) h <
E

n(logA− log rd(K))
.

Thus, we can establish a class number upper bound for fields of small root
discriminant.

However, this method, used by Masley and van der Linden, encounters an
obstacle if the field has large discriminant. If the root discriminant is larger
than the maximum A in Odlyzko’s table, the above method cannot establish
a class number upper bound. The maximum A in Odlyzko’s table is 60.704
(or 213.626 under the assumption of the generalized Riemann hypothesis).

4. An identity for the class number of a totally real field. Let
F be a Schwartz class function on R with F (0) = 1 and F (−x) = F (x). Let
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Φ be defined by

Φ(s) =

∞�

−∞
F (x)e(s−1/2)x dx.

Let K be a number field of degree n with r1 real embeddings. Poitou’s
version [7] of Weil’s “explicit formula” for the Dedekind zeta function of K
states that

log d(K) = r1
π

2
+ n(γ + log 8π)− n

∞�

0

1− F (x)

2 sinh x
2

dx

− r1
∞�

0

1− F (x)

2 cosh x
2

dx− 4

∞�

0

F (x) cosh
x

2
dx

+
∑
ρ

Φ(ρ) + 2
∑
P

∞∑
m=1

logNP

NPm/2
F (m logNP),

where γ is Euler’s constant. The first sum is over the nontrivial zeros of the
Dedekind zeta function of K, and the second sum is over the prime ideals
of K.

Let K be a totally real field. We can apply the explicit formula to the
Hilbert class field H(K) of K. Let h denote the class number of K. Since

log d(H(K)) = hn log rd(H(K)) = hn log rd(K),

we have

hn log rd(K) = hn

(
π

2
+ γ + log 8π −

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx

)

− 4

∞�

0

F (x) cosh
x

2
dx+

∑
ρ

Φ(ρ)

+ 2
∑
P

∞∑
m=1

logNP

NPm/2
F (m logNP)

where the two sums are now over the nontrivial zeros of the Dedekind zeta
function of H(K) and the prime ideals of H(K) respectively. We rearrange
this to get the identity

(4.1)

h =
4H(F )/n

C−G(F )−log rd(K)+ 1
hn

∑
ρ Φ(ρ)+ 2

hn

∑
P

∑∞
m=1

logNP
NPm/2F (m logNP)

where
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C =
π

2
+ γ + log 8π,

G(F ) =

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx,

H(F ) =

∞�

0

F (x) cosh
x

2
dx.

Suppose we choose F so that it is nonnegative and so that Φ(ρ) ≥ 0 for
all nontrivial zeros ρ. If it is true that

C − G(F )− log rd(K) > 0,

then we get the upper bound for the class number,

h ≤ 4H(F )

n

1

C − G(F )− log rd(K)
.

If we choose F appropriately, we can recover the class number upper bounds
(3.1) obtained by Odlyzko’s discriminant bounds.

5. Upper bounds for class numbers of fields of large discrim-
inant. If a number field has root discriminant greater than 4πeγ+1 =
60.839 . . . (or greater than 8πeγ+π/2 = 215.33 . . . if GRH is assumed), then
we will have

C − G(F )− log rd(K) < 0,

so we cannot establish a class number upper bound following the approach
of the previous section.

However, if we have further knowledge of the zeros or the prime ideals
of the Hilbert class field, then we may be able establish a nontrivial lower
bound for the sums

1

hn

∑
ρ

Φ(ρ) or
2

hn

∑
P

∞∑
m=1

logNP

NPm/2
F (m logNP)

that is sufficiently large as to ensure a positive lower bound for the denom-
inator of (4.1). Thus we may obtain a class number upper bound for fields
with discriminants too large to have been treated by earlier methods. Since
it is difficult to make any explicit estimates of the low-lying zeros of the zeta
function of the Hilbert class field, we must rely on the contribution of the
prime ideals.

In his proof [3] that Q(ζ128 + ζ−1128) has class number 1, van der Linden
used the contribution from the ramified prime above 2 to establish a class
number upper bound. Unfortunately, there is only one ramified prime and
its contribution is not sufficient for conductors 256 or 512. Fortunately, we
can use the many unramified primes.
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Suppose a prime integer p totally splits in the field K into principal
prime ideals. Since principal ideals totally split in the Hilbert class field, we
have hn prime ideals in the Hilbert class field that lie over p, each with a
norm of p. Thus for such p we get a contribution to the prime ideal term of
the explicit formula

2

hn

∑
P|p

∞∑
m=1

logNP

NPm/2
F (m logNP) = 2

∞∑
m=1

log p

pm/2
F (m log p).

