Sums of distances to the nearest integer and the discrepancy of digital nets

by

G. LARCHER and F. PILLICHSHAMMER (Linz)

1. Introduction. The concept of digital nets provides at the moment the most efficient method to generate point sets with small star-discrepancy D_N^* . For a set of points $\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}$ in $[0, 1)^d$ the *star-discrepancy* of the point set is defined by

$$D_N^* = \sup_B \left| \frac{A_N(B)}{N} - \lambda(B) \right|,$$

where the supremum is taken over all subintervals B of $[0,1)^d$ of the form $B = \prod_{i=1}^d [0,b_i), \ 0 < b_i \leq 1, \ A_N(B)$ denotes the number of i with $\mathbf{x}_i \in B$ and λ is the Lebesgue measure.

It is known that for any set of N points in $[0,1)^2$ one has

$$\frac{ND_N^*}{\log N} \ge 0.06$$

(see for example [1]).

A digital (0, s, 2)-net in base 2 is a point set of $N = 2^s$ points $\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}$ in $[0, 1)^2$ which is generated as follows. Choose two $s \times s$ -matrices C_1, C_2 over \mathbb{Z}_2 with the following property: For every integer $k, 0 \leq k \leq s$, the system of the first k rows of C_1 together with the first s - k rows of C_2 is linearly independent over \mathbb{Z}_2 . Then to construct $\mathbf{x}_n := (x_n^{(1)}, x_n^{(2)})$ for $0 \leq n \leq 2^s - 1$, represent n in base 2:

$$n = n_{s-1}2^{s-1} + \ldots + n_12 + n_0,$$

multiply C_i with the vector of digits:

$$C_i(n_0,\ldots,n_{s-1})^{\mathrm{T}} =: (y_1^{(i)},\ldots,y_s^{(i)})^{\mathrm{T}} \in \mathbb{Z}_2^s$$

2000 Mathematics Subject Classification: 11K06, 11K38, 42C10.

Key words and phrases: digital nets, discrepancy, Walsh series analysis, distance to the nearest integer.

Research of F. Pillichshammer supported by the Austrian Research Foundation (FWF), Project S 8305.

and set

$$x_n^{(i)} := \sum_{j=1}^s \frac{y_j^{(i)}}{2^j}.$$

It was shown by Niederreiter [8] that for the star-discrepancy of any digital (0, s, 2)-net in base 2 we have

(1)
$$ND_N^* \le \frac{1}{2}s + \frac{3}{2},$$

hence

(2)
$$\limsup_{N \to \infty} \max \frac{ND_N^*}{\log N} \le \frac{1}{2\log 2} = 0.7213\dots$$

where the maximum is taken over all digital (0, s, 2)-nets in base 2 with $N = 2^s$ elements.

The simplest digital (0, s, 2)-net in base 2 is provided by choosing

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad \text{and} \quad C_2 = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

This gives the well-known Hammersley point set in base 2.

The star-discrepancy of this very special digital (0, s, 2)-net was studied by Halton and Zaremba [4], de Clerck [2] and Entacher [3]. The first two papers are very technical and very hard to read. Indeed in [4] an essential part of the proof (determining the extremal intervals) is not carried out in detail. [3] uses a new approach but also essentially relies on results from [4].

In this paper we study much more generally the star-discrepancy of digital (0, s, 2)-nets in base 2.

In Section 2 (see Theorem 1) we give a compact explicit formula for the discrepancy function of digital (0, s, 2)-nets in base 2. Our approach is via Walsh series analysis.

It turns out that this explicit formula is based on sums of distances to the nearest integer $(||x|| := \min(x - [x], 1 - (x - [x])))$ of the form

$$\sum_{u=0}^{s-1} \|2^u\beta\|\varepsilon_u$$

with a real β and certain integer sequences $\varepsilon_u \in \{-1, 0, 1\}$.

In Section 3 we study such sums on their own and we give a certain "spectrum" result for $\sum_{u=0}^{s-1} ||2^u\beta||$ (see Theorems 2 and 3), part of which will be needed in Section 4.

In Section 4 we use the above results to study the Hammersley point set once more, to give a simple and now self-contained proof for the exact

value of the "discrete discrepancy" and of the star-discrepancy of this point set (Theorem 4). Further we show that it is the "worst distributed" digital (0, s, 2)-net in base 2 with respect to star-discrepancy and we will get that for every digital (0, s, 2)-net in base 2 we have the (essentially) best possible bound

(3)
$$ND_N^* \le \frac{1}{3}s + \frac{19}{9},$$

and that

(4)
$$\lim_{N \to \infty} \max \frac{ND_N^*}{\log N} = \frac{1}{3\log 2} = 0.4808\dots$$

(the maximum is taken over all digital (0, s, 2)-nets in base 2 with $N = 2^s$ elements) with equality for the Hammersley point sets, thereby improving the bounds (1) and (2) of Niederreiter (Theorem 5).

Numerical investigations suggest that the minimal value for

$$\limsup_{N \to \infty} \frac{ND_N^*}{\log N}$$

over all digital (0, s, 2)-nets in base 2 is attained for the net generated by the matrices

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad \text{and} \quad C_2 = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

In Section 5 we give bounds for the star-discrepancy of this net and we show (Theorem 6) that for these nets

$$\frac{ND_N^*}{\log N} \ge \frac{1}{5\log 2} = 0.2885\dots$$

holds for all N and that

$$\limsup_{N \to \infty} \frac{N D_N^*}{\log N} \le 0.32654\dots,$$

thereby answering a question of Entacher in [3, Section 4].

2. The discrepancy function of digital (0, s, 2)-nets. For $0 \le \alpha, \beta \le 1$ we consider the discrepancy function

$$\Delta(\alpha,\beta) := A_N([0,\alpha) \times [0,\beta)) - N\alpha\beta$$

for digital (0, s, 2)-nets $\mathbf{x}_0, \dots, \mathbf{x}_{2^s-1}$ in base 2 (i.e. $N = 2^s$).

