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Sums of distances to the nearest integer
and the discrepancy of digital nets

by

G. Larcher and F. Pillichshammer (Linz)

1. Introduction. The concept of digital nets provides at the moment
the most efficient method to generate point sets with small star-discrepancy
D∗N . For a set of points x0, . . . ,xN−1 in [0, 1)d the star-discrepancy of the
point set is defined by

D∗N = sup
B

∣∣∣∣
AN (B)
N

− λ(B)

∣∣∣∣,

where the supremum is taken over all subintervals B of [0, 1)d of the form
B =

∏d
i=1[0, bi), 0 < bi ≤ 1, AN (B) denotes the number of i with xi ∈ B

and λ is the Lebesgue measure.
It is known that for any set of N points in [0, 1)2 one has

ND∗N
logN

≥ 0.06

(see for example [1]).
A digital (0, s, 2)-net in base 2 is a point set ofN = 2s points x0, . . . ,xN−1

in [0, 1)2 which is generated as follows. Choose two s×s-matrices C1, C2 over
Z2 with the following property: For every integer k, 0 ≤ k ≤ s, the system
of the first k rows of C1 together with the first s − k rows of C2 is linearly
independent over Z2. Then to construct xn := (x(1)

n , x
(2)
n ) for 0 ≤ n ≤ 2s−1,

represent n in base 2:

n = ns−12s−1 + . . .+ n12 + n0,

multiply Ci with the vector of digits:

Ci(n0, . . . , ns−1)T =: (y(i)
1 , . . . , y(i)

s )T ∈ Zs2
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and set

x(i)
n :=

s∑

j=1

y
(i)
j

2j
.

It was shown by Niederreiter [8] that for the star-discrepancy of any
digital (0, s, 2)-net in base 2 we have

ND∗N ≤
1
2
s+

3
2
,(1)

hence

lim sup
N→∞

max
ND∗N
logN

≤ 1
2 log 2

= 0.7213 . . .(2)

where the maximum is taken over all digital (0, s, 2)-nets in base 2 with
N = 2s elements.

The simplest digital (0, s, 2)-net in base 2 is provided by choosing

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . . .

0 1 . . . 0 0
1 0 . . . 0 0


 .

This gives the well-known Hammersley point set in base 2.
The star-discrepancy of this very special digital (0, s, 2)-net was studied

by Halton and Zaremba [4], de Clerck [2] and Entacher [3]. The first two
papers are very technical and very hard to read. Indeed in [4] an essential
part of the proof (determining the extremal intervals) is not carried out in
detail. [3] uses a new approach but also essentially relies on results from [4].

In this paper we study much more generally the star-discrepancy of
digital (0, s, 2)-nets in base 2.

In Section 2 (see Theorem 1) we give a compact explicit formula for the
discrepancy function of digital (0, s, 2)-nets in base 2. Our approach is via
Walsh series analysis.

It turns out that this explicit formula is based on sums of distances to
the nearest integer (‖x‖ := min(x− [x], 1− (x− [x]))) of the form

s−1∑

u=0

‖2uβ‖εu

with a real β and certain integer sequences εu ∈ {−1, 0, 1}.
In Section 3 we study such sums on their own and we give a certain

“spectrum” result for
∑s−1

u=0 ‖2uβ‖ (see Theorems 2 and 3), part of which
will be needed in Section 4.

In Section 4 we use the above results to study the Hammersley point
set once more, to give a simple and now self-contained proof for the exact
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value of the “discrete discrepancy” and of the star-discrepancy of this point
set (Theorem 4). Further we show that it is the “worst distributed” digital
(0, s, 2)-net in base 2 with respect to star-discrepancy and we will get that
for every digital (0, s, 2)-net in base 2 we have the (essentially) best possible
bound

ND∗N ≤
1
3
s+

19
9
,(3)

and that

lim
N→∞

max
ND∗N
logN

=
1

3 log 2
= 0.4808 . . .(4)

(the maximum is taken over all digital (0, s, 2)-nets in base 2 with N = 2s

elements) with equality for the Hammersley point sets, thereby improving
the bounds (1) and (2) of Niederreiter (Theorem 5).

Numerical investigations suggest that the minimal value for

lim sup
N→∞

ND∗N
logN

over all digital (0, s, 2)-nets in base 2 is attained for the net generated by
the matrices

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




1 1 . . . 1 1
1 1 . . . 1 0
. . . . . . . . . . . . . . . .

1 1 . . . 0 0
1 0 . . . 0 0


 .

In Section 5 we give bounds for the star-discrepancy of this net and we show
(Theorem 6) that for these nets

ND∗N
logN

≥ 1
5 log 2

= 0.2885 . . .

holds for all N and that

lim sup
N→∞

ND∗N
logN

≤ 0.32654 . . . ,

thereby answering a question of Entacher in [3, Section 4].

2. The discrepancy function of digital (0, s, 2)-nets. For 0 ≤ α, β
≤ 1 we consider the discrepancy function

∆(α, β) := AN ([0, α)× [0, β))−Nαβ
for digital (0, s, 2)-nets x0, . . . ,x2s−1 in base 2 (i.e. N = 2s).

Since the generating matrices C1, C2 of a (0, s, 2)-net must be regular,
and since multiplying C1, C2 by a regular matrix A does not change the
point set (only its order) we may assume in all the following that
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C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




c1
1 c2

1 . . . cs1
c1

2 c2
2 . . . cs2

. . . . . . . . . . . . . . .

c1
s c2

s . . . css


 =:



~c1
~c2
. . .

~cs


 .

We assume first that α and β are “s-bit”, i.e.

α =
a1

2
+ . . .+

as
2s
, β =

b1
2

+ . . .+
bs
2s
.

For any s-bit number δ = d1/2 + . . .+ ds/2s we write

~δ :=



d1
...
ds


 ,

and for a non-negative integer k = ks−12s−1 + . . .+ k12 + k0 we write

~k :=




k0
...

ks−1


 .

We need some further notation:

~γ :=



γ1
...
γs


 := C2~α+ ~β, ~γ(u) :=



γ1
...
γu


 ,

C ′2(u) :=



cs−u+1

1 . . . cs−u+1
u

. . . . . . . . . . . . . . . . . . . .

cs1 . . . csu



−1

.

(C ′2(u) exists since by the (0, s, 2)-net property the first s − u rows of C1
together with the first u rows of C2 must form a linearly independent system,
hence the matrix

C2(u) :=



cs−u+1

1 . . . cs1
. . . . . . . . . . . . . . .

cs−u+1
u . . . csu




must be regular.) Note that γu = (~cu|~α) + bu.
Further, for 0 ≤ u ≤ s− 1 let

m(u) :=





0 if u = 0,
0 if (~γ(u)|C ′2~e1) = 1,
max{1 ≤ j ≤ u : (~γ(u)|C ′2~ei) = 0; i = 1, . . . , j} otherwise

(here (·|·) denotes the usual inner product in Zu2 , ~ei is the ith unit vector
in Zu2 , and C ′2 := C ′2(u)).