The assumption of the generalized Riemann hypothesis now takes on
critical importance. Without assuming that the nontrivial zeros lie on the
critical line, the function F would have to be chosen so that Φ is nonnegative
on the entire critical strip. Thus F would have to be of the form

F (x) =
f(x)

cosh x
2

,

with f nonnegative and a nonnegative Fourier transform [5]. Such a con-
dition would force F to decay so rapidly that many prime ideals may be
needed to contribute significantly to the explicit formula.

If, on the other hand, we assume truth of the generalized Riemann hy-
pothesis, specifically that the nontrivial zeros of the zeta function of the
Hilbert class field lie on the critical line 1/2 + it, then F would only be re-
quired to be nonnegative with nonnegative Fourier transform. For example,
F could be chosen to be the Gaussian function,

F (x) = e−(x/c)
2

for some positive constant c. For large c, this decays less rapidly, allowing
for a larger contribution from the prime ideals.

We summarize the above discussion with the following two lemmas. If
we do not assume the generalized Riemann hypothesis, we have

Lemma 5.1. Let K be a totally real field of degree n, and let

F (x) =
e−(x/c)

2

cosh x
2

for some positive constant c. Suppose S is a subset of the prime integers
which totally split into principal prime ideals of K. Let

B =
π

2
+ γ + log 8π − log rd(K)−

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx

+ 2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p).
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If B > 0, then we have an upper bound for the class number h of K,

h <
2c
√
π

nB
.

On the other hand, if we do assume the truth of the generalized Riemann
hypothesis, we have the following lemma.

Lemma 5.2. Let K be a totally real field of degree n, and let

F (x) = e−(x/c)
2

for some positive constant c. Suppose S is a subset of the prime integers
which totally split into principal prime ideals of K. Let

B =
π

2
+ γ + log 8π − log rd(K)−

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx

+ 2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p).

If B > 0, then we have, under the generalized Riemann hypothesis, an upper
bound for the class number h of K,

h <
2c
√
π e(c/4)

2

nB
.

6. The class number of Q(ζ256 + ζ−1256). Let Q(ζm + ζ−1m ) denote the
mth real cyclotomic field, i.e. the maximal real subfield of the cyclotomic
field Q(ζm), where ζm is a primitive mth root of unity. If m is a power of 2,
then the discriminant of the real cyclotomic field is given by

d(Q(ζ2k + ζ−1
2k

)) = 2(k−1)2
k−2−1

and the root discriminant is

rd(Q(ζ2k + ζ−1
2k

)) = d(Q(ζ2k + ζ−1
2k

))2
−(k−2)

= 2k−1−2
−k+2

.

In particular, we have

rd(Q(ζ256 + ζ−1256)) = 127.9891 . . . .

This root discriminant is too large to use Odlyzko’s unconditional discrimi-
nant bound tables to establish an upper bound for the class number. There-
fore, we must show a sufficiently large contribution by prime ideals of small
norm to the explicit formula in order to get an upper bound for the class
number. Although it is not difficult to find principal prime ideals of small
norm in Q(ζ256 + ζ−1256), an unconditional proof that Q(ζ256 + ζ−1256) has class
number 1 will require that we exhibit principal prime ideals for a rather
large number of primes.
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We define the norm of an element x of a Galois number field K to be

N(x) =
∣∣∣ ∏
σ∈Gal(K/Q)

σ(x)
∣∣∣.

A prime integer p totally splits in Q(ζ256 + ζ−1256) if and only if p is
congruent to ±1 modulo 256. Thus, if there exists an algebraic integer with
norm p congruent to ±1 modulo 256, then p totally splits into principal
prime ideals.

Let O denote the ring of integers of Q(ζ256 + ζ−1256). Let b0 = 1 and
bj = 2 cos(2πj/256) for j = 1, . . . , 63, and let

ck =

k∑
j=0

bj

for k = 0, 1, . . . , 63. Then c0, c1, . . . , c63 is the basis for O that we will use.

Our strategy will be to search over a large number of “sparse” vectors
with respect to the basis c0, c1, . . . , c63, i.e. vectors where almost all the
coefficients are zero. We make a list of those elements of O that have norms
which are prime and are congruent to ±1 modulo 256. We will need tens of
thousands of these primes to successfully establish an unconditional upper
bound for the class number.

