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1. Introduction. Dedekind sums are defined for positive integers k, h
with (k, h) = 1 by

s(k, h) =
h−1∑

a=1

B1

(
a

h

)
B1

(
ka

h

)
and s(h, k) =

k−1∑

b=1

B1

(
b

k

)
B1

(
hb

k

)
,

where B1(z) is the first Bernoulli function (see Theorem A below). They
were originally introduced in connection with the modular properties of the
Dedekind η-function, and Dedekind proved the reciprocity law

s(k, h) + s(h, k) =
1
12

(
k

h
+
h

k
+

1
kh

)
− 1

4

(see [18]). These sums were later generalized by various people (Apostol,
Berndt, Carlitz, Hall–Wilson–Zagier, Mikolás, Rademacher, Solomon, Za-
gier, . . .), and the corresponding reciprocity laws were obtained. Then gen-
eral types of sums such as

(1.1)
∑

0≤i1,...,in<a
Br1

(
i1 + λ1

a

)
. . . Brn

(
in + λn

a

)

were considered and the corresponding reciprocity laws were proved, where
a is a positive integer, r1, . . . , rn are non-negative integers, and λ1, . . . , λn
are real numbers (see [8, 9, 11]).

In this paper we focus on the sums considered by Apostol. Apostol’s
reciprocity law is the following:

Theorem A (Apostol [1]). For a positive integer n, set

sn(h, k) =
k−1∑

a=1

a

k
Bn

(
ha

k

)
and sn(k, h) =

h−1∑

b=1

b

h
Bn

(
kb

h

)
,
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where Bn is the nth Bernoulli function, i.e.,

(1.2)
Bn(x) = Bn({x}) if n > 1,

B1(x) =
{
B1({x}) if x 6∈ Z,
0 if x ∈ Z.

Here Bn(∗) is the nth Bernoulli polynomial , and {x} denotes the fractional
part of a real number x, i.e., 0 ≤ {x} < 1. Then the following identity holds
for n odd :

1
n
{kn−1sn(h, k) + hn−1sn(k, h)} =

(1Bh− 2Bk)n+1

n(n+ 1)kh
+

Bn+1

(n+ 1)kh
,

where

(1Bh− 2Bk)n+1 =
n+1∑

i=0

(
n+ 1
i

)
(−1)n+1−iBih

iBn+1−ik
n+1−i.

We show how to prove Theorem A by using values at non-positive inte-
gers of Barnes’s double zeta function ζ̃2(s; (k, h)). Although there are sim-
pler proofs of Theorem A without using a zeta function, this is a new proof
which makes it possible to obtain new kinds of Dedekind sums and explicit
reciprocity laws for them in a unified way. The function ζ̃2(s; (k, h)) is
defined by

ζ̃2(s; (k, h)) =
∞∑

m,n=0
(m,n)6=(0,0)

1
(km+ hn)s

for Re(s) > 2, and is analytically continued to the whole complex plane with
some poles. The proof goes as follows: From contour integral representation
we know that

ζ̃2(1− n; (k, h)) = 2S
′
n(0; (k, h))

n
− δ =

(1Bk + 2Bh)n+1

n(n+ 1) kh
− δ,

where δ = 1 when n = 1 and δ = 0 otherwise, 2S
′
n(0; (k, h)) is the first

derivative of the double nth Bernoulli polynomial introduced by Barnes,
and

(1Bk + 2Bh)n+1 =
n+1∑

j=0

(
n+ 1
j

)
Bjk

jBn+1−jh
n+1−j

(see Section 2). On the other hand, by computing ζ̃2(1 − n; (k, h)) in a
suitable way, we obtain terms involving sn(h, k) and sn(k, h). Therefore we
have two expressions of ζ̃2(1−n; (k, h)), and by equating the two, Apostol’s
reciprocity law is obtained.
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Following this idea, we consider three kinds of generalizations of Apos-
tol’s sums. The first generalization is obtained by using Barnes’s double zeta
function ζ2(s;α, (k, h)) with parameters α and (k, h), which is defined by

ζ2(s;α, (k, h)) =
∞∑

m,n=0

1
(α+ km+ hn)s

for a complex number α with positive real part, and from the value ζ2(1−n;
α, (k, h)) we obtain the law for sums

sn(α; (k, h)) =
h−1∑

a=1

a

h
Bn

(
α+ ka

h

)
,

sn(α; (h, k)) =
k−1∑

b=1

b

k
Bn

(
α+ hb

k

)

for real α with 0 < α < h+k. As we mentioned above, these sums have been
considered in far more general settings (cf. (1.1)), and the corresponding
reciprocity laws were obtained. The second generalization involves Dirichlet
characters. Dedekind sums with characters have been considered for n = 1
by Berndt, and he proved reciprocity laws by using either Eisenstein series
with characters (cf. [4, 5]), integrals such as contour integrals and Riemann–
Stieltjes integrals, or the Poisson summation formula (cf. [6]). Here we con-
sider different kinds of sums. For a Dirichlet character χ mod kh, we define
ζ̃2(s; (k, h), χ) by

ζ̃2(s; (k, h), χ) =
∞∑

m,n=0
(m,n)6=(0,0)

χ(km+ hn)
(km+ hn)s

.