Let j(u) := u−m(u). Then we have
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Theorem 1. For all α, β s-bit , for the discrepancy function ∆(α, β) of
the digital (0, s, 2)-net in base 2 generated by

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1




and C2 we have

∆(α, β) =
s−1∑

u=0

‖2uβ‖(−1)(~cu+1|~α)(−1)(~γ(u)|C′2(u)(cs−u+1
u+1 ,...,csu+1)T)

× (−1)as−u − (−1)as+1−j(u)

2

(here for u = 0 we set (~γ(u)|C ′2(u)(cs−u+1
u+1 , . . . , csu+1)T) = 0 and as+1 := 0).

Before we prove this result we give some remarks and examples.

Remark 1. Note that ∆(α, β) hence is of the form
∑s−1

u=0 ‖2uβ‖εu with
some εu ∈ {−1, 0, 1}.

Remark 2. Let 0 ≤ α, β ≤ 1 now be arbitrary (not necessarily s-bit).
Since all the points of the digital net have coordinates x(i)

n of the form a/2s

for some a ∈ {0, 1, . . . , 2s − 1}, we then have

∆(α, β) = ∆(α(s), β(s)) + 2s(α(s)β(s)− αβ)

where α(s) (resp. β(s)) is the smallest s-bit number larger than or equal to
α (resp. β).

Example 1. Let C2 be of triangular form

C2 =




c1
1 c2

1 . . . cs−1
1 1

c1
2 c2

2 . . . 1 0
. . . . . . . . . . . . . . . . . . . . . .

c1
s−1 1 . . . 0 0
1 0 . . . 0 0



.

Then

C ′2(u) =




0 0 . . . 0 1
0 0 . . . 1 du2
. . . . . . . . . . . . . . . . . . . . .

1 d2
u . . . du−1

u duu




with certain dji ∈ Z2. Hence

C ′2(u)~ei = (0, . . . , 0, 1, diu+2−i, . . . , d
i
u)T,
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and
(~γ(u)|C ′2(u)~ei) = γu+1−i + γu+2−idiu+2−i + . . .+ γud

i
u.

Therefore

max{1 ≤ j ≤ u : (~γ(u)|C ′2(u)~ei) = 0; i = 1, . . . , j}
= max{1 ≤ j ≤ u : γu+1−i = 0; i = 1, . . . , j},

hence γu = . . . = γu+1−m(u) = 0, γu−m(u) = 1, so that

j(u) = u−m(u) = max{j ≤ u : γj = 1} = max{j ≤ u : (~cj |~α) 6= bj}.
Respectively

j(u) =
{

0 if u = 0,
0 if (~cj |~α) = bj for j = 1, . . . , u.

Further (cs−u+1
u+1 , . . . , csu+1) = (0, . . . , 0), and so for α, β s-bit we have

∆(α, β) =
s−1∑

u=0

‖2uβ‖(−1)(~cu+1|~α) (−1)as−u − (−1)as+1−j(u)

2
.

Example 2. For the discrepancy function of the Hammersley point set,
i.e. for the (0, s, 2)-net generated by

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . . .

0 1 . . . 0 0
1 0 . . . 0 0


 ,

because of (~cj|~α) = as+1−j we obtain (for α, β s-bit)

∆(α, β) =
s−1∑

u=0

‖2uβ‖ 1− (−1)as−u+as+1−j(u)

2

=
s−1∑

u=0

‖2uβ‖(as−u ⊕ as+1−j(u))

(where ⊕ denotes addition modulo 2).

Example 3. For the discrepancy function of the (0, s, 2)-net generated
by

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




1 1 . . . 1 1
1 1 . . . 1 0
. . . . . . . . . . . . . . . .

1 1 . . . 0 0
1 0 . . . 0 0
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because of (~cj|~α) = a1 ⊕ . . .⊕ as+1−j we obtain (for α, β s-bit)

∆(α, β) =
s−1∑

u=0

‖2uβ‖(−1)a1+...+as−u (−1)as−u − (−1)as+1−j(u)

2
.

For the proof of the Theorem 1 we need two auxiliary results.

Lemma 1. Let z be of the form z = p/2s, p ∈ {0, . . . , 2s − 1}. Then for
the characteristic function χ[0,z) of the interval [0, z) we have

χ[0,z)(x) =
2s−1∑

k=0

ck(z)walk(x),

where walk denotes the kth Walsh function in base 2 (see Remark 3),

ck(z) =

{
z if k = 0,

walk(z)
1

2υ(k)
ψ(2υ(k)z) if k 6= 0,

ψ(x) is periodic with period 1 and

ψ(x) =
{
x if 0 ≤ x < 1/2,
x− 1 if 1/2 ≤ x < 1,

and υ(k) = r if 2r ≤ k < 2r+1.

Remark 3. Recall that Walsh functions in base 2 can be defined as
follows: For a non-negative integer k with base 2 representation k = km2m+
. . . + k12 + k0 and a real x with (canonical) base 2 representation x =
x1/2 + x2/22 + . . . we have

walk(x) = (−1)x1k0+x2k1+...+xm+1km = (−1)(~k|~x).

Proof of Lemma 1. This is a simple calculation, a proof can be found
for example in [6, Lemma 2].

Lemma 2. Let ψ be as in Lemma 1. Then

ψ(2l+1β)−
l∑

i=0

ψ(2iβ) = {β} − bl+2.

(Here {β} = β − [β].)

Proof. Let {β} =
∑∞

j=1 bj2
−j . Then

ψ(2iβ) =
∞∑

j=i+1

bj2i−j − bi+1
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and therefore
l∑

i=0

ψ(2iβ) =
l∑

i=0

(( ∞∑

j=i+1

bj2i−j
)
− bi+1

)

=
l+1∑

j=1

bj2−j
j−1∑

i=0

2i +
∞∑

j=l+2

bj2−j
l∑

i=0

2i −
l∑

i=0

bi+1

=
∞∑

j=l+2

bj2(l+1)−j −
∞∑

j=1

bj2−j = ψ(2l+1β)− {β}+ bl+2.

Proof of Theorem 1. Let I := [0, α)× [0, β). Then for y = (y(1), y(2)) ∈
[0, 1)2 by Lemma 1 we have

χI(y)− λ(I) = χ[0,α)(y
(1))χ[0,β)(y

(2))− αβ

=
2s−1∑

k,l=0
(k,l)6=(0,0)

ck(α)cl(β)walk(y(1))wall(y(2))

= α

2s−1∑

l=1

wall(β)
1

2υ(l)
ψ(2υ(l)β)wall(y(2))

+ β

2s−1∑

k=1

walk(α)
1

2υ(k)
ψ(2υ(k)α)walk(y(1))

+
2s−1∑

k,l=1

walk(α)wall(β)
1

2υ(k)+υ(l)
ψ(2υ(k)α)ψ(2υ(l)β)

× walk(y(1))wall(y(2)).

Hence

∆(α, β) = α

2s−1∑

l=1

wall(β)
1

2υ(l)
ψ(2υ(l)β)

2s−1∑

i=0

wall(yi)

+ β

2s−1∑

k=1

walk(α)
1

2υ(k)
ψ(2υ(k)α)

2s−1∑

i=0

walk(xi)

+
2s−1∑

k,l=1

walk(α)wall(β)
ψ(2υ(k)α)ψ(2υ(l)β)

2υ(k)+υ(l)

2s−1∑

i=0

walk(xi)wall(yi).