We consider x ∈ O of the form

x = c0 + a1cj1 + · · ·+ a6cj6 ,

with 1 ≤ j1 < · · · < j6 ≤ 63 and ai ∈ {−1, 0, 1} for i = 1, . . . , 6. Let T be
the set of all such x.

The ideal 2O is totally ramified. Thus, if x ∈ O has even norm N(x), we
can divide x by any element of norm 2, say b1, to get an algebraic integer
b−11 x with norm N(x)/2. Therefore we consider the odd parts of all norms
N(x). We define the set U to be

U = {odd part of N(x) : x ∈ T}.

Let S1 be the set of primes

S1 = {m : m ∈ U, m prime, m ≡ ±1 (mod 256), m < 109}.

The set S1 does not contain enough primes to establish a class number upper
bound. To supplement these primes, we can factor composites in U using
primes from S1. Let S2 be the set of primes

S2 = {p : pq ∈ U, p prime, p /∈ S1, q ∈ S1},

noting that if N(x) = pq and N(y) = q, for x, y ∈ O for distinct primes p
and q, then x/σ(y) is in O with norm p for some Galois automorphism σ.
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Let S = S1 ∪ S2. We apply Lemma 5.1, choosing c = 210 and putting

F (x) =
e−(x/c)

2

cosh x
2

.

A lower bound for the contribution from split primes is

2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p) > 2

∑
p∈S

2∑
m=1

log p

pm/2
F (m log p) > 0.7023.

This is still not quite enough, so we supplement our prime ideal contribution
by considering the totally ramified prime 2. This factors as 2O = P 64 where
P is a principal prime ideal of norm 2, giving a contribution

2

64

∞∑
m=1

log p

pm/2
F (m log p) >

2

64

20∑
m=1

log p

pm/2
F (m log p) > 0.0331.

We have log rd(Q(ζ256 + ζ−1256)) = 4.8412 . . . and we use numerical inte-
gration to find that

G(F ) =

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx < 1.2642.

Then we have

B =

(
π

2
+γ+ log 8π

)
− log rd(K)−G(F ) + 2

∑
P

∞∑
m=1

logNP

NPm/2
F (m logNP)

> 5.3721−4.8412−1.2642 + 0.7023 + 0.0331 = 0.0021.

Thus, we get a class number upper bound

h <
2c
√
π

nB
< 5539.

Finally, we apply the results of Fukuda and Komatsu [2] to prove that h = 1,
proving Theorem 2.1.

7. The class number of Q(ζ512 + ζ−1512). The field Q(ζ512 + ζ−1512) has a
root discriminant

rd(Q(ζ512 + ζ−1512)) = 254.6175 . . . ,

which exceeds 8πeγ+π/2 = 215.33 . . . . Therefore, we must show a contribu-
tion to the explicit formula by prime ideals of small norm to get an upper
bound for the class number, even under the assumption of the generalized
Riemann hypothesis.

In contrast to the unconditional proof that Q(ζ256 + ζ−1256) has class num-
ber 1, under the generalized Riemann hypothesis proving that Q(ζ512+ζ−1512)
has class number 1 will require knowledge of just a few principal prime ideals
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of small norm. However, generators of those ideals will be rather difficult to
find.

In the next section we will prove the following lemma.

Lemma 7.1. In the real cyclotomic field Q(ζ512 + ζ−1512), there exist alge-
braic integers of norms 3583, 5119, 6143, 7681, 8191, 10753, 11777, 12289,
12799 and 13313.

The existence of these algebraic integers of small prime norm allows us
to prove the main result.

Proof of Theorem 2.2. Let K = Q(ζ512 + ζ−1512), which has degree 128
over Q. Let h be its class number. Let F be the function

F (x) = e−(x/c)
2

with c = 8.7.
The following integral can be calculated using numerical integration:

∞�

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx < 0.3358.

A prime integer p totally splits in K if and only if p is congruent to ±1
modulo 512. Let S denote the set of primes

{3583, 5119, 6143, 7681, 8191, 10753, 11777, 12289, 12799, 13313},
which are the ten smallest primes which are congruent to ±1 modulo 512.
Using Lemma 7.1, there is a lower bound for the contribution from the prime
ideals,

2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p) > 2

∑
p∈S

log p
√
p
F (log p) > 0.6898.

We apply Lemma 5.2 to get an upper bound for the class number,

h < 147.

Finally, we can apply the “rank corollary” from [4] (or the results of [2])
to see that h = 1.