Then from ζ̃2(1− n; (k, h), χ) we obtain the law for sums

sn(χ; (k, h)) = kn−1
h−1∑

a=0

k−1∑

b=0

a

h
χ(ka+ hb)Bn

(
a

h
+
b

k

)
,

sn(χ; (h, k)) = hn−1
h−1∑

a=0

k−1∑

b=0

b

k
χ(ka+ hb)Bn

(
a

h
+
b

k

)

(see Theorem 3.6). In particular, when n= 1 and χ=χ1χ2 with χ1 (resp. χ2)
a character mod k (resp. mod h), ζ̃2(0; (k, h), χ) is expressed in terms of
B1,χi or B2,χi , so the law has a simple form (see Corollary 3.7). As an appli-
cation, we obtain the formulae for class numbers for imaginary quadratic
number fields (cf. [17]). The last generalization is given by considering
Barnes’s (r + 1)-ple zeta function ζ̃r+1(s; (k, h, z1, . . . , zr−1)) with param-
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eters (k, h, z1, . . . , zr−1), which is defined by

ζ̃r+1(s; (k, h, z1, . . . , zr−1))

=
∞∑

m1,...,mr+1=0
(m1,...,mr+1)6=(0,...,0)

1
(m1k +m2h+m3z1 + . . .+mr+1zr−1)s

,

and the value at a non-positive integer 1 − n is given by the derivative
of the (r + 1)-ple Bernoulli polynomial r+1S

′
n(0; (k, h, z1, . . . , zr−1)) intro-

duced by Barnes (see [2, 3] or (2.7)). The law is for (Sr)n(h, k; (z1, . . . , zr−1))
and (Sr)n(k, h; (z1, . . . , zr−1)), which we call r-ple Dedekind sums, defined
by

(1.3) (Sr)n(h, k; (z1, . . . , zr−1))

=
k−1∑

a=1

a

k
rS
′
n

({
ha

k

}
;
(

1,
z1

k
, . . . ,

zr−1

k

))
,

where z1, . . . , zr−1 are non-zero complex numbers. In [11], the sums of type
(1.1) are called n-ple Dedekind sums. Since (1.1) and (1.3) have different
sets of parameters and there seems to be no other suitable name for (1.3),
we also call it the r-ple Dedekind sum in this paper. Our sums have the
merit that the law has a very simple form (see Theorem 4.2). When r = 1,
they coincide with Apostol’s sums.

We note that Egami has proved the reciprocity law for (1.1) by using
multiple zeta functions associated to a cone (see [9]). We also note that
by considering the first derivative of ζ̃2(s; (k, h)) with respect to s, we can
define “derivatives” of Dedekind sums and prove the reciprocity law for them
(see [16]).

In Section 2 we review Barnes’s multiple zeta functions and deriva-
tives of multiple Bernoulli polynomials. In Section 3 we first prove Apos-
tol’s reciprocity law by using ζ̃2(1 − n; (k, h)). Then the laws for shifted
sums sn(α; (k, h)) and for sums with a character sn(χ; (k, h)) are proved.
In the last section we prove the reciprocity law for our r-ple Dedekind
sums.

2. Review of Barnes’s multiple zeta functions and multiple
Bernoulli polynomials. In this section we give a brief summary for
Barnes’s multiple zeta functions and multiple Bernoulli polynomials only
needed in subsequent sections. For more details, see [2, 3].

Definition 2.1. The Bernoulli numbers Bn and the Bernoulli polyno-
mials Bn(u) are defined by
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(2.1)
t

et − 1
=
∞∑

n=0

Bn
n!

tn and
teut

et − 1
=
∞∑

n=0

Bn(u)
n!

tn.

Also for a Dirichlet character χ of conductor f , we define Bn,χ by

(2.2)
f∑

a=1

χ(a)teat

eft − 1
=
∞∑

n=0

Bn,χ
tn

n!
.

Let r be a positive integer.

Definition 2.2. Let α, ω1, . . . , ωr be complex numbers such that ωi 6= 0
for each i, and set ω̃ = (ω1, . . . , ωr). The r-ple nth Bernoulli polynomial of
α with parameters ω1, . . . , ωr is a polynomial rSn(α; ω̃) which vanishes when
α = 0 and whose first derivative rS

′
n(α; ω̃) appears as the coefficient of tn in

the expression

(−1)rte−αt∏r
i=1(1− e−ωit) =

r∑

k=1

(−1)kAk(α; ω̃)
tk−1 +

∞∑

n=1

(−1)n−1
rS
′
n(α; ω̃)

n!
tn.

This expression is valid for t with |t| < min(|2π/ω1|, . . . , |2π/ωr|). Here we
can show that Ak(α; ω̃) = rS

(k+1)
1 (α; ω̃), the (k+1)th derivative of rS1(α; ω̃)

with respect to α.

Remark 2.3. (1) 1S
′
n(α; (ω)), Bn(u) and Bn are related by

1S
′
n(α; (ω)) = ωn−1Bn

(
α

ω

)
and 1S

′
n(0; (ω)) = ωn−1Bn for n ≥ 1.

This is easily seen by the definition of 1S
′
n.

(2) For a complex number λ 6= 0,

(2.3) rS
′
n(α; ω̃) = λ1−n

rS
′
n(λα;λω̃).

This is clear from the generating function.
(3) We have the following expression for rS

′
n(α; ω̃):

(2.4) rS
′
n(α; ω̃) =

(1Bω1 + . . .+ rBωr + α)n+r−1 n!∏r
i=1 ωi · (n+ r − 1)!

,

where in the multinomial expansion of (1Bω1 + . . .+ rBωr +α)N in (2.4) we
mean that

(iB)j (the jth power of iB) = Bj but (iB)j · (lB)k 6= Bj+k if i 6= l.

This is shown by the following identities using (2.1):
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(−1)rte−αt∏r
i=1(1− e−ωit)

=
r∏

i=1

(−ωit)
e−ωit − 1

· e−αt · 1
tr−1 ·

(−1)r∏r
i=1 ωi

=
r∏

i=1

( ∞∑

ni=0

Bni
ni!

(−ωit)ni
)
·
( ∞∑

n=0

1
n!

(−αt)n
)
· 1
tr−1 ·

(−1)r∏r
i=1 ωi

=
∞∑

N=0

(1Bω1 + . . .+ rBωr + α)N (−t)N−(r−1)

N !
· −1∏r

i=1 ωi
.

Although rSn(α; ω̃) is called the r-ple Bernoulli polynomial, it is its first
derivative rS

′
n(α; ω̃) which gives the value of the r-ple zeta function.

Definition 2.4. Let α, ω1, . . . , ωr be complex numbers with positive
real parts, and set ω̃ = (ω1, . . . , ωr). Barnes’s r-ple zeta function ζr(s;α, ω̃)
with parameters α and ω̃ is defined by

ζr(s;α, ω̃) =
∞∑

m1,...,mr=0

1
(α+ ω1m1 + . . .+ ωrmr)s

for Re(s) > r.