(Here the net consists of the points xi, i = 0, . . . , 2s− 1, with xi := (xi, yi).)
Since xi, i = 0, . . . , 2s − 1, is a digital (0, s, 2)-net, for all 0 < k, l < 2s

we have



Sums of distances to the nearest integer 387

2s−1∑

i=0

walk(xi) =
2s−1∑

i=0

wall(yi) = 0

(see for example [5, Lemma 2]).
We now consider

∑2s−1
i=0 walk(xi)wall(yi) with xi := x

(1)
i /2+ . . .+x

(s)
i /2s

and yi := y
(1)
i /2 + . . .+ y

(s)
i /2s. We identify (xi, yi) with

(x(1)
i , . . . , x

(s)
i , y

(1)
i , . . . , y

(s)
i )T ∈ (Z2)2s

and we define

(xi, yi)⊕ (x′i, y
′
i) := (x(1)

i + x
′(1)
i , . . . , y

(s)
i + y

′(s)
i ).

Further walk,l(xi, yi) := walk(xi)wall(yi), hence

walk,l((xi, yi)⊕ (x′i, y
′
i)) = walk,l(xi, yi)walk,l(x′i, y

′
i),

i.e. walk,l is a character on ((Z2)2s,⊕).
The digital net x0, . . . ,x2s−1 is a subgroup of ((Z2)2s,⊕), hence

2s−1∑

i=0

walk(xi)wall(yi) =
{

2s if walk,l(xi, yi) = 1 for all i = 0, . . . , 2s − 1,
0 otherwise.

(For more details see [5] or [7].)
Now walk,l(xi, yi) = (−1)(~k |~xi)+(~l |~yi) = 1 for all i = 0, . . . , 2s − 1 iff

(~k |~xi) = (~l |~yi) for all i = 0, . . . , 2s − 1,

(by the definition of the net) this means

(~k |~i ) = (~l |C2~i ) for all i = 0, . . . , 2s − 1,

and this is satisfied if and only if
~k = CT

2
~l =: ~k(l).

Further

walk(l)(α)wall(β) = (−1)(~k(l)|~α)+(~l |~β) = (−1)(~l |C2~α+~β) = wall(γ)

(see notations).
So

∆(α, β) = 2s
s−1∑

u=0

ψ(2uβ)
2u

2u+1−1∑

l=2u
(−1)l0γ1+...+lu−1γu+γu+1

ψ(2υ(k(l))α)
2υ(k(l))

= 2s
s−1∑

u=0

‖2uβ‖(−1)(~cu+1|~α)

× 1
2u

2u+1−1∑

l=2u
(−1)l0γ1+...+lu−1γu ψ(2υ(k(l))α)

2υ(k(l))
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(here l := l0 + l12 + . . . + lu2u; note that (−1)γu+1 = (−1)(~cu+1|~α)(−1)bu+1

and ψ(2uβ)(−1)bu+1 = ‖2uβ‖).
We now consider

Σ1 :=
1
2u

2u+1−1∑

l=2u
(−1)l0γ1+...+lu−1γu ψ(2υ(k(l))α)

2υ(k(l))

=
1
2u

s−1∑

w=0

ψ(2wα)
2w

2u+1−1∑

l=2u
υ(k(l))=w

(−1)l0γ1+...+lu−1γu .

For 2u ≤ l < 2u+1, the condition υ(k(l)) = w means that there are k0, . . . ,
kw−1 ∈ Z2 such that

CT
2
~l = (k0, . . . , kw−1, 1, 0, . . . , 0)T,

that is,

~c1l0 + . . .+ ~culu−1 + ~cu+1 = k0~e1 + . . .+ kw−1~ew + ~ew+1(5)

where ~ei is the ith unit vector in Zs2.
Since ~c1, . . . ,~cu+1, ~e1, . . . , ~ew+1 by the (0, s, 2)-net property are linearly

independent as long as (u+ 1) + (w + 1) ≤ s we must have u+ w ≥ s− 1.
Hence

Σ1 =
s−1∑

w=s−1−u

ψ(2wα)
2u+w

2u+1−1∑

l=2u
υ(k(l))=w

(−1)l0γ1+...+lu−1γu .

In the following we are concerned with evaluating the last sum in the above
expression which equals

Σ2 :=
2u−1∑

l=0
υ(k(l+2u))=w

wall(γ) =
2u−1∑

C′2l=0
υ(k(C′2l+2u))=w

walC′2l(γ)

(here C ′2 stands for C ′2(u); see notation). Now υ(k(C ′2l + 2u)) = w means

CT
2




C ′2~l
1
0
...
0




=




k0
...

kw−1
1
0
...
0




for some ki ∈ Z2. This is equivalent to
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D

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1




~l =




k0
...

kw−1
1
0
...
0




+



c1
u+1
...

csu+1


(6)

with

D =




c1
1 . . . c1

u
. . . . . . . . . . . . . . .

cs−u1 . . . cs−uu


C ′2,

i.e. an (s− u)× u-matrix.
Let s − u = w + 1. We first show that in this case equation (6) has a

solution ~l. This is equivalent to showing that system (5) has a solution, i.e.,
that there are l0, . . . , lu−1, k0, . . . , kw−1 in Z2 such that

~c1l0 + . . .+ ~culu−1 + ~cu+1 + ~e1k0 + . . .+ ~ewkw−1 + ~ew+1 = 0.

Since s = u + w + 1 the vectors ~c1, . . . ,~cu+1, ~e1, . . . , ~ew+1 are linearly de-
pendent, and hence we can find l0, . . . , lu−1, lu, k0, . . . , kw−1, kw in Z2 not all
zero such that

~c1l0 + . . .+ ~culu−1 + ~cu+1lu + ~e1k0 + . . .+ ~ewkw−1 + ~ew+1kw = 0.

Assume that lu = 0. Then ~c1, . . . ,~cu, ~e1, . . . , ~ew+1 are linearly dependent.
But this contradicts the (0, s, 2)-net property since ~c1, . . . ,~cu are the first u
rows of the matrix C2 and ~e1, . . . , ~ew+1 are the first w+1 rows of the matrix
C1 and u + w + 1 = s. Hence lu = 1. In the same way one can show that
kw = 1. This shows that system (5), and hence also (6), has a solution.

Now the unique solution ~l of (6) is given by

~l = (cs−u+1
u+1 , . . . , csu+1)T.