Since the generating matrices C_1 , C_2 of a (0, s, 2)-net must be regular, and since multiplying C_1 , C_2 by a regular matrix A does not change the point set (only its order) we may assume in all the following that

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad \text{and} \quad C_2 = \begin{pmatrix} c_1^1 & c_1^2 & \dots & c_1^s \\ c_2^1 & c_2^2 & \dots & c_2^s \\ \dots & \dots & \dots \\ c_s^1 & c_s^2 & \dots & c_s^s \end{pmatrix} =: \begin{pmatrix} \vec{c_1} \\ \vec{c_2} \\ \dots \\ \vec{c_s} \end{pmatrix}.$$

We assume first that α and β are "s-bit", i.e.

$$\alpha = \frac{a_1}{2} + \ldots + \frac{a_s}{2^s}, \quad \beta = \frac{b_1}{2} + \ldots + \frac{b_s}{2^s},$$

For any s-bit number $\delta = d_1/2 + \ldots + d_s/2^s$ we write

$$\vec{\delta} := \begin{pmatrix} d_1 \\ \vdots \\ d_s \end{pmatrix},$$

and for a non-negative integer $k = k_{s-1}2^{s-1} + \ldots + k_12 + k_0$ we write

$$\vec{k} := \begin{pmatrix} k_0 \\ \vdots \\ k_{s-1} \end{pmatrix}.$$

We need some further notation:

$$\vec{\gamma} := \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_s \end{pmatrix} := C_2 \vec{\alpha} + \vec{\beta}, \quad \vec{\gamma}(u) := \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_u \end{pmatrix},$$
$$C'_2(u) := \begin{pmatrix} c_1^{s-u+1} & \dots & c_u^{s-u+1} \\ \dots & \dots & \dots \\ c_1^s & \dots & c_u^s \end{pmatrix}^{-1}.$$

 $(C'_2(u)$ exists since by the (0, s, 2)-net property the first s - u rows of C_1 together with the first u rows of C_2 must form a linearly independent system, hence the matrix

$$C_2(u) := \begin{pmatrix} c_1^{s-u+1} & \dots & c_1^s \\ \dots & \dots \\ c_u^{s-u+1} & \dots & c_u^s \end{pmatrix}$$

must be regular.) Note that $\gamma_u = (\vec{c}_u | \vec{\alpha}) + b_u$.

Further, for $0 \le u \le s - 1$ let

$$m(u) := \begin{cases} 0 & \text{if } u = 0, \\ 0 & \text{if } (\vec{\gamma}(u)|C'_{2}\vec{e}_{1}) = 1, \\ \max\{1 \le j \le u : (\vec{\gamma}(u)|C'_{2}\vec{e}_{i}) = 0; i = 1, \dots, j\} & \text{otherwise} \end{cases}$$

(here $(\cdot|\cdot)$ denotes the usual inner product in \mathbb{Z}_2^u , $\vec{e_i}$ is the *i*th unit vector in \mathbb{Z}_2^u , and $C'_2 := C'_2(u)$).

Let j(u) := u - m(u). Then we have

THEOREM 1. For all α, β s-bit, for the discrepancy function $\Delta(\alpha, \beta)$ of the digital (0, s, 2)-net in base 2 generated by

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

and C_2 we have

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^{u}\beta\|(-1)^{(\vec{c}_{u+1}|\vec{\alpha})}(-1)^{(\vec{\gamma}(u)|C_{2}'(u)(c_{u+1}^{s-u+1},\dots,c_{u+1}^{s})^{\mathrm{T}})} \times \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}$$

(here for u = 0 we set $(\vec{\gamma}(u)|C'_2(u)(c^{s-u+1}_{u+1},\ldots,c^s_{u+1})^{\mathrm{T}}) = 0$ and $a_{s+1} := 0$).

Before we prove this result we give some remarks and examples.

REMARK 1. Note that $\Delta(\alpha, \beta)$ hence is of the form $\sum_{u=0}^{s-1} \|2^u\beta\|\varepsilon_u$ with some $\varepsilon_u \in \{-1, 0, 1\}$.

REMARK 2. Let $0 \le \alpha, \beta \le 1$ now be arbitrary (not necessarily *s*-bit). Since all the points of the digital net have coordinates $x_n^{(i)}$ of the form $a/2^s$ for some $a \in \{0, 1, \ldots, 2^s - 1\}$, we then have

$$\Delta(\alpha,\beta) = \Delta(\alpha(s),\beta(s)) + 2^{s}(\alpha(s)\beta(s) - \alpha\beta)$$

where $\alpha(s)$ (resp. $\beta(s)$) is the smallest s-bit number larger than or equal to α (resp. β).

EXAMPLE 1. Let C_2 be of triangular form

$$C_2 = \begin{pmatrix} c_1^1 & c_1^2 & \dots & c_1^{s-1} & 1\\ c_2^1 & c_2^2 & \dots & 1 & 0\\ \dots & \dots & \dots & \dots\\ c_{s-1}^1 & 1 & \dots & 0 & 0\\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Then

$$C_2'(u) = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & d_2^u \\ \dots & \dots & \dots & \dots \\ 1 & d_u^2 & \dots & d_u^{u-1} & d_u^u \end{pmatrix}$$

with certain $d_i^j \in \mathbb{Z}_2$. Hence

$$C'_{2}(u)\vec{e}_{i} = (0, \dots, 0, 1, d^{i}_{u+2-i}, \dots, d^{i}_{u})^{\mathrm{T}},$$

and

$$(\vec{\gamma}(u)|C'_{2}(u)\vec{e}_{i}) = \gamma_{u+1-i} + \gamma_{u+2-i}d^{i}_{u+2-i} + \ldots + \gamma_{u}d^{i}_{u}.$$