8. Algebraic integers of small prime norm in Q(ζ512+ζ−1512). Proof
of Lemma 7.1. It suffices to explicitly provide the elements which have the
desired norms. The real cyclotomic field Q(ζ512 + ζ−1512) has an integral basis,
{b0, b1, . . . , b127} where b0 = 1 and bj = 2 cos(2πj/512) for j from 1 to 127.
Given an element (aj) of the field in this basis, the norm of (aj) is the
absolute value of

127∏
k=0

(
a0 +

127∑
j=1

aj cos
2πj(2k + 1)

512

)
.

Using this basis, we list ten algebraic integers.
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This element has norm 3583:

[549, 471, 40, 400, 546, 13, 144, −222, 769, 1114, 4, 109, 1498, −48, −272, 1393, 337, 295, −304, 262,

653, −5, 487, 991, 1080, 604, −176, 147, 517, 299, −136, 5, 331, 1051, 943, 158, 281, 9, −299, −337,

685, 105, 65, 981, 1039, −104, −316, 999, 519, 195, 361, 367, 1033, 556, 435, 533, 126, −393, 391,

1413, 100, 142, 373, 268, −875, −246, −117, −327, 1530, 695, −210, 1137, 844, −882, 101, 254, −347,

281, 441, 1727, 909, −729, −397, −117, 478, −947, 67, 1040, 445, 138, 154, 473, 412, 324, −164, 625,

−50, 156, 141, −7, 376, −985, −434, 1002, 503, −343, −204, −200, −67, 170, −922, 554, 867, −172,

29, 387, 797, −470, 155, 42, −270, −14, 31, 246, 385, 162, −137, 197].

This element has norm 5119:

[147, −104494, −26676, 12081, 25706, −14209, 71256, 99827, 36209, −47677, 66855, 65451, 4681,

−88975, −15784, 32245, 41017, 45678, −5821, 127438, 17275, 161270, 121388, 141018, 76565, 18507,

−25523, 8820, 86486, −3883, −59945, −32692, 7427, 168170, 79532, 111518, −40813, −721, 100225,

38681, 35033, −59976, −26151, −150361, 17703, −10107, 7624, −39793, −74576, 12244, 49328,

108034, 79004, −83833, −31377, 723, 70856, −19714, 6073, 22609, 4054, 29678, 26444, 144109,

−16167, 13697, 4492, 36832, 68459, 100913, 66179, 7047, −3034, 156125, 61044, 32403, −6778, 114846,

−30960, 2675, 25809, −21964, 1166, −119242, 24160, 13870, 29732, 10150, 24991, 54782, 55211, 12440,

−65770, −63049, −36834, −77524, 18444, −165290, 500, −59284, 36279, 53748, 34020, 9670, 13433,

81430, 31887, 115248, −13390, −87277, −73639, −784, 62328, −25731, −8249, 68768, 9913, 136174,

153369, 108430, −60208, 10978, −25491, 27206, 4128, −8680, −41807, −88057].

This element has norm 6143:

[687, 1109, −264, −409, 1118, 826, −717, 215, −14, 920, 22, −20, 1564, −1030, 424, 959, 90, −540,

374, 435, −334, 207, 140, 65, 841, −339, 124, 378, −376, 114, −760, 672, 232, −973, 341, −71, −284,

495, 329, −106, −246, 78, 301, −475, −756, 1359, −410, 441, 265, −392, 1402, −27, 320, 599, 1365,

258, −473, 416, 260, 1033, 197, 212, 1541, −1026, 688, 1377, −1154, 743, 406, 298, 127, −1017, 7, −8,

987, 440, −730, 199, 359, −1041, −664, 706, −612, −125, 1, 104, −702, −215, 335, 4, 725, −88, −497,

−665, −557, 590, −346, 856, 338, −862, 1369, −709, 40, 303, 711, 783, −572, 282, 68, −528, 837, 882,

565, 165, −50, 41, −535, 299, −351, 1012, 15, −183, −18, −615, 758, −158, −234, 1738].

This element has norm 7681:

[12419, −72, 3815, 1193, −3972, −4639, −9741, −525, 20798, −2284, −3016, 2627, 13769, 7618, 9084,

5902, 7104, 2023, 7378, 576, 16966, 1470, −15719, 1047, 4681, 1683, 9320, −2609, 6279, 3161, 1227,

4325, 5423, −2032, 1901, 4788, 15042, −4879, 2991, 4479, 11213, 11266, 1431, −17, 16203, 4789, 7726,

−3520, −5160, −2409, −8557, 5297, 9307, −4523, 3415, −4331, −221, 4670, −1272, −5870, 532, 637,

1065, −415, 14452, −7845, 3158, 12392, 3004, 5689, 5914, −4077, 18668, 9144, −4237, −8474, −7417,

1399, 1158, 4120, 2845, −6194, 3372, 5412, 5860, 5527, −3739, −389, 3600, 32, 5343, −4709, 8512,

2466, 902, 11131, 8876, 187, 11267, 104, 6654, 2458, −10487, −2800, −10, 1120, −5029, −5069, −5301,

−5294, 7063, 5281, −10073, 7, −5930, 2933, 16618, −8242, −4914, −2260, −1814, 4186, 5099, 2296,

4516, −1349, 10952, 1756].