If s− u ≤ w, then the 2u+w−s solutions therefore are given by

~l = (l0, . . . , lu+w−(s+1), c
w+1
u+1 ⊕ 1, cw+2

u+1 , . . . , c
s
u+1)T

with l0, . . . , lu+w−(s+1) arbitrary in Z2.
Hence for w ≥ s− u we have

Σ2 =
∑

l0,...,lu+w−(s+1)∈Z2

(−1)(~γ(u)|C′2(l0,...,lu+w−(s+1),c
w+1
u+1⊕1,cw+2

u+1 ,...,c
s
u+1)T)

= (−1)(C′T2 ~γ(u)|(0,...,0,cw+1
u+1⊕1,cw+2

u+1 ,...,c
s
u+1)T)

2u+w−s−1∑

l=0

wall(C ′T2 γ(u)).
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The last sum is a sum over all characters of ((Z2)u+w−s,⊕), and is therefore
2u+w−s if (C

′T
2 ~γ(u)|~ei) = 0 for all i = 1, . . . , u + w − s (~ei is the ith unit

vector in Zu2) and it is 0 otherwise.
Further, if (C ′T2 ~γ(u)|~ei) = 0 for all i = 1, . . . , u+w− s (we will call this

the condition ∗u), then

(C ′T2 ~γ(u)|(0, . . . , 0, cw+1
u+1 ⊕ 1, cw+2

u+1 , . . . , c
s
u+1)T)

= (~γ(u)|C ′2(cs−u+1
u+1 , . . . , csu+1)T) + (~γ(u)|C ′2~eu+w−s+1),

so that altogether we have

Σ1 =
1
2s

(−1)(~γ(u)|C′2(cs−u+1
u+1 ,...,csu+1)T)f(u),

where

f(u) := 2ψ(2s−u−1α)

+
{∑s−1

w=s−u ψ(2wα)(−1)(~γ(u)|C′2~eu+w−s+1) if ∗u holds,
0 otherwise,

and therefore

∆(α, β) =
s−1∑

u=0

‖2uβ‖(−1)(~cu+1|~α)(−1)(~γ(u)|C′2(cs−u+1
u+1 ,...,csu+1)T)f(u).

It remains to show that

f(u) =
(−1)as−u − (−1)as+1−j(u)

2
.

By the definition of m(u) we have (~γ(u)|C ′2~e1) = . . .= (~γ(u)|C ′2~em(u)) = 0
and (~γ(u)|C ′2~em(u)+1) = 1, hence ∗u holds iff u+ w − s ≤ m(u). So finally

f(u) = 2ψ(2s−u−1α) +
s−u+m(u)∑

w=s−u
ψ(2wα)(−1)(~γ(u)|C′2~eu+w−s+1)

= 2ψ(2s−u−1α) +
s−u+m(u)−1∑

w=s−u
ψ(2wα)− ψ(2s−u+m(u)α)

= ψ(2s−u−1α)−
s−u−2∑

w=0

ψ(2wα) +
s−u+m(u)−1∑

w=0

ψ(2wα)− ψ(2s−u+m(u)α)

= α− as−u − α+ as+1−(u−m(u)) = as+1−(u−m(u)) − as−u

=
(−1)as−u − (−1)as+1−j(u)

2
where we used Lemma 2 and j(u) = u−m(u). The result follows.
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3. A spectrum result for sums of distances to the nearest inte-
ger. Here we study sums of the form

∑s−1
u=0 ‖2uβ‖ for β ∈ R, especially for

s-bit β, and we derive results which are of independent interest and/or will
be used in Section 4.

The essential technical tool is provided by

Lemma 3. Assume that β = 0.b1b2 . . . (this always means base 2 repre-
sentation) has two equal consecutive digits bibi+1 with i ≤ s− 1 and let i be
minimal with this property , i.e.

β = 0.01 . . . 0100bi+2 . . . or

β = 0.10 . . . 0100bi+2 . . . or

β = 0.01 . . . 1011bi+2 . . . or

β = 0.10 . . . 1011bi+2 . . .

Replace β by
γ = 0.10 . . . 1010bi+2 . . . resp.

γ = 0.01 . . . 1010bi+2 . . . resp.

γ = 0.10 . . . 0101bi+2 . . . resp.

γ = 0.01 . . . 0101bi+2 . . .

Then
s−1∑

u=0

‖2uγ‖ =
s−1∑

u=0

‖2uβ‖+

{
1
3(1− (−1)i/2i)(1− τ) in the first two cases,
1
3(1− (−1)i/2i)τ in the last two cases,

where τ := 0.bi+2bi+3 . . .

Remark 4. In any case we have
∑s−1

u=0 ‖2uγ‖ ≥
∑s−1

u=0 ‖2uβ‖ with equal-
ity iff τ = 1 in the first two cases and iff τ = 0 in the last two cases.

Proof of Lemma 3. This is simple calculation. We just handle the first
case here:

s−1∑

u=0

(‖2uγ‖ − ‖2uβ‖)

= ‖γ‖ − ‖2iβ‖+
((

τ

2
− τ

4

)
−
(
τ

4
− τ

8

)
± . . .+

(
τ

2i
− τ

2i+1

))

=
(

1
3

(
1 +

1
2i

)
− τ

2i+1

)
− τ

2
+

1
6

(
1 +

1
2i

)
τ

=
1
3

(
1 +

1
2i

)
(1− τ).

The other cases are calculated in the same way.

We immediately obtain a corollary which is useful in Section 4.
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Corollary 1. Assume that β = 0.1b2b3 . . . has two equal consecutive
digits bibi+1 with 2 ≤ i ≤ s − 1 and let i be the minimal index with this
property , i.e.

β = 0.101 . . . 0100bi+2 . . . or

β = 0.110 . . . 0100bi+2 . . . or

β = 0.101 . . . 1011bi+2 . . . or

β = 0.110 . . . 1011bi+2 . . .

Replace β by
γ = 0.110 . . . 1010bi+2 . . . resp.

γ = 0.101 . . . 1010bi+2 . . . resp.

γ = 0.110 . . . 0101bi+2 . . . resp.

γ = 0.101 . . . 0101bi+2 . . .

Then

γ +
s−1∑

u=0

‖2uγ‖

= β +
s−1∑

u=0

‖2uβ‖+

{
1
3(1− (−1)i−1/2i−1)(1− τ) in the first two cases,
1
3(1− (−1)i−1/2i−1)τ in the last two cases,

where τ := 0.bi+2bi+3 . . .

Proof. This follows from β + ‖β‖ = γ + ‖γ‖ = 1, by applying Lemma 3
to β′ := 0.b2b3 . . .

We obtain

Theorem 2. Consider β ∈ R with the canonical base 2 representation
(i.e. with infinitely many digits equal to zero). Then there exists

max
β

s−1∑

u=0

‖2uβ‖ =
s

3
+

1
9
− (−1)s

1
9 · 2s

and it is attained if and only if β is of the form β0 with

β0 =
2
3

(
1−

(
−1

2

)s+1)
or β0 =

1
3

(
1−

(
−1

2

)s)
.

Remark 5. Note that
2
3

(
1−

(
−1

2

)s+1)
=
{

0.1010 . . . 101 if s is odd,
0.1010 . . . 011 if s is even,

1
3

(
1−

(
−1

2

)s)
=
{

0.0101 . . . 011 if s is odd,
0.0101 . . . 101 if s is even.

Proof of Theorem 2. For any γ = 0.c1c2 . . . cscs+1 . . . with fixed c1, . . . , cs
the sum

∑s−1
u=0 ‖2uγ‖ obviously becomes maximal if cs = 0 and cs+1 =
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cs+2 = . . . = 1, or if cs = 1 and cs+1 = cs+2 = . . . = 0. Hence by Lemma 3
the supremum

sup
β

s−1∑

u=0

‖2uβ‖

can only be attained, respectively approached by

β1 = 0.1010 . . . 10 111 . . . or

(bs is the last zero)

β2 = 0.0101 . . . 01 or

β3 = 0.1010 . . . 11

(bs is the last one)

if s is even, and by

β4 = 0.0101 . . . 10 111 . . . or

β5 = 0.1010 . . . 01 or

β6 = 0.0101 . . . 11

if s is odd.
Now we check easily that

s−1∑

u=0

‖2uβi‖ =
s

3
+

1
9
− (−1)s

1
9 · 2s

for i = 1, . . . , 6 and the result follows.