Therefore

$$\max\{1 \le j \le u : (\vec{\gamma}(u)|C'_2(u)\vec{e}_i) = 0; i = 1, \dots, j\} \\ = \max\{1 \le j \le u : \gamma_{u+1-i} = 0; i = 1, \dots, j\},\$$

hence $\gamma_u = \ldots = \gamma_{u+1-m(u)} = 0$, $\gamma_{u-m(u)} = 1$, so that

$$j(u) = u - m(u) = \max\{j \le u : \gamma_j = 1\} = \max\{j \le u : (\vec{c}_j | \vec{\alpha}) \ne b_j\}.$$

Respectively

$$j(u) = \begin{cases} 0 & \text{if } u = 0, \\ 0 & \text{if } (\vec{c_j} | \vec{\alpha}) = b_j \text{ for } j = 1, \dots, u. \end{cases}$$

Further $(c_{u+1}^{s-u+1}, \ldots, c_{u+1}^s) = (0, \ldots, 0)$, and so for α, β s-bit we have

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^{u}\beta\|(-1)^{(\vec{c}_{u+1}|\vec{\alpha})} \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}.$$

EXAMPLE 2. For the discrepancy function of the Hammersley point set, i.e. for the (0, s, 2)-net generated by

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad \text{and} \quad C_2 = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix},$$

because of $(\vec{c}_j | \vec{\alpha}) = a_{s+1-j}$ we obtain (for α, β s-bit)

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^{u}\beta\| \frac{1-(-1)^{a_{s-u}+a_{s+1-j(u)}}}{2}$$
$$= \sum_{u=0}^{s-1} \|2^{u}\beta\| (a_{s-u} \oplus a_{s+1-j(u)})$$

(where \oplus denotes addition modulo 2).

EXAMPLE 3. For the discrepancy function of the (0, s, 2)-net generated by

$$C_1 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad \text{and} \quad C_2 = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$

because of $(\vec{c}_j | \vec{\alpha}) = a_1 \oplus \ldots \oplus a_{s+1-j}$ we obtain (for α, β s-bit)

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^u\beta\|(-1)^{a_1+\ldots+a_{s-u}} \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}$$

For the proof of the Theorem 1 we need two auxiliary results.

LEMMA 1. Let z be of the form $z = p/2^s$, $p \in \{0, \ldots, 2^s - 1\}$. Then for the characteristic function $\chi_{[0,z)}$ of the interval [0,z) we have

$$\chi_{[0,z)}(x) = \sum_{k=0}^{2^s-1} c_k(z) \operatorname{wal}_k(x),$$

where wal_k denotes the kth Walsh function in base 2 (see Remark 3),

$$c_k(z) = \begin{cases} z & \text{if } k = 0, \\ \operatorname{wal}_k(z) \frac{1}{2^{\nu(k)}} \psi(2^{\nu(k)}z) & \text{if } k \neq 0, \end{cases}$$

 $\psi(x)$ is periodic with period 1 and

$$\psi(x) = \begin{cases} x & \text{if } 0 \le x < 1/2, \\ x - 1 & \text{if } 1/2 \le x < 1, \end{cases}$$

and v(k) = r if $2^r \le k < 2^{r+1}$.

REMARK 3. Recall that Walsh functions in base 2 can be defined as follows: For a non-negative integer k with base 2 representation $k = k_m 2^m + \ldots + k_1 2 + k_0$ and a real x with (canonical) base 2 representation $x = x_1/2 + x_2/2^2 + \ldots$ we have

$$\operatorname{wal}_k(x) = (-1)^{x_1 k_0 + x_2 k_1 + \dots + x_{m+1} k_m} = (-1)^{(\vec{k} \mid \vec{x})}.$$

Proof of Lemma 1. This is a simple calculation, a proof can be found for example in [6, Lemma 2]. \blacksquare

LEMMA 2. Let ψ be as in Lemma 1. Then

$$\psi(2^{l+1}\beta) - \sum_{i=0}^{l} \psi(2^{i}\beta) = \{\beta\} - b_{l+2}.$$

(Here $\{\beta\} = \beta - [\beta].$)

Proof. Let $\{\beta\} = \sum_{j=1}^{\infty} b_j 2^{-j}$. Then

$$\psi(2^{i}\beta) = \sum_{j=i+1}^{\infty} b_{j}2^{i-j} - b_{i+1}$$

and therefore

$$\begin{split} \sum_{i=0}^{l} \psi(2^{i}\beta) &= \sum_{i=0}^{l} \left(\left(\sum_{j=i+1}^{\infty} b_{j} 2^{i-j} \right) - b_{i+1} \right) \\ &= \sum_{j=1}^{l+1} b_{j} 2^{-j} \sum_{i=0}^{j-1} 2^{i} + \sum_{j=l+2}^{\infty} b_{j} 2^{-j} \sum_{i=0}^{l} 2^{i} - \sum_{i=0}^{l} b_{i+1} \\ &= \sum_{j=l+2}^{\infty} b_{j} 2^{(l+1)-j} - \sum_{j=1}^{\infty} b_{j} 2^{-j} = \psi(2^{l+1}\beta) - \{\beta\} + b_{l+2}. \end{split}$$