This element has norm 8191:

[12200476407, −292487755, 12237320977, −308254192, 12300523691, −486916755, 12065092025,

−758732357, 12260434117, −988892432, 12200465663, −959314971, 12023444230, −807694380,

11534015416, −285959572, 11389976464, 263767191, 11494483606, 118977394, 11822670966,

−186682783, 11780632874, −30299156, 11717352645, 106809269, 11245815188, 100697928,

11092639613, −233023507, 11092354501, −231762119, 10881098713, 220511907, 9986637594,

698898280, 9678586036, 759689527, 9976530302, 456120687, 10566559282, 80998844, 10565421255,

498544865, 10139442513, 1100466640, 9626488800, 1042764202, 9674228265, 454041510, 9544786324,

488174658, 9210076976, 864190149, 8328870937, 1188900157, 8005203607, 765010284, 8638409778,

166529311, 9326591748, 57194082, 8907343957, 660242446, 8270761641, 1177075128, 7941394142,

1196657469, 8196375507, 475786322, 8151556459, 387573310, 7624292526, 778800668, 6924858402,

828150905, 6972011653, 36936460, 7364152427, −523531189, 7603045547, −522042227, 6942706650,

218982829, 6125518634, 669337729, 6123178426, 569668420, 6591787183, 75768606, 6400974331,
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36431967, 5893316966, 101388020, 5319695264, 102495640, 5231238345, −682275789, 5286021245,

−1039275885, 5013380379, −634603921, 4303406163, 30415910, 3658451229, 147125795, 3460063055,

75926902, 3703180326, −323853178, 3653655136, −238392752, 3198652693, −165979401, 2750313619,

−104932882, 2492617006, −365121077, 1964774200, −432485961, 1418575903, −346397268,

795227753, 69588008, 117183978, 17091166, −84709442, 30059544].

This element has norm 10753:

[2115315, 294536700, −1259710, 290751233, −658734, 286253190, 6202172, 290637083, 1020656,

290423296, −785288, 286809730, 431913, 290849807, −1972309, 289141750, 1493136, 277079280,

5027120, 281808363, 2632769, 282772045, 2606799, 275911224, −1617886, 279800829, −2830788,

277631577, 6603296, 268177615, 1887075, 267705912, 2525056, 263121511, 8861721, 262918374,

−2519628, 265098198, −2478906, 254252249, 7330168, 255187684, 1527574, 249540354, 3108613,

238201953, 6373217, 243789683, −264411, 242990286, 2452961, 229857806, 49331, 232535039, 2084912,

223094230, 9146065, 215098451, 115902, 219852521, 387854, 211046359, 6617566, 208066712,

−5512979, 203853094, 2938804, 191528668, 10507462, 191238633, −124009, 186251412, 976595,

177087267, 1202043, 182974650, −2866736, 170675998, 2795285, 158104278, 1621262, 160310188,

2372332, 148894811, 5059504, 143612130, −6568863, 146665733, −1471899, 134710036, 2866574,

126299884, −3787243, 120781480, 2780159, 111599813, 3927794, 110874132, −4748117, 102000659,

−2104084, 96925239, −305319, 91713010, −760194, 77534598, 2343950, 71004081, −388880, 72762622,

−429211, 60416092, −2906516, 53531722, −4333035, 49933247, 1898531, 37573906, 3511913, 27924006,

−1569879, 24254418, 65830, 21400232, −1564070,12689918, −4103286, 4118337].