The next theorem gives the result which we call the “spectrum” result
(see Remark 6).

Theorem 3. (a) The maximum

max
β s-bit

s−1∑

u=0

‖2uβ‖ =
s

3
+

1
9
− (−1)s

1
9 · 2s

is attained if and only if β is one of the β0 from Theorem 2.
(b) We have

max
β s-bit
β 6=β0

s−1∑

u=0

‖2uβ‖ =
s

3
+

1
36
− (−1)s

7
9 · 2s

and this second successive maximum is attained if and only if β is of the
form β′ with

β′ =

{
0.01101010 . . . 101 or
0.010101 . . . 01101 or
0.10010101 . . . 011
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if s is odd and

β′ =





0.100101010 . . . 101 or
0.010101 . . . 010011 or
0.101010 . . . 101101 or
0.011010 . . . 101011

if s is even.

Remark 6. Let

max
β s-bit

s−1∑

u=0

‖2uβ‖ =:
s−1∑

u=0

‖2uβ0(s)‖.

Then by Theorem 3 we have

lim
s→∞

( s−1∑

u=0

‖2uβ0(s)‖ − max
β s-bit
β 6=β0(s)

s−1∑

u=0

‖2uβ‖
)

=
1
12
.

So one may ask the further usual “spectrum questions”.

Proof of Theorem 3. (a) follows from Theorem 2.
Concerning part (b) it follows from Lemma 3 that it must be possible to

reach one of the β0 by applying a single transformation of Lemma 3 to β ′.
For s odd this means (s even is handled quite analogously) that

β′ → 0.1010 . . . 101

by the first or third transformation, i.e.

β′ = 0.0101 . . . 01 00 1010 . . . 10101 or

β′ = 0.0101 . . . 10 11 0101 . . . 10101,

or that
β′ → 0.0101 . . . 011

by the second or fourth transformation, i.e.

β′ = 0.1010 . . . 01 00 10 . . . 1011 or

β′ = 0.1010 . . . 10 11 01 . . . 1011.

Further the double blocks bibi+1 must be placed so that the “error term” in
Lemma 3 becomes minimal. We carry this out for the two transformations
yielding

β′ → 0.1010 . . . 101

(the second case is treated quite analogously).
If

β′ = 0.0101 . . . 01 00 1010 . . . 10101

then the “error term” has the form
1
3

(
1− (−1)i

2i

)
(1− τ) =: E(i)
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with

τ = 0.1010 . . . 101 =
2
3

(
1− 1

2s−i

)
,

and i is odd. Hence

E(i) =
1
9

(
1 +

1
2i

)(
1 +

1
2s−1−i

)
,

which becomes minimal for i = (s− 1)/2, with value

E =
1
9

(
1 +

1
2(s−1)/2

)2

.

If
β′ = 0.0101 . . . 10 11 0101 . . . 10101

then

E(i) =
1
3

(
1− (−1)i

2i

)
τ

with

τ = 0.0101 . . . 10101 =
1
3

(
1− 1

2s−i−1

)
,

and i is even. Hence

E(i) =
1
9

(
1− 1

2i

)(
1− 1

2s−1−i

)
,

which becomes minimal for i = 2 and for i = s − 3 (note that i = s − 1
would give one of the β0 and E(i) = 0), with value

E =
1
12

(
1− 8

2s

)
,

which is smaller than the E above.
By also dealing with the second case we find that this is the minimal

possible value for E and we have found the first two values of β ′. The third
value for β′ is found by treating the second case.

The minimal error term E also determines the value for
s−1∑

u=0

‖2uβ′‖ =
s−1∑

u=0

‖2uβ0‖ − E =
s

3
+

1
9

+
1

9 · 2s −
1
12

(
1− 8

2s

)

=
s

3
+

1
36

+
7

9 · 2s .

The case of s even is dealt with quite analogously.

We again obtain a corollary:
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Corollary 2. The maximum

max
β s-bit

(
β +

s−1∑

u=0

‖2uβ‖
)

=
s

3
+

7
9

+ (−1)s
1

9 · 2s−1

is attained if and only if β is of the form

β0 =
2
3

(
1−

(
−1

2

)s+1)
or β0 =

5
6
− 1

3

(
−1

2

)s
.

Remark 7. Note that here

β0 = 0.110101 . . . 101 or β0 = 0.101010 . . . 011

if s is even and

β0 = 0.101010 . . . 101 or β0 = 0.110101 . . . 011

if s is odd.

Proof of Corollary 2. If β < 1/2 then we replace β by β + 1/2 and
we obtain a larger value for the sum in question. So we can assume β =
0.1b2b3 . . . bs, and we note that β+‖β‖ = 1 always. So we have to maximize∑s−2

u=0 ‖2u(2β)‖. By Theorem 3(a) the result follows.

For later use (proof of Theorem 4(a)) we need a further type of “spec-
trum” result, namely Lemma 5. To prove it, we will use Lemma 4.

Lemma 4. Let 0 ≤ κ < 1. Then

(a) The maximum

max
β s-bit

(
κβ +

s−1∑

u=0

‖2uβ‖
)

=: Σκ
s

is attained by

β =
{

0.1010 . . . 1011 for s even,
0.1010 . . . 101 for s odd.

(b) The maximum

max
β s-bit

(
−κβ +

s−1∑

u=0

‖2uβ‖
)

=: Σ−κs

is attained by

β =
{

0.0101 . . . 0101 for s even,
0.0101 . . . 011 for s odd.

Proof. (a) We must have b1 = 1, otherwise 1 − β gives a larger value
than β. We proceed by induction on s. For s = 1, 2, 3 the assertion is easily
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checked. Now (since b1 = 1)

Σκ
s+2 = max

β s+2-bit

(
κβ +

s+1∑

u=0

‖2uβ‖
)

= max
β′ s+1-bit

(
κ+ 1

2
+ β′

(
κ− 1

2

)
+

s∑

u=0

‖2uβ′‖
)
.

Now (κ− 1)/2 < 0, so b′1 must be zero, otherwise 1− β ′ would give a larger
value. Hence β′ = β′′/2 with β′′ s-bit, and therefore

Σκ
s+2 =

κ+ 1
2

+ max
β′′ s-bit

(
β′′
(
κ+ 1

4

)
+

s−1∑

u=0

‖2uβ′′‖
)
.

By the induction hypothesis the result follows.
(b) Set γ = 1− β. Then

−γκ+
s−1∑

u=0

‖2uγ‖ = −κ+ κβ +
s−1∑

u=0

‖2uβ‖

and by part (a) the result follows.

The next lemma is of independent interest. Note for example that 1/4 is
the “average value” for ‖x‖.

Lemma 5. max
β s-bit

0≤u0≤s−1

s−1∑

u=0
u6=u0

‖2uβ‖ = max
β s-bit

s−1∑

u=0

‖2uβ‖ − 1
4

.