Proof of Theorem 1. Let $I := [0, \alpha) \times [0, \beta)$. Then for $\mathbf{y} = (y^{(1)}, y^{(2)}) \in [0, 1)^2$ by Lemma 1 we have

$$\begin{split} \chi_{I}(\mathbf{y}) &- \lambda(I) = \chi_{[0,\alpha)}(y^{(1)})\chi_{[0,\beta)}(y^{(2)}) - \alpha\beta \\ &= \sum_{\substack{k,l=0\\(k,l) \neq (0,0)}}^{2^{s}-1} c_{k}(\alpha)c_{l}(\beta) \operatorname{wal}_{k}(y^{(1)}) \operatorname{wal}_{l}(y^{(2)}) \\ &= \alpha \sum_{l=1}^{2^{s}-1} \operatorname{wal}_{l}(\beta) \frac{1}{2^{\upsilon(l)}} \psi(2^{\upsilon(l)}\beta) \operatorname{wal}_{l}(y^{(2)}) \\ &+ \beta \sum_{\substack{k=1\\k=1}}^{2^{s}-1} \operatorname{wal}_{k}(\alpha) \frac{1}{2^{\upsilon(k)}} \psi(2^{\upsilon(k)}\alpha) \operatorname{wal}_{k}(y^{(1)}) \\ &+ \sum_{\substack{k,l=1\\k,l=1}}^{2^{s}-1} \operatorname{wal}_{k}(\alpha) \operatorname{wal}_{l}(\beta) \frac{1}{2^{\upsilon(k)+\upsilon(l)}} \psi(2^{\upsilon(k)}\alpha) \psi(2^{\upsilon(l)}\beta) \\ &\times \operatorname{wal}_{k}(y^{(1)}) \operatorname{wal}_{l}(y^{(2)}). \end{split}$$

Hence

$$\begin{aligned} \Delta(\alpha,\beta) &= \alpha \sum_{l=1}^{2^{s}-1} \operatorname{wal}_{l}(\beta) \frac{1}{2^{v(l)}} \psi(2^{v(l)}\beta) \sum_{i=0}^{2^{s}-1} \operatorname{wal}_{l}(y_{i}) \\ &+ \beta \sum_{k=1}^{2^{s}-1} \operatorname{wal}_{k}(\alpha) \frac{1}{2^{v(k)}} \psi(2^{v(k)}\alpha) \sum_{i=0}^{2^{s}-1} \operatorname{wal}_{k}(x_{i}) \\ &+ \sum_{k,l=1}^{2^{s}-1} \operatorname{wal}_{k}(\alpha) \operatorname{wal}_{l}(\beta) \frac{\psi(2^{v(k)}\alpha)\psi(2^{v(l)}\beta)}{2^{v(k)+v(l)}} \sum_{i=0}^{2^{s}-1} \operatorname{wal}_{k}(x_{i}) \operatorname{wal}_{l}(y_{i}). \end{aligned}$$

(Here the net consists of the points \mathbf{x}_i , $i = 0, \ldots, 2^s - 1$, with $\mathbf{x}_i := (x_i, y_i)$.)

Since \mathbf{x}_i , $i = 0, \dots, 2^s - 1$, is a digital (0, s, 2)-net, for all $0 < k, l < 2^s$ we have

Sums of distances to the nearest integer

$$\sum_{i=0}^{2^{s}-1} \operatorname{wal}_{k}(x_{i}) = \sum_{i=0}^{2^{s}-1} \operatorname{wal}_{l}(y_{i}) = 0$$

(see for example [5, Lemma 2]).

We now consider $\sum_{i=0}^{2^s-1} \operatorname{wal}_k(x_i) \operatorname{wal}_l(y_i)$ with $x_i := x_i^{(1)}/2 + \ldots + x_i^{(s)}/2^s$ and $y_i := y_i^{(1)}/2 + \ldots + y_i^{(s)}/2^s$. We identify (x_i, y_i) with $(x_i^{(1)}, \ldots, x_i^{(s)}, y_i^{(1)}, \ldots, y_i^{(s)})^{\mathrm{T}} \in (\mathbb{Z}_2)^{2s}$

and we define

$$(x_i, y_i) \oplus (x'_i, y'_i) := (x_i^{(1)} + x'^{(1)}_i, \dots, y_i^{(s)} + y'^{(s)}_i).$$

Further $\operatorname{wal}_{k,l}(x_i, y_i) := \operatorname{wal}_k(x_i) \operatorname{wal}_l(y_i)$, hence

$$\operatorname{wal}_{k,l}((x_i, y_i) \oplus (x'_i, y'_i)) = \operatorname{wal}_{k,l}(x_i, y_i) \operatorname{wal}_{k,l}(x'_i, y'_i),$$

i.e. wal_{k,l} is a character on $((\mathbb{Z}_2)^{2s}, \oplus)$.

The digital net $\mathbf{x}_0, \ldots, \mathbf{x}_{2^s-1}$ is a subgroup of $((\mathbb{Z}_2)^{2s}, \oplus)$, hence

$$\sum_{i=0}^{2^s-1} \operatorname{wal}_k(x_i) \operatorname{wal}_l(y_i) = \begin{cases} 2^s & \text{if } \operatorname{wal}_{k,l}(x_i, y_i) = 1 \text{ for all } i = 0, \dots, 2^s - 1, \\ 0 & \text{otherwise.} \end{cases}$$

(For more details see [5] or [7].)

Now wal_{k,l}
$$(x_i, y_i) = (-1)^{(\vec{k} \mid \vec{x}_i) + (\vec{l} \mid \vec{y}_i)} = 1$$
 for all $i = 0, \dots, 2^s - 1$ iff
 $(\vec{k} \mid \vec{x}_i) = (\vec{l} \mid \vec{y}_i)$ for all $i = 0, \dots, 2^s - 1$,

(by the definition of the net) this means

$$(\vec{k} \mid \vec{i}) = (\vec{l} \mid C_2 \vec{i})$$
 for all $i = 0, \dots, 2^s - 1$,

and this is satisfied if and only if

$$\vec{k} = C_2^{\rm T} \vec{l} =: \vec{k}(l)$$

Further

$$\operatorname{wal}_{k(l)}(\alpha)\operatorname{wal}_{l}(\beta) = (-1)^{(\vec{k}(l)|\vec{\alpha}) + (\vec{l}|\vec{\beta})} = (-1)^{(\vec{l}|C_{2}\vec{\alpha} + \vec{\beta})} = \operatorname{wal}_{l}(\gamma)$$

(see notations).