This element has norm 11777:

[1309, 111, 323, 687, 443, 1010, 109, 133, 384, 217, 263, 610, 12, 183, −2, 663, 446, 1483, 241, 407,

−32, 848, −145, 455, −982, 157, −434, 1121, −320, 789, 671, −16, 194, 752, −233, 1191, −367, 1, 382,

287, 23, 794, 488, 78, 125, −416, −28, 519, 1231, −387, 817, 479, 1294, 736, 697, −789, 45, 220, 291,

126, 1277, −1062, 577, −67, 1028, 1270, 788, −567, 719, 46, 716, −105, 6, −16, 80, 75, −194, 72, 657,

−319, −311, 110, 1058, 691, 173, 39, −329, 164, −388, 241, 524, −45, −381, −1016, −60, 845, 110,

109, 508, 30, 1454, −291, −76, 17, 41, −465, 242, −49, 854, −286, −57, −612, 1553, −54, 364, 11, 948,

−428, 189, −416, 612, 319, 515, −854, 237, 204, −978, −27].

This element has norm 12289:

[617693837477, 2370075244431, −339648780201, 2238090913237, −498204865353, 2221056021584,

−152042916658, 3110568633642, −31712501506, 1411860086389, 80359803004, 2546233401730,

−182447396621, 2299547040386, −290214250390, 2590997629540, −326219315631, 2312166834647,

48131827765, 1783289384553, 378442675003, 2329438770514, −580294589938, 2218401635376,

−717839827005, 3197597713419, 704535529089, 1130283380417, −184355619389, 2116839801895,

−414187025834, 2857033836333, −217842459574, 1843457953282, 62852900411, 2356758151872,

−228936921555, 1651643367144, −266752316105, 2381610344981, 466861508085, 1879106118549,

−578325063236, 2244797414571, −402842736038, 2139817462475, 171310567795, 1362268990875,

224229141506, 2092865456148, −301525068860, 2081510046657, −398952907693, 2330201794229,

−255178406315, 1066318926881, 493751897628, 1729740541006, −103759157461, 2173771486057,

−620363038292, 1867081383268, −151277221788, 1353941271448, 179948629945, 1479240060095,

342020052730, 2184516411619, −717841372895, 650389362044, −44740662985, 2315655696498,

−4478644809, 1378542962891, −77525487333, 893047645591, 179430931459, 1668844385937,

−220938039747, 1238056324819, −388417780359, 1758644487369, 49162113897, 574831985668,

101296936710, 1580353533011, 106296616993, 578837428302, −424400197895, 1585976564060,

−288654893227, 1661210261127, 439833142557, −247202126371, −189885602018, 1069320100511,

14965483619, 1372382819001, −350945437549, 1166656722085, −26875340031, −112046953946,

264482159358, 971939323123, 315443374, 737076751102, −242050923233, 625328766932,

−163049388264, 651831316391, 103505212143, 150204548047, 48732385133, 676366606419,

22487056291, 50736674216, 12330433962, 876281794400, −244619123714, −23141241475,

−425071710999, 173800142051, 871047731302, −22908844162, 21071113068, 33711180585,

−856494602158, 969230569158].
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This element has norm 12799:

[184037827075, 27497694581842, −19626196308, 27547128880119, 110431733149, 27555147977579,

−43762006334, 27628048533330, 363210681747, 27670842645800, 33491843358, 27407323326486,

288418234223, 27749482284368, 315874648397, 27372865864009, 330043125975, 27299903871399,

340523125682, 27015368233356, 391243147017, 27071327899417, 288329303744, 26642786767103,

149912398940, 26500392938787, 109894359842, 26144374880238, 146407833367, 26161831207103,

−57910866992, 25492292196379, −274642305172, 25540457641474, 142369219973, 25160228118999,

−129682164625, 24702675340198, −69429495725, 24538098116712, 46349415635, 24444616969505,

156136351425, 23931205738586, −2961224626, 23705831310594, 256615446179, 23524258730874,

140896966972, 23256896414578, 205005339494, 22739364944777, −15843992634, 22345779576504,

357116818963, 22065388666012, 80818167553, 21316751144174, −43890778334, 20910703796699,

42084499799, 20484469377007, 77475653685, 19785027507686, −263756725875, 19271681904259,

−103004425019, 19020439605835, −269420692984, 18334556916614, −208404770122, 17932081887237,

−248797915350, 17310365165180, −126861808332, 17069655283837, −89882204515, 16366181711576,

−70223384746, 15894548371886, 59088655957, 15314097572833, 224287929661, 14934547282661,

44599857235, 14137788660464, 57486988045, 13843047543817, 144867254487, 12982325354549,

−13428448847, 12509458887132, 8304629546, 11689066750504, −249842160599, 11153328440462,

−30856843432, 10351054047936, −226948948743, 9587784962712, −178179267698, 8855105075807,

−263989946416, 8459099826011, −46611349150, 7581871533541, −417612144252, 6960647418598,

53356750842, 6559779943246, −164811255782, 5847169871093, −22801282585, 5276876192677,

−133695961049, 4561501186914, 267900193832, 4087343983235, 106671432015, 3102753616610,

112993348875, 2619490858980, 125041798071, 1829389680073, 297752663615, 1181872802028,

−53529707223, 69559134213].