Proof. For u0 fixed let

Σu0(β) :=
s−1∑

u=0
u6=u0

‖2uβ‖ and Σu0(β0) := max
β s-bit

Σu0(β).

By Lemma 3, β0 must be of the form

β0 = 0.0101 . . . bu0+1bu0+2 . . . bs or β0 = 0.1010 . . . bu0+1bu0+2 . . . bs.

Let
β0 := 0.b1 . . . bu0+1 and β̃0 := 0.bu0+2 . . . bs.

Then

Σu0(β0) =
u0−1∑

u=0

‖2uβ0‖+ κβ̃0 +
s−1∑

u=u0+1

‖2uβ0‖

=
u0−1∑

u=0

‖2uβ0‖+ κβ̃0 +
s−u0−2∑

u=0

‖2uβ̃0‖

with κ =
∑u0

i=1 (−1)bi/2u0+2−i. If bu0 = 0 then κ > 0, if bu0 = 1 then κ < 0.
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So by Lemma 3 (see also Theorem 3) the form of β0, and by Lemma 4
and by bu0 the form of β̃0 is determined (note that the form of bu0+1 must
be different from bu0 and hence is 0 in any case).

We have

β̃0 =
1
3

(
1− (−1)s−u0−1

2s−u0−1

)

and

κ = −1
6

(
1− (−1)u0

2u0

)
or κ = −1

3

(
1 +

(−1)u0

2u0+1

)

according to which value for β0 is chosen from Theorem 3.
Since we want to maximize

Σu0(β0) =
u0−1∑

u=0

‖2uβ0‖+ κβ̃0 +
s−u0−2∑

u=0

‖2uβ̃0‖,

only the larger first value for κ is of relevance. Inserting it yields

max
β s-bit

( s−1∑

u=0

‖2uβ‖ − Σu0(β0)
)

=
1
18

(
5 +

(−1)u0

2u0
+

(−1)s−u0−1

2s−u0−1 +
(−1)s−1

2s−2

)
,

which attains its minimal value 1/4 for u0 = s−2 if s is odd, and for u0 = 1
if s is even.

4. The discrepancy of the Hammersley net and an improved
upper bound for the discrepancy of digital (0, s, 2)-nets. In Theo-
rem 1 for α, β s-bit we have given an explicit formula for the discrepancy
function

∆(α, β) = A2s([0, α)× [0, β))− 2sαβ

of a digital (0, s, 2)-net in base 2.
Take now arbitrary α′, β′ with

α− 1
2s
< α′ ≤ α and β − 1

2s
< β′ ≤ β.

Then (since all coordinates of the points of a digital net are s-bit) we have

∆(α′, β′) = ∆(α, β)− 2s(α′β′ − αβ),

hence for the star-discrepancy D∗N of the net we have
∣∣∣∣D∗N −

1
N

max
α,β s-bit

∆(α, β)

∣∣∣∣ <
2
N
− 1
N2

(note that N = 2s).



Sums of distances to the nearest integer 399

We will call
1
N

max
α,β s-bit

∆(α, β) =: Dd
N

the discrete discrepancy of the net. Dd
N differs from D∗N at most by the

almost negligible quantity 2/N and seems for nets to be the more natural
measure for the irregularities of distribution.

For a sequence of digital (0, s, 2)-nets, s = 1, 2, . . . , N = 2s, we have

lim sup
N→∞

ND∗N
logN

= lim sup
N→∞

NDd
N

logN

(the same holds for lim inf and for lim if it exists).
But if we want to obtain “exact results” the quantity Dd

N in spite of the
minimal difference is much easier to handle than D∗N .

This is clearly illustrated by the proof of the following theorem, in which
we give the exact value of Dd

N and of D∗N for the Hammersley net and the
exact places where they are attained. For Dd

N we moreover give the “second
successive maxima” and the exact places where they are attained. The proof
for Dd

N is much shorter than the one for D∗N .
In [4] Halton and Zaremba claim that they give the exact value of D∗N ,

but they only give a vague hint on how to prove the extremality of the
extremal intervals. Entacher [3] uses their result.

Theorem 4. (a) For the discrete discrepancy Dd
N of the Hammersley

net with N = 2s points we have

NDd
N = max

α,β s-bit
∆(α, β) =

s

3
+

1
9
− (−1)s

9 · 2s
and the maximum will be attained if and only if α, β are of the form α0, β0

with:

• for s odd ,

α0 = 0.0101 . . . 1011, β0 = 0.1010 . . . 0101
or

α0 = 0.1010 . . . 0101, β0 = 0.0110 . . . 1011,

• for s even,

α0 = β0 = 0.1010 . . . 1011 or α0 = β0 = 0.0101 . . . 0101.

The second successive maximum for ∆(α, β) (α, β s-bit) is given by

max
α,β s-bit

(α,β)6=(α0,β0)

∆(α, β) =
s

3
+

1
36
− (−1)s

7
9 · 2s

and the places where this is attained can easily be obtained from the proof
and from Theorem 3(b).
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(b) For the star-discrepancy D∗N of the Hammersley net with N = 2s

points we have

ND∗N =
s

3
+

13
9
− (−1)s

4
9 · 2s

and the maximum is attained if and only if α, β are of the form α0, β0 with:

• for s odd ,

α0 = 0.1010 . . . 10111, β0 = 0.1101 . . . 01011

or

α0 = 0.1101 . . . 01011, β0 = 0.1010 . . . 10111,

• for s even,

α0 = β0 = 0.1010 . . . 01011 or α0 = β0 = 0.1101 . . . 10111

for s ≥ 4. For s ≤ 3 the extremal values (α0, β0) are (1/2, 1/2) (s = 1),
(3/4, 3/4) (s = 2) and (7/8, 7/8) (s = 3).

Let us first draw a further consequence from the result and let us defer
the proof of Theorem 4 to the end of this section.

As an almost immediate consequence we get the following bound for the
discrepancy of digital (0, s, 2)-nets in base 2, which improves the bounds (1)
and (2).

Theorem 5. For the star-discrepancy D∗N of a digital (0, s, 2)-net in
base 2 we have

ND∗N ≤
s

3
+

19
9
.

This bound is (by Theorem 4(b)) up to the summand 19/9 (which could be
improved to 15/9) best possible.

In particular ,

lim
N→∞

max
ND∗N
logN

=
1

3 log 2
= 0.4808 . . .

where the maximum is taken over all digital (0, s, 2)-nets in base 2.
The value 1/(3 log 2) is attained for example for the sequence of Ham-

mersley nets.

Proof. We have

D∗N ≤ Dd
N +

2
N
− 1
N2 ,

hence by Theorems 1 and 3,

ND∗N ≤ 2 + max
β s-bit

s−1∑

u=0

‖2uβ‖ − 1
2s
≤ s

3
+

19
9
.
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From this and from Theorem 4,

lim
N→∞

max
ND∗N
logN

=
1

3 log 2
.

For the proof of part (b) of Theorem 4 we need some notation:

Remark 8. For

α = 0.a1 . . . at . . . as, β = 0.b1 . . . bs−t . . . bs
we define

αt := 0.a1 . . . at, βt := 0.bs+1−t . . . bs,

αt := 0.at+1 . . . as, βt := 0.b1 . . . bs−t.