 So

$$\begin{split} \Delta(\alpha,\beta) &= 2^s \sum_{u=0}^{s-1} \frac{\psi(2^u\beta)}{2^u} \sum_{l=2^u}^{2^{u+1}-1} (-1)^{l_0\gamma_1+\ldots+l_{u-1}\gamma_u+\gamma_{u+1}} \frac{\psi(2^{\upsilon(k(l))}\alpha)}{2^{\upsilon(k(l))}} \\ &= 2^s \sum_{u=0}^{s-1} \|2^u\beta\| (-1)^{(\vec{c}_{u+1}|\vec{\alpha})} \\ &\times \frac{1}{2^u} \sum_{l=2^u}^{2^{u+1}-1} (-1)^{l_0\gamma_1+\ldots+l_{u-1}\gamma_u} \frac{\psi(2^{\upsilon(k(l))}\alpha)}{2^{\upsilon(k(l))}} \end{split}$$

(here $l := l_0 + l_1 2 + \ldots + l_u 2^u$; note that $(-1)^{\gamma_{u+1}} = (-1)^{(\vec{c}_{u+1}|\vec{\alpha})} (-1)^{b_{u+1}}$ and $\psi(2^u\beta)(-1)^{b_{u+1}} = ||2^u\beta||$).

We now consider

$$\Sigma_{1} := \frac{1}{2^{u}} \sum_{l=2^{u}}^{2^{u+1}-1} (-1)^{l_{0}\gamma_{1}+\ldots+l_{u-1}\gamma_{u}} \frac{\psi(2^{\upsilon(k(l))}\alpha)}{2^{\upsilon(k(l))}}$$
$$= \frac{1}{2^{u}} \sum_{w=0}^{s-1} \frac{\psi(2^{w}\alpha)}{2^{w}} \sum_{\substack{l=2^{u}\\ \nu(k(l))=w}}^{2^{u+1}-1} (-1)^{l_{0}\gamma_{1}+\ldots+l_{u-1}\gamma_{u}}.$$

For $2^{u} \leq l < 2^{u+1}$, the condition v(k(l)) = w means that there are $k_0, \ldots, k_{w-1} \in \mathbb{Z}_2$ such that

$$C_2^{\mathrm{T}} \vec{l} = (k_0, \dots, k_{w-1}, 1, 0, \dots, 0)^{\mathrm{T}},$$

that is,

(5)
$$\vec{c}_1 l_0 + \ldots + \vec{c}_u l_{u-1} + \vec{c}_{u+1} = k_0 \vec{e}_1 + \ldots + k_{w-1} \vec{e}_w + \vec{e}_{w+1}$$

where \vec{e}_i is the *i*th unit vector in \mathbb{Z}_2^s .

Since $\vec{c}_1, \ldots, \vec{c}_{u+1}, \vec{e}_1, \ldots, \vec{e}_{w+1}$ by the (0, s, 2)-net property are linearly independent as long as $(u+1) + (w+1) \leq s$ we must have $u + w \geq s - 1$. Hence

$$\Sigma_1 = \sum_{w=s-1-u}^{s-1} \frac{\psi(2^w \alpha)}{2^{u+w}} \sum_{\substack{l=2^u\\v(k(l))=w}}^{2^{u+1}-1} (-1)^{l_0 \gamma_1 + \dots + l_{u-1} \gamma_u}.$$

In the following we are concerned with evaluating the last sum in the above expression which equals

$$\Sigma_2 := \sum_{\substack{l=0\\v(k(l+2^u))=w}}^{2^u-1} \operatorname{wal}_l(\gamma) = \sum_{\substack{C'_2l=0\\v(k(C'_2l+2^u))=w}}^{2^u-1} \operatorname{wal}_{C'_2l}(\gamma)$$

(here C'_2 stands for $C'_2(u)$; see notation). Now $v(k(C'_2l+2^u)) = w$ means

$$C_2^{\mathrm{T}} \begin{pmatrix} C_2' \vec{l} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} k_0 \\ \vdots \\ k_{w-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

for some $k_i \in \mathbb{Z}_2$. This is equivalent to

(6)
$$\begin{pmatrix} D \\ \vdots \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \vec{l} = \begin{pmatrix} k_0 \\ \vdots \\ k_{w-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} c_{u+1}^1 \\ \vdots \\ c_{u+1}^s \\ \vdots \\ c_{u+1}^s \end{pmatrix}$$

with

$$D = \begin{pmatrix} c_1^1 & \dots & c_u^1 \\ \dots & \dots \\ c_1^{s-u} & \dots & c_u^{s-u} \end{pmatrix} C'_2,$$

i.e. an $(s-u) \times u$ -matrix.

Let s - u = w + 1. We first show that in this case equation (6) has a solution \vec{l} . This is equivalent to showing that system (5) has a solution, i.e., that there are $l_0, \ldots, l_{u-1}, k_0, \ldots, k_{w-1}$ in \mathbb{Z}_2 such that

$$\vec{c}_1 l_0 + \ldots + \vec{c}_u l_{u-1} + \vec{c}_{u+1} + \vec{e}_1 k_0 + \ldots + \vec{e}_w k_{w-1} + \vec{e}_{w+1} = 0.$$

Since s = u + w + 1 the vectors $\vec{c}_1, \ldots, \vec{c}_{u+1}, \vec{e}_1, \ldots, \vec{e}_{w+1}$ are linearly dependent, and hence we can find $l_0, \ldots, l_{u-1}, l_u, k_0, \ldots, k_{w-1}, k_w$ in \mathbb{Z}_2 not all zero such that

$$\vec{c}_1 l_0 + \ldots + \vec{c}_u l_{u-1} + \vec{c}_{u+1} l_u + \vec{e}_1 k_0 + \ldots + \vec{e}_w k_{w-1} + \vec{e}_{w+1} k_w = 0.$$

Assume that $l_u = 0$. Then $\vec{c}_1, \ldots, \vec{c}_u, \vec{e}_1, \ldots, \vec{e}_{w+1}$ are linearly dependent. But this contradicts the (0, s, 2)-net property since $\vec{c}_1, \ldots, \vec{c}_u$ are the first u rows of the matrix C_2 and $\vec{e}_1, \ldots, \vec{e}_{w+1}$ are the first w+1 rows of the matrix C_1 and u + w + 1 = s. Hence $l_u = 1$. In the same way one can show that $k_w = 1$. This shows that system (5), and hence also (6), has a solution.