Here us = exp(s log u) and log u= log |u|+i argu with −π < arg u<π for any
complex number u not on the non-positive real axis. We note that when r=1,

ζ1(s;α, (ω1)) =
∞∑

m1=0

1
(α+ ω1m1)s

=
1
ωs1

ζ

(
s,
α

ω1

)
,

where ζ(s, α/ω1) is the Hurwitz zeta function.

Analytic continuation and special values are given by the contour integral
representation of ζr(s;α, ω̃) as in the following theorem (cf. [2, 3]).

Theorem 2.5. ζr is expressed as a contour integral :

ζr(s;α, ω̃) =
Γ (1− s) e−sπi

2πi

�

I(λ,∞)

e−αtts−1
∏r
i=1(1− e−ωit) dt,

where 0 < λ < min(|2π/ω1|, . . . , |2π/ωr|) and I(λ,∞) is the path from +∞
to λ along the real axis, going along the circle around 0 of radius λ coun-
terclockwise to λ, and then going back to +∞. This expression gives us
the analytic continuation of ζr to the whole complex plane, and also for a
positive integer n we have

ζr(1− n;α, ω̃) =
(−1)rrS′n(α; ω̃)

n
(2.5)

=
(−1)r (1Bω1 + . . .+ rBωr + α)n+r−1

n(n+ 1) . . . (n+ r − 1) ·∏r
i=1 ωi

.
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When r = 1, this is well known as the value of the Hurwitz zeta function:

(2.6) ζ(1− n, α) = −Bn(α)
n

.

Definition 2.6. Let ω̃ = (ω1, . . . , ωr) be as in Definition 2.4. We define
Barnes’s r-ple zeta function ζ̃r(s; ω̃) with parameters ω̃ by

ζ̃r(s; ω̃) =
∞∑

m1,...,mr=0
(m1,...,mr)6=(0,...,0)

1
(ω1m1 + . . .+ ωrmr)

s .

This series is a replacement of ζr for α = 0, and when r = 1,

ζ̃1(s; (ω1)) =
∞∑

m=1

1
(ω1m)s

=
1
ωs1

ζ(s),

where ζ(s) is the Riemann zeta function. The function ζ̃r(s; ω̃) is also con-
tinued analytically to the whole complex plane, and

(2.7) ζ̃r(1− n; ω̃) =
(−1)rrS′n(0; ω̃)

n
− δ,

where δ = 1 for n = 1 and δ = 0 otherwise. This can be shown for example
by induction using the identity

ζ̃r(s; ω̃) = ζr(s;ω1, ω̃) + ζ̃r−1(s; (ω2, . . . , ωr)).

We note that

(2.8) ζ(1− n) = ζ(1− n, 1) = −Bn
n
− δ.

In subsequent sections we need to treat ζ(s) and ζ(s, α), and also ζr
and ζ̃r, simultaneously, so we use the following notation:

(2.9)

ζ∗(s, α) =
{
ζ(s, α) if Re(α) > 0,
ζ(s) if α = 0;

ζ∗r (s;α, ω̃) =
{
ζr(s;α, ω̃) if Re(α) > 0,

ζ̃r(s; ω̃) if α = 0.

3. Reciprocity laws for simple Dedekind sums. In this section we
prove the reciprocity law for Apostol sums (Theorem A in Section 1) and
for shifted Dedekind sums by using the double zeta function. Then from the
double zeta function with a Dirichlet character, we define Dedekind sums
with a character and prove the corresponding reciprocity law. Throughout
this section and the next, k and h are relatively prime positive integers.

First we show that Theorem A is equivalent to the following Theorem 3.1
when n is odd.
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Theorem 3.1. For any positive integer n, we have

ζ̃2(1− n; (k, h)) =
1
n
{hn−1sn(k, h) + kn−1sn(h, k)} − 1

hk
· Bn+1

n+ 1
− Bn

n
− δ,

where δ = 1 when n = 1 and δ = 0 otherwise.

Proof of the equivalence when n is odd. It suffices to show that for n odd

(3.1) ζ̃2(1− n; (k, h)) =
(1Bk − 2Bh)n+1

n(n+ 1)kh
− Bn

n
− δ.

The identity

t

(1− e−kt)(1− e−ht) =
t

1− e−kt −
t

(1− e−kt)(1− eht)
implies

2S
′
n(0; (k, h)) = −kn−1Bn − 2S

′
n(0; (k,−h)).

When n is odd with n ≥ 3, Bn = 0, so 2S
′
n(0; (k, h)) = −Bn−2S

′
n(0; (k,−h))

for n odd with n ≥ 1. Then from (2.4) and (2.7), we obtain (3.1).

Now we give a proof of Theorem 3.1.

Proof of Theorem 3.1. Firstly we deform ζ̃2(s; (k, h)). We have

ζ̃2(s; (k, h)) =
∞∑

m,n=0
(m,n)6=(0,0)

1
(km+ hn)s

=
k−1∑

a=0

h−1∑

b=0

∞∑′′

n′,m′=0

1
(ha+ kb+ hk(m′ + n′))s

by setting m = b+ hm′ and n = a+ kn′ and varying a from 0 to k − 1 and
b from 0 to h − 1, respectively. Here

∑′′ means that we sum over all pairs
of non-negative integers (m′, n′) except for (m′, n′) = (0, 0) when a = b = 0.
Set m′ + n′ = N ; then

ζ̃2(s; (k, h)) =
k−1∑

a=0

h−1∑

b=0

∞∑′

N=0

N + 1
(ha+ kb+ hkN)s

=
k−1∑

a=0

h−1∑

b=0

∞∑′

N=0

1
(hk)s

· N + 1(
ha+kb
kh +N

)s ,

where
∑′ means that we sum over all non-negative integers N except for

N = 0 when a = b = 0. Hence we have
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ζ̃2(s; (k, h))

=
1

(hk)s

k−1∑

a=0

h−1∑

b=0

∞∑′

N=0

{
1

(
ha+kb
hk +N

)s−1 +
(

1− a

k
− b

h

)
1(

ha+kb
hk +N

)s
}

=
1

(hk)s

k−1∑

a=0

h−1∑

b=0

{
ζ∗
(
s− 1,

ha+ kb

hk

)
+
(

1− a

k
− b

h

)
ζ∗
(
s,
ha+ kb

hk

)}
,

where ζ∗(s, α) is the function defined in (2.9).
Put s = 1− n into the equation, and use (2.6) and (2.8). Then

(3.2) ζ̃2(1− n; (k, h))

= − (hk)n−1

n+ 1

k−1∑

a=0

h−1∑

b=0

Bn+1

(
ha+ kb

hk

)

− (hk)n−1

n

k−1∑

a=0

h−1∑

b=0

(
1− a

k
− b

h

)
Bn

(
ha+ kb

hk

)
− δ.