Further, set

Σs(α, β) :=
s−1∑

u=0

‖2uβ‖σ(u) with σ(u) := as−u ⊕ as+1−j(u).

In σ(u) we usually set as+1−j(u) = 0 as long as j(u) = 0. If in this case
we alternatively set as+1−j(u) := 1 then we denote the corresponding sum
by Σ1

s(α, β).
Further we define

Ts(α, β) := α+ β + Σs(α, β).

For κ, τ ∈ R we more generally define

T τ,κs (α, β) := τα+ κβ + Σs(α, β).

Now
Ts(α, β) = α+ β + Σs(α, β)

= α+ β + Σs−t(αt, βt) + βt

s−t−1∑

u=0

(−1)bu+1

2s−t−u
σ(u) + Σ̃t(αt, βt).

Here Σ̃t(αt, βt) is either Σt(αt, βt) or Σ1
t (αt, βt).

Since α = αt + 1
2tαt and β = βt + 1

2s−tβt we get

Ts(α, β) = T τ,1s−t(αt, βt) + T̃ 1,κt
t (αt, βt),

where T̃ is defined via Σ̃ instead of Σ, and τ = 1/2t, and

κt =
1

2s−t
+
s−t−1∑

u=0

(−1)bu+1

2s−t−u
σ(u).

Here it is important to note that κ only depends on the form of αt and βt.
Let us consider for example t = 6. Then it is an easy task to show with

the help of Mathematica that for all d ∈ {0, . . . , 26 − 1} we have

|max
α6,β6

T
1,d/26

6 (α6, β6)−max
α6,β6

T̃
1,d/26

6 (α6, β6)| ≤ 1/26.
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Hence for all κ

|max
α6,β6

T 1,κ
6 (α6, β6)−max

α6,β6
T̃ 1,κ

6 (α6, β6)| < 1/25.

Further we need the following lemma:

Lemma 6. If
Ts(α0, β0) = max

α,β s-bit
Ts(α, β),

then β0 has at most three consecutive equal digits bibi+1bi+2, i ≥ 2, in its
base 2 representation.

Proof. First we note that the first digit of β0 must be one, otherwise
replacing β0 by β0 + 1/2 and choosing a suitable α0 gives a larger value T .

Then we note that, as is easily calculated, the special choice

α′ = 0.101 . . . 1011, β′ = 0.101 . . . 1011

if s is even and

α′ = 0.1101 . . . 1011, β ′ = 0.1010 . . . 0111

if s is odd gives the value

Ts(α′, β′) =
s

3
+

13
9

+
1
2s
− (−1)s

4
9
· 1

2s
.

Assume now on the contrary that β0 has at least four equal digits
bibi+1bi+2bi+3, i ≥ 2, in its base 2 representation. Assume these are ones
(the other case is handled in the same way). Then

Ts(α0, β0) ≤ 1 + β0 +
s−1∑

u=0

‖2uβ0‖.

Now we can apply some of the transformations from Corollary 1 to β0 until
bibi+1 is the first block of equal digits (with i ≥ 2). Therefore

β0 +
s−1∑

u=0

‖2uβ0‖

will not decrease. Now we can apply two times one of the last two transfor-
mations from Corollary 1 to bibi+1 and then to bi+1bi+2. Note that τ ≥ 3/4
in the first application and τ ≥ 1/2 in the second. Therefore

β0 +
s−1∑

u=0

‖2uβ0‖

increases at least by

1
3
· 3

4

(
1− (−1)i−1

2i−1

)
+

1
3
· 1

2

(
1− (−1)i

2i

)
=

5
12

+
(−1)i

3 · 2i ≥
3
8
.

Hence we have, by the remark at the beginning of this proof and by Corol-
lary 2,
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s

3
+

13
9

+
1
2s
− (−1)s

4
9
· 1

2s
≤ Ts(α0, β0)

≤ 1 + max
β s-bit

(
β +

s−1∑

u=0

‖2uβ‖
)
− 3

8

=
5
8

+
s

3
+

7
9

+ (−1)s
2

9 · 2s ,
hence

1
24

+
1
2s

(
1− 2

3
(−1)s

)
≤ 0,

a contradiction.

Remark 9. It is easy to show with the help of a C++ program that the
assertion of Theorem 4(b) holds for s ≤ 11.

In fact it is not difficult to prove (with the help of Lemmas 5 and 6)
that the extremal values α0, β0 from Theorem 4(b) must have the property
that as−u ⊕ as+1−j(u) = 1 for all u = 0, . . . , s− 1. Hence for every β0 there
is only one possible α0. So it was easily possible to carry out the numerical
calculation with Mathematica.

Proof of Theorem 4. (a) We use Example 2. For a given β the value

∆(α, β) =
s−1∑

u=0

‖2uβ‖(as−u ⊕ as+1−j(u))

always becomes maximal if α is chosen such that as−u ⊕ as+1−j(u) = 1 for
all u. Hence Dd

N is attained for the β maximizing
s−1∑

u=0

‖2uβ‖

(those are provided by Theorem 3) and the corresponding α. This gives the
values claimed in the result.

For the second successive maximum there are principally two possible
cases: either as−u ⊕ as+1−j(u) = 1 for all u, and then β must be of the form
from Theorem 3(b), or as−u ⊕ as+1−j(u) = 0 for some u. But comparing
Theorem 3 and Lemma 5 shows that only the first case can give the second
successive maximum.

(b) For α, β s-bit ∆(α, β) always is positive by Example 2. Hence D∗N
will certainly be attained for intervals of the form

[0, α− 1/2s]× [0, β − 1/2s]

with α, β s-bit, and therefore

ND∗N = max
α,β s-bit

(∆(α, β) + α+ β)− 1/2s
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(see Remark 2). By Remark 9 it suffices to assume that s ≥ 12. Let α(0), β(0)

be such that
Ts(α(0), β(0)) = max

α,β s-bit
Ts(α, β).

By Lemma 6, β(0) has at most three consecutive equal digits (after the first
place) and the first digit b1 of β(0) is 1. Assume there is a u ≤ s − 12 with
σ(u) = 0 (see Remark 8 for the notations here and in the following), and let
u0 be maximal with this property. Then change as−u0 , . . . , a7 so that σ(u0)
becomes 1 and σ(u0+1), . . . , σ(s−7) remain unchanged. Thereby κ6 changes
at most by 1/2s−6−u0 ≤ 1/26. Finally choose a6, . . . , a1 and bs−5, . . . , bs so
that T̃ 1,κ6(α′6, β

′
6) becomes maximal for the new values α′, β′. Then (see

Remark 8),

Ts(α′, β′) = T τ,1s−6(α ′6, β
′
6) + T̃

1,κ′6
6 (α′6, β

′
6)

(note that we obtain a new summand of value at least 1/4,
but α may decrease to almost zero)

≥ T τ,1s−6(α (0)
6 , β

(0)
6 ) +

1
4
− τ − |κ′6 − κ6|+ T̃ 1,κ6

6 (α′6, β
′
6)

(by the numerical result in Remark 8; note that the tilde
on T̃ is here related to α′, β′ and in the following line to
α(0), β(0))

≥ T τ,1s−6(α (0)
6 , β

(0)
6 ) +

1
4
− τ − 1

26 + T̃
1,κ′6
6 (α(0)

6 , β
(0)
6 )− 1

25

> Ts(α(0), β(0)) +
1
24 −

4
26

= Ts(α(0), β(0)),

a contradiction. Hence

Ts(α(0), β(0)) = β(0) +
s−12∑

u=0

‖2uβ(0)‖

+
1

211 α
(0)
11 + α

(0)
11 + Σ̃11(α(0)

11 , β
(0)
11 ).