Now the unique solution \vec{l} of (6) is given by

$$\vec{l} = (c_{u+1}^{s-u+1}, \dots, c_{u+1}^s)^{\mathrm{T}}.$$

If $s - u \leq w$, then the 2^{u+w-s} solutions therefore are given by

$$\vec{l} = (l_0, \dots, l_{u+w-(s+1)}, c_{u+1}^{w+1} \oplus 1, c_{u+1}^{w+2}, \dots, c_{u+1}^s)^{\mathrm{T}}$$

with $l_0, \ldots, l_{u+w-(s+1)}$ arbitrary in \mathbb{Z}_2 .

Hence for $w \ge s - u$ we have

$$\begin{split} \Sigma_{2} &= \sum_{l_{0}, \dots, l_{u+w-(s+1)} \in \mathbb{Z}_{2}} (-1)^{(\vec{\gamma}(u)|C'_{2}(l_{0}, \dots, l_{u+w-(s+1)}, c^{w+1}_{u+1} \oplus 1, c^{w+2}_{u+1}, \dots, c^{s}_{u+1})^{\mathrm{T}})} \\ &= (-1)^{(C'_{2}^{\mathrm{T}}\vec{\gamma}(u)|(0, \dots, 0, c^{w+1}_{u+1} \oplus 1, c^{w+2}_{u+1}, \dots, c^{s}_{u+1})^{\mathrm{T}})} \sum_{l=0}^{2^{u+w-s}-1} \mathrm{wal}_{l}(C'_{2}^{\mathrm{T}}\gamma(u)). \end{split}$$

The last sum is a sum over all characters of $((\mathbb{Z}_2)^{u+w-s}, \oplus)$, and is therefore 2^{u+w-s} if $(C_2'^T \vec{\gamma}(u) | \vec{e}_i) = 0$ for all $i = 1, \ldots, u + w - s$ (\vec{e}_i is the *i*th unit vector in \mathbb{Z}_2^u) and it is 0 otherwise.

Further, if $(C'_2 \vec{\gamma}(u) | \vec{e}_i) = 0$ for all $i = 1, \ldots, u + w - s$ (we will call this the *condition* $*_u$), then

$$(C_2'^{\mathrm{T}}\vec{\gamma}(u)|(0,\ldots,0,c_{u+1}^{w+1}\oplus 1,c_{u+1}^{w+2},\ldots,c_{u+1}^{s})^{\mathrm{T}}) = (\vec{\gamma}(u)|C_2'(c_{u+1}^{s-u+1},\ldots,c_{u+1}^{s})^{\mathrm{T}}) + (\vec{\gamma}(u)|C_2'\vec{e}_{u+w-s+1}),$$

so that altogether we have

$$\Sigma_1 = \frac{1}{2^s} \left(-1 \right)^{(\vec{\gamma}(u)|C_2'(c_{u+1}^{s-u+1}, \dots, c_{u+1}^s)^{\mathrm{T}})} f(u),$$

where

$$\begin{split} f(u) &:= 2\psi(2^{s-u-1}\alpha) \\ &+ \begin{cases} \sum_{w=s-u}^{s-1} \psi(2^w \alpha) (-1)^{(\vec{\gamma}(u)|C'_2 \vec{e}_{u+w-s+1})} & \text{if } *_u \text{ holds,} \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

and therefore

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^u\beta\|(-1)^{(\vec{c}_{u+1}|\vec{\alpha})}(-1)^{(\vec{\gamma}(u)|C_2'(c_{u+1}^{s-u+1},\dots,c_{u+1}^s)^{\mathrm{T}})}f(u).$$

It remains to show that

$$f(u) = \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}.$$

By the definition of m(u) we have $(\vec{\gamma}(u)|C'_2\vec{e}_1) = \ldots = (\vec{\gamma}(u)|C'_2\vec{e}_{m(u)}) = 0$ and $(\vec{\gamma}(u)|C'_2\vec{e}_{m(u)+1}) = 1$, hence $*_u$ holds iff $u + w - s \leq m(u)$. So finally

$$f(u) = 2\psi(2^{s-u-1}\alpha) + \sum_{w=s-u}^{s-u+m(u)} \psi(2^w\alpha)(-1)^{(\vec{\gamma}(u)|C_2'\vec{e}_{u+w-s+1})}$$

$$= 2\psi(2^{s-u-1}\alpha) + \sum_{w=s-u}^{s-u+m(u)-1} \psi(2^w\alpha) - \psi(2^{s-u+m(u)}\alpha)$$

$$= \psi(2^{s-u-1}\alpha) - \sum_{w=0}^{s-u-2} \psi(2^w\alpha) + \sum_{w=0}^{s-u+m(u)-1} \psi(2^w\alpha) - \psi(2^{s-u+m(u)}\alpha)$$

$$= \alpha - a_{s-u} - \alpha + a_{s+1-(u-m(u))} = a_{s+1-(u-m(u))} - a_{s-u}$$

$$= \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}$$

where we used Lemma 2 and j(u) = u - m(u). The result follows.

3. A spectrum result for sums of distances to the nearest integer. Here we study sums of the form $\sum_{u=0}^{s-1} ||2^u\beta||$ for $\beta \in \mathbb{R}$, especially for *s*-bit β , and we derive results which are of independent interest and/or will be used in Section 4.