In order to compute sums on the right hand side of (3.2), we need the
following lemma.

Lemma 3.2. (1) The Bernoulli polynomials Bn(x) satisfy the difference
equation

Bn(x+ 1)−Bn(x) = nxn−1 if n ≥ 1.

(2) For real x and a positive integer N , we have

N−1∑

i=0

Bn

(
x+

i

N

)
=
Bn(Nx)
Nn−1 .

In particular ,
N−1∑

i=0

Bn

(
i

N

)
=

Bn
Nn−1 + η,

where η = 1/2 when n = 1 and η = 0 otherwise.
(3) Let χ be a Dirichlet character of conductor f . Then for any multiple

F of f ,

Bn,χ = Fn−1
F∑

a=1

χ(a)Bn

(
a

F

)
.

Proof. (1) and (3) can be easily shown from the generating functions.
As for (2), since both sides have period 1/N , it suffices to prove it for

0 ≤ x < 1/N . But then it is well known (cf. [15]).
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Now we go back to the identity (3.2). For the values of a and b in our
sums of (3.2) we have

0 ≤ ha+ kb

hk
=
a

k
+
b

h
< 2 and

ha+ kb

hk
6= 1.

Also we note that{{
ha+ kb

hk

} ∣∣∣∣ a, b ∈ Z, 0 ≤ a < k, 0 ≤ b < h

}
=
{
i

hk

∣∣∣∣ 0 ≤ i ≤ hk − 1
}
.

Let S denote the set

(3.3) S = {(a, b) ∈ Z2 | 0 ≤ a < k, 0 ≤ b < h, a/k + b/h > 1}.
Then sums in (3.2) can be simplified by using Lemma 3.2(1), (2). For ex-
ample we obtain the following identity:

k−1∑

a=0

h−1∑

b=0

(
1− a

k
− b

h

)
Bn

(
ha+ kb

hk

)

=
k−1∑

a=0

h−1∑

b=0

(
1− a

k
− b

h

)
Bn

(
ha+ kb

hk

)
− n

∑

(a,b)∈S

(
a

k
+
b

h
− 1
)n

+ µ

=
Bn

(hk)n−1 −
1

kn−1

h−1∑

b=0

b

h
Bn

(
kb

h

)

− 1
hn−1

k−1∑

a=0

a

k
Bn

(
ha

k

)
− n

∑

(a,b)∈S

(
a

k
+
b

h
− 1
)n
,

where µ = −1/2 when n = 1 and µ = 0 otherwise. This µ comes from
B1(0) = B1(0)− 1/2.

Thus

ζ̃2(1− n; (k, h))

= − (hk)n−1

n+ 1

{
Bn+1

(hk)n
+ (n+ 1)

∑

(a,b)∈S

(
a

k
+
b

h
− 1
)n}

− (hk)n−1

n

{
Bn

(hk)n−1 −
1

kn−1

h−1∑

b=0

b

h
Bn

(
kb

h

)

− 1
hn−1

k−1∑

a=0

a

k
Bn

(
ha

k

)
− n

∑

(a,b)∈S

(
a

k
+
b

h
− 1
)n}

− δ

= − 1
n+ 1

· Bn+1

hk
− Bn

n
+

1
n
{hn−1sn(k, h) + kn−1sn(h, k)} − δ.

This completes the proof of Theorem 3.1.
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Next we consider shifted Dedekind sums.

Definition 3.3. Let α be a real number. We define shifted Dedekind
sums sn(α; (h, k)) by

sn(α; (h, k)) =
k−1∑

c=0

c

k
Bn

(
α+ hc

k

)
.

These sums have been considered in far more general settings, and the
relevant reciprocity laws were obtained (see Section 1).

Theorem 3.4. Let α be a real number such that 0 < α < h + k. Then
for any positive integer n,

1
n
{hn−1sn(α; (k, h)) + kn−1sn(α; (h, k))}

=
1
hk
· Bn+1(α)

n+ 1
+
(

1− α

hk

)
Bn(α)
n

+
(1Bh+ 2Bk + α)n+1

n(n+ 1)hk
.

Proof. First we note that by (2.5),

(1Bh+ 2Bk + α)n+1

n(n+ 1)hk
= 2S

′
n(α; (k, h))

n
= ζ2(1− n;α, (k, h)).

Similarly to the proof of Thorem 3.1, we derive

ζ2(s;α, (k, h)) =
1

(hk)s

k−1∑

c=0

h−1∑

d=0

{
ζ

(
s− 1,

hc+ kd+ α

hk

)

+
(

1− α

hk
− c

k
− d

h

)
ζ

(
s,
hc+ kd+ α

hk

)}
.

Now put s = 1− n into the equation. By (2.6),

ζ2(1− n;α, (k, h))

= − (hk)n−1

n+ 1

k−1∑

c=0

h−1∑

d=0

Bn+1

(
hc+ kd+ α

hk

)

− (hk)n−1

n

k−1∑

c=0

h−1∑

d=0

(
1− α

hk
− c

k
− d

h

)
Bn

(
hc+ kd+ α

hk

)
.