Therefore by Corollary 1, b(0)
1 , . . . , b

(0)
s−11 and a(0)

12 , . . . , a
(0)
s must be of the form

(we concentrate on “s odd”, “s even” being carried out quite analogously)

β
(0)
11 = 0.110101 . . . 01, α

(0)
11 = 0.0101 . . . 0111

or
β

(0)
11 = 0.1010 . . . 011, α

(0)
11 = 0.0101 . . . 011.

So it remains to maximize T̃ 1,κ
11 (α11, β11).
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In the first case we have∣∣∣∣κ+
1
3

(
1− 1

212

)∣∣∣∣ <
1

213 ,

in the second case we have∣∣∣∣κ−
1
3

(
1− 1

212

)∣∣∣∣ <
1

213 ,

so it suffices to maximize

T̃
1,− 1

3 (1−1/212)
11 (α11, β11) respectively T̃

1, 13 (1−1/212)
11 (α11, β11).

This is easily done with a Mathematica program and the result follows.

5. A class of nets with smaller star-discrepancy. We have seen in
Theorem 5 that the Hammersley net essentially is the “worst” distributed
digital (0, s, 2)-net in base 2.

We will show here that the star-discrepancy of the nets generated by

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




1 1 . . . 1 1
1 1 . . . 1 0
. . . . . . . . . . . . . . . .

1 1 . . . 0 0
1 0 . . . 0 0




is essentially smaller. Indeed it seems, by numerical experiments carried
out by Entacher, that these nets are the essentially best distributed digital
(0, s, 2)-nets in base 2. We have

Theorem 6. For the star-discrepancy D∗N of the digital net in base 2
generated by

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .

0 0 . . . 1 0
0 0 . . . 0 1


 and C2 =




1 1 . . . 1 1
1 1 . . . 1 0
. . . . . . . . . . . . . . . .

1 1 . . . 0 0
1 0 . . . 0 0




we have
ND∗N
s
≥ 0.2(7)

for all N (N = 2s) and

lim sup
N→∞

ND∗N
s
≤ 0.226341 . . .(8)

Remark 10. Hence for these nets we have

0.2885 . . . =
1

5 log 2
≤ lim inf

N→∞
ND∗N
logN

≤ lim sup
N→∞

ND∗N
logN

≤ 0.32654 . . .
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Indeed we conjecture that

lim
N→∞

ND∗N
logN

=
1

5 log 2
,

and that this is the best possible value at all, i.e.

lim
N→∞

min
ND∗N
logN

=
1

5 log 2
,

where the minimum is taken over all digital (0, s, 2)-nets in base 2.

Proof of Theorem 6. We will show that the lower bound even holds for

max
α,β s-bit

∆(α, β),

and also for the upper bound it suffices to consider ∆(α, β) for α, β s-bit.
Recall from Example 3 that for α, β s-bit we have

∆(α, β) =
s−1∑

u=0

‖2uβ‖(−1)a1+...+as−u (−1)as−u − (−1)as+1−j(u)

2

=
s−1∑

u=0

‖2uβ‖(−1)a1+...+as−u−1(as−u ⊕ as+1−j(u)),

where

j(u) :=





0 if u = 0,
0 if a1 ⊕ . . .⊕ as+1−j = bj for j = 1, . . . , u,
max{j ≤ u : a1 ⊕ . . .⊕ as+1−j 6= bj} otherwise.

We set ãi := a1 ⊕ . . .⊕ as+1−i and α̃ := 0.ã1 . . . ãs. Then

as+1−i = ãi ⊕ ãi+1, as+1−j(u) = ãr(u) ⊕ ãr(u)+1,

where

r(u) :=





0 if u = 0,
0 if bj = ãj for j = 1, . . . , u,
max{r ≤ u : bj 6= ãj} otherwise,

and where we have to set ãr(u) ⊕ ãr(u)+1 := 0 if r(u) = 0 and ãs+1 := 0.
Then

∆(α, β) =
s−1∑

u=0

‖2uβ‖%(u) =: δ(α̃, β),

where
%(u) := (−1)ãu+2(ãu+1 ⊕ ãu+2 ⊕ ãr(u) ⊕ ãr(u)+1).

To obtain the lower bound consider

β = 0.00100010001 . . . bs, α̃ = 0.10001000100 . . . as
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with the exception that bs = 1 instead of 0 if s = 4l+ 1 or s = 4l+ 2. Then

%(u) =
{−1 if u = 4l + 3,

1 otherwise
with the only exception that %(s− 1) = 0 if s = 4l. Then

β =
[s/4]−1∑

i=0

1
24i+3 +

bs
2s
,

hence

‖2uβ‖ =
[s/4]−1∑

i=du/4−1/2e

1
24i+3−u +

bs
2s−u

for u 6= 4l + 2 and it is 1 minus this quantity if u = 4l + 2. So

δ(α̃, β) =
[(s−5)/4]∑

l=0

(‖24lβ‖+ ‖24l+1β‖+ ‖24l+2β‖ − ‖24l+3β‖) +R,

with

R =





1/2 if s = 4l + 1,
3/4 if s = 4l + 2,
7/8 else.

Inserting for ‖2uβ‖ and evaluating the resulting finite geometric series then
yields

δ(α̃, β) =
4
5

[
s− 1

4

]
+

16[(s−1)/4] − 1
16[s/4]

·





2/25 + 7/8 if s = 4l,
(−11/50) + 1/2 if s = 4l + 1,
(−7/100) + 3/4 if s = 4l + 2,
1/200 + 7/8 if s = 4l + 3.

Now it is a simple task to check that in each of the four cases δ(α̃, β)/s is
decreasing to 1/5, and so the lower bound follows.

To obtain the upper bound consider for given r ∈ N the quantity

δr := sup
α,β

r−1∑

u=0

%(u)‖2uβ‖,

where the supremum is taken over all β ∈ [0, 1) and over all r + 1-bit
α = 0.a1 . . . ar+1. (Note that this means that ar+1 is not automatically set
to 0 as is done for r-bit α.)

This supremum is obviously attained (respectively approached) in the
following form: let u0 be the largest index such that %(u0) 6= 0; then %(u0) = 1.
Further the supremum is attained for some β with br+1 = br+2 = . . . = 0 if
bu0+1 = 1 and it is approached by β with br+1 = br+2 = . . . = 1 if bu0+1 = 0.
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So it can be shown for example with Mathematica that

δ11 =
5099
2048

= 2.48975 . . . ,

and this value is attained with bu0+1 = 1.
Now for s with s = 11q + w, 0 ≤ w ≤ 10, for all α̃, β we have δ(α̃, β) ≤

qδ11 + w, hence
δ(α̃, β)
s

≤ 1
s

[
s

11

]
· 2.48975 . . .+

10
s
,

which tends to 0.226341 . . . as s→∞, and the result follows.
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