The essential technical tool is provided by

LEMMA 3. Assume that $\beta = 0.b_1b_2...$ (this always means base 2 representation) has two equal consecutive digits b_ib_{i+1} with $i \leq s-1$ and let i be minimal with this property, i.e.

$$\begin{split} \beta &= 0.01 \dots 0100 b_{i+2} \dots \quad or \\ \beta &= 0.10 \dots 0100 b_{i+2} \dots \quad or \\ \beta &= 0.01 \dots 1011 b_{i+2} \dots \quad or \\ \beta &= 0.10 \dots 1011 b_{i+2} \dots \end{split}$$

Replace β by

$$\begin{split} \gamma &= 0.10 \dots 1010 b_{i+2} \dots \quad resp. \\ \gamma &= 0.01 \dots 1010 b_{i+2} \dots \quad resp. \\ \gamma &= 0.10 \dots 0101 b_{i+2} \dots \quad resp. \\ \gamma &= 0.01 \dots 0101 b_{i+2} \dots \end{split}$$

Then

$$\sum_{u=0}^{s-1} \|2^u \gamma\| = \sum_{u=0}^{s-1} \|2^u \beta\| + \begin{cases} \frac{1}{3}(1-(-1)^i/2^i)(1-\tau) & \text{in the first two cases,} \\ \frac{1}{3}(1-(-1)^i/2^i)\tau & \text{in the last two cases,} \end{cases}$$

where $\tau := 0.b_{i+2}b_{i+3}\dots$

REMARK 4. In any case we have $\sum_{u=0}^{s-1} ||2^u \gamma|| \ge \sum_{u=0}^{s-1} ||2^u \beta||$ with equality iff $\tau = 1$ in the first two cases and iff $\tau = 0$ in the last two cases.

Proof of Lemma 3. This is simple calculation. We just handle the first case here:

$$\sum_{u=0}^{s-1} (\|2^{u}\gamma\| - \|2^{u}\beta\|)$$

= $\|\gamma\| - \|2^{i}\beta\| + \left(\left(\frac{\tau}{2} - \frac{\tau}{4}\right) - \left(\frac{\tau}{4} - \frac{\tau}{8}\right) \pm \ldots + \left(\frac{\tau}{2^{i}} - \frac{\tau}{2^{i+1}}\right)\right)$
= $\left(\frac{1}{3}\left(1 + \frac{1}{2^{i}}\right) - \frac{\tau}{2^{i+1}}\right) - \frac{\tau}{2} + \frac{1}{6}\left(1 + \frac{1}{2^{i}}\right)\tau$
= $\frac{1}{3}\left(1 + \frac{1}{2^{i}}\right)(1 - \tau).$

The other cases are calculated in the same way. \blacksquare

We immediately obtain a corollary which is useful in Section 4.

COROLLARY 1. Assume that $\beta = 0.1b_2b_3...$ has two equal consecutive digits b_ib_{i+1} with $2 \leq i \leq s-1$ and let i be the minimal index with this property, i.e.

$$\begin{split} \beta &= 0.101 \dots 0100 b_{i+2} \dots \quad or \\ \beta &= 0.110 \dots 0100 b_{i+2} \dots \quad or \\ \beta &= 0.101 \dots 1011 b_{i+2} \dots \quad or \\ \beta &= 0.110 \dots 1011 b_{i+2} \dots \quad or \\ \gamma &= 0.110 \dots 1010 b_{i+2} \dots \quad resp. \\ \gamma &= 0.101 \dots 1010 b_{i+2} \dots \quad resp. \\ \gamma &= 0.101 \dots 0101 b_{i+2} \dots \quad resp. \\ \gamma &= 0.101 \dots 0101 b_{i+2} \dots \end{split}$$

Then

Replace β by

$$\begin{split} \gamma + \sum_{u=0}^{s-1} \|2^u \gamma\| \\ &= \beta + \sum_{u=0}^{s-1} \|2^u \beta\| + \begin{cases} \frac{1}{3}(1 - (-1)^{i-1}/2^{i-1})(1 - \tau) & \text{in the first two cases,} \\ \frac{1}{3}(1 - (-1)^{i-1}/2^{i-1})\tau & \text{in the last two cases,} \end{cases}$$
where $\tau := 0$ has been

where $\tau := 0.b_{i+2}b_{i+3}...$

Proof. This follows from $\beta + \|\beta\| = \gamma + \|\gamma\| = 1$, by applying Lemma 3 to $\beta' := 0.b_2b_3...$

We obtain

THEOREM 2. Consider $\beta \in \mathbb{R}$ with the canonical base 2 representation (i.e. with infinitely many digits equal to zero). Then there exists

$$\max_{\beta} \sum_{u=0}^{s-1} \|2^{u}\beta\| = \frac{s}{3} + \frac{1}{9} - (-1)^{s} \frac{1}{9 \cdot 2^{s}}$$

and it is attained if and only if β is of the form β_0 with

$$\beta_0 = \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^{s+1} \right) \quad or \quad \beta_0 = \frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^s \right).$$

REMARK 5. Note that

$$\frac{2}{3}\left(1 - \left(-\frac{1}{2}\right)^{s+1}\right) = \begin{cases} 0.1010\dots101 & \text{if } s \text{ is odd,} \\ 0.1010\dots011 & \text{if } s \text{ is even,} \end{cases}$$
$$\frac{1}{3}\left(1 - \left(-\frac{1}{2}\right)^{s}\right) = \begin{cases} 0.0101\dots011 & \text{if } s \text{ is odd,} \\ 0.0101\dots101 & \text{if } s \text{ is even.} \end{cases}$$

Proof of Theorem 2. For any $\gamma = 0.c_1c_2...c_sc_{s+1}...$ with fixed $c_1,...,c_s$ the sum $\sum_{u=0}^{s-1} \|2^u \gamma\|$ obviously becomes maximal if $c_s = 0$ and $c_{s+1} =$ $c_{s+2} = \ldots = 1$, or if $c_s = 1$ and $c_{s+1} = c_{s+2} = \ldots = 0$. Hence by Lemma 3 the supremum

$$\sup_{\beta} \sum_{u=0}^{s-1} \|2^u\beta\|$$

can only be attained, respectively approached by

$$\beta_1 = 0.1010 \dots 10111 \dots \text{ or}$$
$$(b_s \text{ is the last zero})$$
$$\beta_2 = 0.0101 \dots 01 \text{ or}$$
$$\beta_3 = 0.1010 \dots 11$$
$$(b_s \text{ is the last one})$$

if s is even, and by

$$\beta_4 = 0.0101 \dots 10111 \dots$$
 or
 $\beta_5 = 0.1010 \dots 01$ or
 $\beta_6 = 0.0101 \dots 11$

if s is odd.