This element has norm 13313:

[8916659723289, 47268532674, 8908556110733, 70481864656, 8937291165906, 67739426562,

8861569846044, −7725649614, 8829707041453, 47638278771, 8861390871712, 48133856326,

8764144540244, −48910258200, 8687350180924, 1357021369, 8733804704947, 29074824782,

8616774037745, −70624616649, 8540760686368, −24859730341, 8532405397014, −11889210622,

8459821763982, −28518190023, 8372357336801, −56800374255, 8301117283526, −11761801095,

8281446215115, 17501367664, 8184340584635, −33759340894, 8063590959098, −5354668175,

8064978655183, 85625679864, 7966412060993, −8044159715, 7800415831985, 33108335988,

7800989809347, 100637609567, 7667310373669, 32871123796, 7512849402161, 35302340094,

7428424479889, 77578363916, 7318557559367, 52248738806, 7146998380511, 14965239152,

7002340196323, 20703950879, 6889137463326, 58623632102, 6752305608406, −14386714403,

6508893132068, −45339801496, 6432979746206, 50051731390, 6282439291691, −47946996920,

6027018399904, −74116504992, 5922613371875, 7112222086, 5791260006111, −33927849059,

5550734846917, −74105570364, 5414865621403, −7413305441, 5276451123686, −5031097618,

5096944465149, −12408772293, 4898309553471, −26654004178, 4753486648791, 61879736346,

4623095676929, 27625581497, 4356719254730, −11365677549, 4213264031932, 85683966203,

4081483059666, 64666311773, 3800571512362, −11699782794, 3619743124051, 84748679823,

3489223839999, 61110804212, 3204599108570, 3360620284, 3005433193669, 28675626079,

2812542786776, 40010051208, 2606574214541, 6075789802, 2332601110596, −49927165145,

2123416470081, 2846966847, 1957178717014, −2476742731, 1677693344486, −96508928231,

1427324401528, −31753778165, 1316756845314, 5835444314, 1028165661555, −97373171807,

795695608823, −24168787111, 656098328404, 2267514151, 418089679287, −30049678195,

184507943986, −25303639014].

9. Finding principal ideals of small norm in Q(ζ512 + ζ−1512). While
it is a straightforward matter to verify that the above elements have the
desired norms, actually finding these elements poses a challenge. Since we
must search a lattice of 128 dimensions, a brute force approach of searching
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over a suitably sized “box” is impractical. For example, given an integral
basis, if we were to search all elements with coefficients between −2 and 2,
that would mean checking the norms of 5128 ≈ 1089 elements, which is
substantially larger than the number of particles in the universe!

A more practical approach is to search over “sparse” vectors, i.e. vectors
where almost all the coefficients are zero. The hope would be that we could
find the desired elements of small prime norm, or elements that factor over
primes of small norm and produce relations in the class group.

First we will describe this process for the smaller field Q(ζ256 + ζ−1256) and
then contrast it with the situation presented by Q(ζ512 + ζ−1512).

Example 9.1 (Finding elements of small prime norm in Q(ζ256 + ζ−1256)).
The goal is to find algebraic integers in Q(ζ256+ζ−1256) which have norms that
are prime and congruent to ±1 modulo 256, i.e. the primes which totally
split. The ten smallest of these are 257, 769, 1279, 3329, 3583, 5119, 6143,
6911, 7681 and 7937.

The integral basis that we will use is {b0, b1, . . . , b63} where b0 = 1 and
bj = 2 cos(2πj/256) for j from 1 to 63. We will search over sparse vectors
where at most six coefficients are nonzero, and the nonzero coefficients are
either 1 or −1. When we search over these sparse vectors, we do indeed
find the ten prime norms we were looking for. For example, the element
b0 + b1 + b14 has norm 257, and the element b0− b3 + b4− b22− b34− b53 has
norm 6143.

What happens if we repeat the above process with similar sparse vectors
for the larger field Q(ζ512+ζ−1512)? Unfortunately, we do not find any elements
of small prime norm. In fact, the two smallest prime norms found this way
are rather large: 6147073 and 9627649. In this respect, the properties of the
field Q(ζ512 + ζ−1512) are markedly different than those of the smaller field
Q(ζ256 + ζ−1256), so another approach is required.