For the values of c, d and α in the above sums we have

0 <
hc+ kd+ α

hk
=
c

k
+
d

h
+

α

hk
< 2,

and we may have (hc + kd + α)/(hk) = 1 for some c, d. Let S ′ denote the
set

S′ =
{

(c, d) ∈ Z2

∣∣∣∣ 0 ≤ c < k, 0 ≤ d < h,
c

k
+
d

h
+

α

hk
≥ 1
}
.



366 Y. Nagasaka et al.

We note that{{
α

hk
+
hc+ kd

hk

} ∣∣∣∣ c, d ∈ Z, 0 ≤ c < k, 0 ≤ d < h

}

=
{{

α

hk
+

i

hk

} ∣∣∣∣ 0 ≤ i ≤ hk − 1
}
.

Then

ζ2(1−n;α, (k, h)) = − (hk)n−1

n+ 1

{ k−1∑

c=0

h−1∑

d=0

Bn+1

(
hc+ kd+ α

hk

)

+ (n+ 1)
∑

(c,d)∈S′

(
hc+ kd+ α

hk
− 1
)n}

− (hk)n−1

n

{ k−1∑

c=0

h−1∑

d=0

(
1− α

hk
− c

k
− d

h

)

×Bn
(
hc+ kd+ α

hk

)
−n

∑

(c,d)∈S′

(
hc+ kd+ α

hk
−1
)n}

= − 1
hk
· Bn+1(α)

n+ 1
−
(

1− α

hk

)
Bn(α)
n

+
1
n
{hn−1sn(α; (k, h)) + kn−1sn(α; (h, k))}.

Next we consider Dedekind sums with a character.

Definition 3.5. Let χ be a Dirichlet character defined mod l with l |hk.
The double zeta function ζ̃2(s; (k, h), χ) with parameters (k, h) and χ is
defined by

ζ̃2(s; (k, h), χ) =
∞∑

n,m=0
(m,n)6=(0,0)

χ(km+ hn)
(km+ hn)s

.

From the following identities, ζ̃2(s; (k, h), χ) can be analytically continued
to the whole complex plane:

ζ̃2(s; (k, h), χ) =
k−1∑

a=0

h−1∑

b=0

∞∑′′

n′,m′=0

χ(h(a+ kn′) + k(b+ hm′))
(kb+ ha+ hk(m′ + n′))s

(3.4)

=
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)ζ∗2 (s;ha+ kb, (hk, hk)).

Also the Dedekind sum sn(χ; (h, k)) with a character χ is defined by

sn(χ; (k, h)) = kn−1
k−1∑

a=0

h−1∑

b=0

b

h
χ(ha+ kb)Bn

(
a

k
+
b

h

)
.
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We note that for the principal character χ0,

sn(χ0; (k, h)) = sn(k, h)

from Lemma 3.2(2).

The following reciprocity law holds:

Theorem 3.6. For any positive integer n and χ 6= χ0,

1
n
{hn−1sn(χ; (k, h)) + kn−1sn(χ; (h, k))}

=
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)(1Bhk + 2Bhk + ha+ kb)n+1

n(n+1)(hk)2 +
1
hk
· Bn+1,χ

n+1
+
Bn,χ
n

.

Proof. We put s = 1− n in (3.4) and use (2.5). Then since χ(0) = 0, we
have

(3.5) ζ̃2(1− n; (k, h), χ) =
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb) 2S
′
n(ha+ kb; (hk, hk))

n

=
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)(1Bhk + 2Bhk + ha+ kb)n+1

n(n+ 1)(hk)2 .

On the other hand, by setting m′ + n′ = N in (3.4) we have

ζ̃2(s; (k, h), χ) =
1

(hk)s

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)
{
ζ∗
(
s− 1,

ha+ kb

hk

)

+
(

1− a

k
− b

h

)
ζ∗
(
s,
ha+ kb

hk

)}
.

Put s = 1− n into the previous equality. Then

ζ̃2(1− n; (k, h), χ) = − (hk)n−1

n+ 1

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)Bn+1

(
ha+ kb

hk

)

− (hk)n−1

n

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)
(

1− a

k
− b

h

)
Bn

(
ha+ kb

hk

)

= − (hk)n−1

n+ 1

{ k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)Bn+1

(
ha+ kb

hk

)

+ (n+ 1)
∑

(a,b)∈S
χ(ha+ kb)

(
ha+ kb

hk
− 1
)n}
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− (hk)n−1

n

{ k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)
(

1− a

k
− b

h

)
Bn

(
ha+ kb

hk

)

− n
∑

(a,b)∈S
χ(ha+ kb)

(
a

k
+
b

h
− 1
)n}

,

where S is the set in (3.3). From Lemma 3.2(3) we have

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)Bn

(
ha+ kb

hk

)
=

Bn,χ

(hk)n−1 .

So we obtain

ζ̃2(1− n; (k, h), χ)

= − 1
hk
· Bn+1,χ

n+ 1
− Bn,χ

n
+

1
n
{hn−1sn(χ, (k, h)) + kn−1sn(χ, (h, k))},

which together with (3.5) completes the proof.

As a special case, take χ = χ1χ2, where χ1 and χ2 are characters defined
mod k and h, respectively. We define

sn((χ1, k), (χ2, h)) = kn−1
k−1∑

a=0

h−1∑

b=0

b

h
χ1(a)χ2(b)Bn

(
a

k
+
b

h

)
.

Then if we put u = χ1(h)χ2(k), we have

sn(χ1χ2, (k, h)) = u · sn((χ1, k), (χ2, h)).

When n = 1, Theorem 3.6 is simplified as follows: From (3.5),

ζ̃2(0; (k, h), χ1χ2) = u
k−1∑

a=0

h−1∑

b=0

χ1(a)χ2(b)
{

5
12

+
b2

2h2 +
a2

2k2 +
ab

kh
− b

h
− a

k

}
.

Now

B1,χ1 =
k−1∑

a=0

χ1(a)B1

(
a

k

)
=
k−1∑

a=0

χ1(a)
(
a

k
− 1

2

)

=





k−1∑

a=0

a

k
χ1(a)− 1

2
ϕ(k) if χ1 = ϕk,

k−1∑

a=0

a

k
χ1(a) if χ1 6= ϕk,

where ϕk is the trivial character mod k and ϕ is the Euler ϕ function.
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Since we have B1,χ1 = 0 when χ1 = ϕk,
k−1∑

a=0

a

k
χ1(a) =

{
1
2ϕ(k) if χ1 = ϕk,
B1,χ1 if χ1 6= ϕk.

Similarly

B2,χ1 = k
k−1∑

a=0

χ1(a)B2

(
a

k

)
=





k−1∑

a=0

a2χ1(a)
k

− k

3
ϕ(k) if χ1 = ϕk,

k−1∑

a=0

a2χ1(a)
k

− kB1,χ1 if χ1 6= ϕk,

so
k−1∑

a=0

a2

k
χ1(a) =

{
B2,χ1 +

k

3
ϕ(k) if χ1 = ϕk,

B2,χ1 + kB1,χ1 if χ1 6= ϕk.

Thus ζ̃2(0; (k, h), χ1χ2) = uΛ, where

(3.6) Λ =





B1,χ1B1,χ2 if χ1 6= ϕk and χ2 6= ϕh,
ϕ(h)
2k

B2,χ1 if χ1 6= ϕk and χ2 = ϕh,

ϕ(k)B2,χ2

2h
+
ϕ(h)B2,χ1

2k
if χ1 = ϕk and χ2 = ϕh.

Therefore we have the following corollary.

Corollary 3.7. Let χ1 and χ2 be characters defined mod k and h, re-
spectively. Then

s1((χ1, k), (χ2, h)) + s1((χ2, h), (χ1, k)) =
1
uhk

· B2,χ1χ2

2
+

1
u
B1,χ1χ2 + Λ,

where u = χ1(h)χ2(k) and Λ is defined in (3.6).

4. Reciprocity law of r-ple Dedekind sums. In this section we
define our r-ple Dedekind sums and prove the reciprocity law for them. As
we mentioned in Section 1, Halbritter has already defined sums of type (1.1)
as multiple Dedekind sums in [11].

Let r be a positive integer.

Definition 4.1. Let z1, . . . , zr−1 be non-zero complex numbers, and
set z̃ = (z1, . . . , zr−1). For a positive integer n, the r-ple Dedekind sum
(Sr)n(k, h; z̃) with parameters k, h and z̃ is defined by

(Sr)n(k, h; z̃) =
h−1∑

b=0

b

h
rS
′
n

({
k

h
b

}
;
(

1,
z1

h
, . . . ,

zr−1

h

))
.

When r = 1, from Remark 2.3(1) we have (S1)n(k, h) = sn(k, h).
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The main theorem which gives the reciprocity law of our r-ple Dedekind
sums is the following:

Theorem 4.2. Let z̃ be as in Definition 4.1. For a positive integer n,

(4.1) hn−1(Sr)n(k, h; z̃) + kn−1(Sr)n(h, k; z̃)

= r+1S
′
n(0; (k, h, z1, . . . , zr−1))

− 1
kh

r+1S
′
n(1; (1, 1, z1, . . . , zr−1)) + rS

′
n(0; (1, z1, . . . , zr−1)).

Proof. First we prove the following lemma.

Lemma 4.3. Let α, ω1, . . . , ωr be complex numbers with positive real
parts. Then for i with 1 ≤ i ≤ r,

(4.2) ζr+1(s;α+ ωi, (ω1, . . . , ωi−1, ωi, ωi, ωi+1, . . . , ωr))

=
∞∑

m1,...,mr=0

mi

(α+m1ω1 + . . .+mrωr)s

for Re(s) > r + 1.

Proof. From the definition of ζr+1,

ζr+1(s;α+ ωi, (ω1, . . . , ωi−1, ωi, ωi, ωi+1, . . . , ωr))

=
∞∑

m1,...,m′i,m
′′
i ,...,mr=0

1
(α+ ωi +m1ω1 + . . .+m′iωi +m′′i ωi + . . .+mrωr)s

=
∞∑

m1,...,m′i,m
′′
i ,...,mr=0

1
(α+m1ω1 + . . .+ (1 +m′i +m′′i )ωi + . . .+mrωr)s

.

Here we set mi = 1 +m′i +m′′i . Then this is reduced to (4.2).

Now we begin to prove Theorem 4.2. We first assume that each zi has a
positive real part, and use Barnes’s (r + 1)-ple zeta function

ζ̃r+1(s; (k, h, z1, . . . , zr−1))

=
∞∑

m1,...,mr+1=0
(m1,...,mr+1)6=(0,...,0)

1
(m1k +m2h+m3z1 + . . .+mr+1zr−1)s

.

As in the proof of Theorem 3.1, we set m1 = b + hm′1 and m2 = a + km′2,



Dedekind sums and reciprocity laws 371

and let a, b vary from 0 to k − 1 and from 0 to h− 1, respectively. Then

ζ̃r+1(s; (k, h, z1, . . . , zr−1)) =
k−1∑

a=0

h−1∑

b=0
∞∑′

m′1,m
′
2,m3,...,mr+1=0

1
(kb+ ha+ kh(m′1 +m′2) +m3z1 + . . .+mr+1zr−1)s

,

where
∑′ means that we sum over all non-negative integers m′1,m

′
2,m3, . . .

. . . ,mr+1 except for (m′1,m
′
2,m3, . . . ,mr+1) = (0, . . . , 0) when a = b = 0.