Perhaps the best way to illustrate the approach used is to explicitly
write down the particular calculations. We start with the integral basis
{b0, b1, . . . , b127} where b0 = 1 and bj = 2 cos(2πj/512) for j from 1 to 127.
As mentioned above, searching over sparse vectors led to two elements of
prime norm:

N(b0 + b1 − b8 − b9 + b48) = 6147073,

N(b0 + b1 + b2 + b9 + b10 − b48) = 9627649.

We may also consider algebraic integers with norms which are even, since
we can always repeatedly divide them by any element of norm 2, such as b1,
until we get an algebraic integer of odd norm. For example,

b−21 (b1 + b10 + b26 + b35 + b43 + b50 + b52 + b95)

is an algebraic integer of norm 1142783.
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Another useful element is

b−11 (b1 + b18 − b39 + b108 + b127),

which has norm 9627649 · 2078207. This produces a relationship in the class
group between a prime of norm 9627649, which is known to be principal,
and a prime of norm 2078207. Therefore all primes of norm 2078207 are
principal, and there exists a unique Galois automorphism σ for which

b−11 (b1 + b18 − b39 + b108 + b127)

σ(b0 + b1 + b2 + b9 + b10 − b48)
is an algebraic integer of norm 2078207.

However, further search by the author of sparse vectors using the basis
{b0, b1, . . . , b127} found neither elements of small prime norm, nor elements
which produce useful relations in the class group. To find more suitable
elements, we choose a different basis over which to search sparse vectors.
For k from 0 to 127, put

ck =
k∑
j=0

bj .

The ck are the cyclotomic units, and {c0, c1, . . . , c127} form an integral basis.
Sparse vectors over this basis can produce some algebraic integers of rela-
tively small norm or produce interesting class group relations. Two algebraic
integers that prove to be of critical importance are

c0 + c6 + c15 + c39 − c104 + c111 + c120

which has norm 2078207 · 6215646209, and

c0 + c3 + c19 + c64 − c71 + c103 + c119

which has norm 61432 · 6215646209. By choosing the appropriate Galois
conjugates and taking quotients, we can explicitly write down an algebraic
integer of norm 6215646209 and then also an algebraic integer α of norm
61432.

In the subfield Q(ζ256 + ζ−1256), it is easy to find an algebraic integer of
norm 6143, and by including that element in the larger field, we produce an
algebraic integer β of norm 61432. One example is

β = b0 − b6 + b8 − b44 − b68 − b106.
Now given α and β as above, which both have norm 61432, consider the

quotients σ(α)/β for each Galois automorphism σ. A calculation shows that
none of the quotients are algebraic integers. Thus, we have an inequality of
principal ideals

(σ(α)) 6= (β)

for every σ.
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Let η denote a generator of the Galois group Gal(Q(ζ512 + ζ−1512)/Q),

which is cyclic of order 128. Then η64 fixes the subfield Q(ζ256 + ζ−1256), and

(β) = P · η64(P )

where P is some prime ideal of norm 6143 (noting that, as a prime of
Q(ζ256 + ζ−1256), β lies over 6143, so it does indeed split in Q(ζ512 + ζ−1512)).

For a suitably chosen automorphism σ, we have

(σ(α)) = τ(P ) · η64(P )

where τ is not the identity automorphism. Taking quotients shows that

P

τ(P )

is a principal fractional ideal. Suppose τ has order m in the Galois group.
Since τ is not the identity automorphism, m must be even, so

P

η64(P )
=

P

τm/2(P )
=

P

τ(P )

τ(P )

τ2(P )
· · · τ

m/2−1P

τm/2(P )

is a principal fractional ideal. Thus

P 2 = (β)
P

η64(P )

is a principal ideal. But Weber [9] showed that the class number is odd, so P
itself must be a principal ideal of norm 6143. This approach can be further
extended to calculate an actual generator of P .

Once we have shown that a prime of such small norm is principal, it is
relatively easy to use sparse vectors to generate more class group relations
to show that other prime ideals of small norm are principal and to find their
generators.

10. Concluding remarks. The technique described in this paper for
calculating class numbers is applicable to other totally real fields of large
discriminant, provided that we can establish a class number upper bound
by counting sufficiently many prime ideals of small norm in the Hilbert class
field. This allows us to attack the class number problem for a large number
of totally real fields which have not been treatable by previous methods. By
extension, we can address the class number problem for CM fields, provided
we have information about the relative class number.
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