By setting m′1 +m′2 = N , we have

ζ̃r+1(s; (k, h, z1, . . . , zr−1))

=
k−1∑

a=0

h−1∑

b=0

∞∑′

N,m3,...,mr+1=0

N + 1
(kb+ ha+ khN + . . .+mr+1zr−1)s

=
k−1∑

a=0

h−1∑

b=0

∞∑′

N,m3,...,mr+1=0

{
1

(kh)s
(
kb+ha
kh +N + . . .+mr+1

zr−1

kh

)s−1

+
1

(kh)s
(
kb+ha
kh +N + . . .+mr+1

zr−1

kh

)s

− kb+ ha

(kh)s+1 ·
1(

kb+ha
kh +N + . . .+mr+1

zr−1

kh

)s

−
r−1∑

i=1

zi
(kh)s+1 ·

mi+2(
kb+ha
kh +N + . . .+mr+1

zr−1

kh

)s
}

=
1

(kh)s

k−1∑

a=0

h−1∑

b=0

ζ∗r

(
s− 1;

kb+ ha

kh
,

(
1,
z1

kh
, . . . ,

zr−1

kh

))

+
1

(kh)s

k−1∑

a=0

h−1∑

b=0

ζ∗r

(
s;
kb+ ha

kh
,

(
1,
z1

kh
, . . . ,

zr−1

kh

))

− 1
(kh)s

k−1∑

a=0

h−1∑

b=0

(
kb+ ha

kh

)
ζ∗r

(
s;
kb+ ha

kh
,

(
1,
z1

kh
, . . . ,

zr−1

kh

))

− 1
(kh)s

k−1∑

a=0

h−1∑

b=0

r−1∑

i=1

zi
kh

× ζr+1

(
s;
kb+ ha+ zi

kh
,

(
1,
z1

kh
, . . . ,

zi
kh
,
zi
kh
, . . . ,

zr−1

kh

))

from Lemma 4.3, where ζ∗r is the function defined in (2.9).
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We set s = 1 − n for a positive integer n. Then by (2.5) and (2.7), we
obtain

(4.3) ζ̃r+1(1− n; (k, h, z1, . . . , zr−1))

=
1

(kh)1−n

k−1∑

a=0

h−1∑

b=0

(−1)r rS′n+1

(
kb+ha
kh ;

(
1, z1kh , . . . ,

zr−1

kh

))

n+ 1

+
1

(kh)1−n

{ k−1∑

a=0

h−1∑

b=0

(−1)r rS′n
(
kb+ha
kh ;

(
1, z1kh , . . . ,

zr−1

kh

))

n
− δ
}

− 1
(kh)1−n

k−1∑

a=0

h−1∑

b=0

(
a

k
+
b

h

)
· (−1)r rS′n

(
kb+ha
kh ;

(
1, z1kh , . . . ,

zr−1

kh

))

n

− 1
(kh)1−n

k−1∑

a=0

h−1∑

b=0

r−1∑

i=1

zi
kh

× (−1)r+1
r+1S

′
n

(
kb+ha
kh + zi

kh ;
(
1, z1kh , . . . ,

zi
kh ,

zi
kh , . . . ,

zr−1

kh

))

n
,

where δ = 1 when n = 1 and δ = 0 otherwise.
Before proceeding with the proof, several lemmas are needed.

Lemma 4.4. Let x, ω1, . . . , ωr−1 be complex numbers with each ωi 6= 0.
Then the following difference equation holds:

(4.4) rS
′
n(x+ 1; (1, ω1, . . . , ωr−1))

= rS
′
n(x; (1, ω1, . . . , ωr−1)) + r−1S

′
n(x; (ω1, . . . , ωr−1)).

Proof. This is shown by the following identities:

(−1)rte−(x+1)t

(1− e−t) . . . (1− e−ωr−1t)
− (−1)rte−xt

(1− e−t) . . . (1− e−ωr−1t)

=
(−1)r−1te−xt

(1− e−ω1t) . . . (1− e−ωr−1t)
.

From Definition 2.2, by comparing the coefficients of tn above, we ob-
tain (4.4).

Lemma 4.5. Let x, ω1, . . . , ωr−1 be as in Lemma 4.4 and N be a natural
number. Then
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(4.5)
N−1∑

i=0

rS
′
n

(
x+

i

N
; (1, ω1, . . . , ωr−1)

)

= N1−n
rS
′
n(Nx; (1, Nω1, . . . , Nωr−1)),

(4.6)
N−1∑

i=0

rS
′
n

({
x+

i

N

}
; (1, ω1, . . . , ωr−1)

)

= N1−n
rS
′
n({Nx}; (1, Nω1, . . . , Nωr−1)).

Proof. (4.5) can be shown from the generating function.
As for (4.6), since both sides have period 1/N , it suffices to prove it for

0 ≤ x < 1/N . But then it is just (4.5).

Lemma 4.6. Let A,ω1, . . . , ωr be complex numbers with each ωi 6= 0,
and set ω̃ = (ω1, . . . , ωr). Then

(4.7)
r∑

i=1

ωi · r+1S
′
n(A+ ωi; (ω1, . . . , ωi, ωi, ωi+1, . . . , ωr))

= A · rS′n(A; ω̃)− n

n+ 1 rS
′
n+1(A; ω̃).

Proof. We compute the derivative of (−1)rte−At

(1−e−ω1t)...(1−e−ωrt) with respect
to t. Then

(4.8)
d

dt

(
(−1)rte−At

(1− e−ω1t) . . . (1− e−ωrt)

)

=
1
t
· (−1)rte−At

(1− e−ω1t) . . . (1− e−ωrt) − A
(−1)rte−At

(1− e−ω1t) . . . (1− e−ωrt)

+
r∑

i=1

(−1)r+1 ωite
−(A+ωi)t

(1− e−ω1t) . . . (1− e−ωit)2 (1− e−ωi+1t) . . . (1− e−ωrt) .

Here

(4.9)
d

dt

(
(−1)rte−At

(1− e−ω1t) . . . (1− e−ωrt)

)

=
r∑

k=2

(−1)k−1(k − 1)Ak(A; ω̃)
tk

+
∞∑

n=1

(−1)n−1
rS
′
n(A; ω̃)

(n− 1)!
tn−1.

By comparing the coefficients of tn in (4.8) and (4.9), we obtain (4.7).

We now return to the proof of Theorem 4.2. Let S denote the set as
in (3.3), i.e. S = {(a, b) ∈ Z2 | 0 ≤ a < k, 0 ≤ b < h, a/k + b/h > 1}.
By (4.4) and (4.6),
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(4.10)
k−1∑

a=0

h−1∑

b=0

b

h
rS
′
n

(
kb+ ha

kh
;
(

1,
z1

kh
, . . . ,

zr−1

kh

))

=
h−1∑

b=0

b

h

k−1∑

a=0

rS
′
n

({
kb+ ha

kh

}
;
(

1,
z1

kh
, . . . ,

zr−1

kh

))

+
∑

(a,b)∈S

b

h
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))

= k1−n(Sr)n(k, h; z̃)

+
∑

(a,b)∈S

b

h
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))
.

Similarly we have

(4.11)
k−1∑

a=0

h−1∑

b=0

a

k
rS
′
n

(
kb+ ha

kh
;
(

1,
z1

kh
, . . . ,

zr−1

kh

))

= h1−n(Sr)n(h, k; z̃) +
∑

(a,b)∈S

a

k
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))
.

Also by (4.4) and (4.5), for α, ω1, . . . , ωr−1 with each ωi 6= 0,

(4.12)
k−1∑

a=0

h−1∑

b=0

rS
′
n

(
kb+ ha

kh
+

α

kh
;
(

1,
ω1

kh
, . . . ,

ωr−1

kh

))

=
∑

(a,b)6∈S
rS
′
n

({
kb+ ha

kh

}
+

α

kh
;
(

1,
ω1

kh
, . . . ,

ωr−1

kh

))

+
∑

(a,b)∈S
rS
′
n

({
kb+ ha

kh

}
+

α

kh
+ 1;

(
1,
ω1

kh
, . . . ,

ωr−1

kh

))

=
k−1∑

a=0

h−1∑

b=0

rS
′
n

({
kb+ ha

kh

}
+

α

kh
;
(

1,
ω1

kh
, . . . ,

ωr−1

kh

))

+
∑

(a,b)∈S
r−1S

′
n

({
kb+ ha

kh

}
+

α

kh
;
(
ω1

kh
, . . . ,

ωr−1

kh

))

= (kh)1−n
rS
′
n(α; (1, ω1, . . . , ωr−1))

+
∑

(a,b)∈S
r−1S

′
n

({
kb+ ha

kh

}
+

α

kh
;
(
ω1

kh
, . . . ,

ωr−1

kh

))
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since
{{

kb+ ha

kh

} ∣∣∣∣ 0 ≤ a < k, 0 ≤ b < h, a, b ∈ Z
}

=
{
i

kh

∣∣∣∣ 0 ≤ i ≤ kh− 1
}
.

By using (4.12) three times and also by (4.10) and (4.11), the iden-
tity (4.3) becomes

(4.13) ζ̃r+1(1− n; (k, h, z1, . . . , zr−1))

=
(−1)r

(kh)1−n(n+ 1)

{
(kh)−n rS′n+1(0; (1, z1, . . . , zr−1))

+
∑

(a,b)∈S
r−1S

′
n+1

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))}

+
(−1)r

(kh)1−nn

{
(kh)1−n

rS
′
n(0; (1, z1, . . . , zr−1))

+
∑

(a,b)∈S
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))}

− δ − (−1)r

(kh)1−nn

{
k1−n(Sr)n(k, h; z̃)

+
∑

(a,b)∈S

b

h
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))

+ h1−n(Sr)n(h, k; z̃)

+
∑

(a,b)∈S

a

k
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))}

+
(−1)r

(kh)1−nn

[ r−1∑

i=1

zi
kh

{
(kh)1−n

r+1S
′
n(zi; (1, z1, . . . , zi, zi, . . . , zr−1))

+
∑

(a,b)∈S
rS
′
n

({
kb+ ha

kh

}
+
zi
kh

;
(
z1

kh
, . . . ,

zi
kh
,
zi
kh
, . . . ,

zr−1

kh

))}]
.

Now we use Lemma 4.6. By replacing r with r − 1 and taking
{
kb+ha
kh

}

as A and zi/(kh) as ωi in (4.7), we have
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r−1∑

i=1

zi
kh
· rS′n

({
kb+ ha

kh

}
+
zi
kh

;
(
z1

kh
, . . . ,

zi
kh
,
zi
kh
, . . . ,

zr−1

kh

))

=
{
kb+ ha

kh

}
r−1S

′
n

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))

− n

n+ 1 r−1S
′
n+1

({
kb+ ha

kh

}
;
(
z1

kh
, . . . ,

zr−1

kh

))
.

From this the sum of
∑

(a,b)∈S in (4.13) becomes 0. Also by taking 0 as A,
1 as ω1 and zi as ωi+1 in (4.7), we have

r+1S
′
n(1; (1, 1, z1, . . . , zr−1)) +

r−1∑

i=1

zi · r+1S
′
n(zi; (1, z1, . . . , zi, zi, . . . , zr−1))

= − n

n+ 1 rS
′
n+1(0; (1, z1, . . . , zr−1)).

Substituting this into (4.13), we obtain

ζ̃r+1(1− n; (k, h, z1, . . . , zr−1)) =
(−1)r

n
rS
′
n(0; (1, z1, . . . , zr−1))− δ

− (−1)r

n
hn−1(Sr)n(k, h; z̃)

− (−1)r

n
kn−1(Sr)n(h, k; z̃)

− (−1)r

khn
r+1S

′
n(1; (1, 1, z1, . . . , zr−1)).

On the other hand, by (2.7),

ζ̃r+1(1− n; (k, h, z1, . . . , zr−1)) =
(−1)r+1

r+1S
′
n(0; (k, h, z1, . . . , zr−1))

n
− δ,

and thus the law (4.1) is obtained when each zi has a positive real part.
Since both sides of (4.1) are rational functions in z1, . . . , zr−1 with only

z1 . . . zr−1 in the denominator, the law is valid for any z̃ with each zi 6= 0.
This completes the proof of Theorem 4.2.

Remark 4.7. When r = 1, Theorem 4.2 coincides with Apostol’s reci-
procity law (Theorem A). This is because 2S

′
n(0; (k, h)) = n · ζ̃2(1−n; (k, h))

+ δ and

2S
′
n(1; (1, 1)) = − n

n+ 1 1S
′
n+1(0; (1)) = − n

n+ 1
Bn+1

by (4.7).
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