Now we check easily that

$$\sum_{u=0}^{s-1} \|2^u \beta_i\| = \frac{s}{3} + \frac{1}{9} - (-1)^s \frac{1}{9 \cdot 2^s}$$

for $i = 1, \ldots, 6$ and the result follows.

The next theorem gives the result which we call the "spectrum" result (see Remark 6).

THEOREM 3. (a) The maximum

$$\max_{\beta s - bit} \sum_{u=0}^{s-1} \|2^u \beta\| = \frac{s}{3} + \frac{1}{9} - (-1)^s \frac{1}{9 \cdot 2^s}$$

is attained if and only if β is one of the β_0 from Theorem 2.

(b) We have

$$\max_{\substack{\beta \ s \ bit\\ \beta \neq \beta_0}} \sum_{u=0}^{s-1} \|2^u \beta\| = \frac{s}{3} + \frac{1}{36} - (-1)^s \frac{7}{9 \cdot 2^s}$$

and this second successive maximum is attained if and only if β is of the form β' with

$$\beta' = \begin{cases} 0.01101010\dots101 & or\\ 0.010101\dots01101 & or\\ 0.10010101\dots011 & \end{cases}$$

 $if \ s \ is \ odd \ and$

$$\beta' = \begin{cases} 0.100101010\dots 101 & or\\ 0.010101\dots 010011 & or\\ 0.101010\dots 101101 & or\\ 0.011010\dots 101011 & \end{cases}$$

if s is even.

Remark 6. Let

$$\max_{\beta s-\text{bit}} \sum_{u=0}^{s-1} \|2^u \beta\| =: \sum_{u=0}^{s-1} \|2^u \beta_0(s)\|.$$

Then by Theorem 3 we have

$$\lim_{s \to \infty} \left(\sum_{u=0}^{s-1} \| 2^u \beta_0(s) \| - \max_{\substack{\beta \text{ s-bit} \\ \beta \neq \beta_0(s)}} \sum_{u=0}^{s-1} \| 2^u \beta \| \right) = \frac{1}{12}.$$

So one may ask the further usual "spectrum questions".

Proof of Theorem 3. (a) follows from Theorem 2.

Concerning part (b) it follows from Lemma 3 that it must be possible to reach one of the β_0 by applying a single transformation of Lemma 3 to β' .

For s odd this means (s even is handled quite analogously) that

 $\beta' \rightarrow 0.1010 \dots 101$

by the first or third transformation, i.e.

$$\beta' = 0.0101 \dots 01\ 00\ 1010 \dots 10101$$
 or
 $\beta' = 0.0101 \dots 10\ 11\ 0101 \dots 10101,$

or that

 $\beta' \rightarrow 0.0101 \dots 011$

by the second or fourth transformation, i.e.

$$\beta' = 0.1010 \dots 01\ 00\ 10 \dots 1011$$
 or
 $\beta' = 0.1010 \dots 10\ 11\ 01 \dots 1011.$

Further the double blocks $b_i b_{i+1}$ must be placed so that the "error term" in Lemma 3 becomes minimal. We carry this out for the two transformations yielding

 $\beta' \rightarrow 0.1010 \dots 101$

(the second case is treated quite analogously).

If

 $\beta' = 0.0101 \dots 01\ 00\ 1010 \dots 10101$

then the "error term" has the form

$$\frac{1}{3} \left(1 - \frac{(-1)^i}{2^i} \right) (1 - \tau) =: E(i)$$

with

$$\tau = 0.1010\dots 101 = \frac{2}{3}\left(1 - \frac{1}{2^{s-i}}\right),$$

and i is odd. Hence

$$E(i) = \frac{1}{9} \left(1 + \frac{1}{2^i} \right) \left(1 + \frac{1}{2^{s-1-i}} \right),$$

which becomes minimal for i = (s - 1)/2, with value

$$E = \frac{1}{9} \left(1 + \frac{1}{2^{(s-1)/2}} \right)^2.$$

If

 $\beta' = 0.0101 \dots 10 \ 11 \ 0101 \dots 10101$

then

$$E(i) = \frac{1}{3} \left(1 - \frac{(-1)^i}{2^i} \right) \tau$$

with

$$au = 0.0101 \dots 10101 = \frac{1}{3} \left(1 - \frac{1}{2^{s-i-1}} \right),$$

and i is even. Hence

$$E(i) = \frac{1}{9} \left(1 - \frac{1}{2^i} \right) \left(1 - \frac{1}{2^{s-1-i}} \right),$$

which becomes minimal for i = 2 and for i = s - 3 (note that i = s - 1 would give one of the β_0 and E(i) = 0), with value

$$E = \frac{1}{12} \left(1 - \frac{8}{2^s} \right),$$

which is smaller than the E above.

By also dealing with the second case we find that this is the minimal possible value for E and we have found the first two values of β' . The third value for β' is found by treating the second case.

The minimal error term E also determines the value for

$$\sum_{u=0}^{s-1} \|2^u \beta'\| = \sum_{u=0}^{s-1} \|2^u \beta_0\| - E = \frac{s}{3} + \frac{1}{9} + \frac{1}{9 \cdot 2^s} - \frac{1}{12} \left(1 - \frac{8}{2^s}\right)$$
$$= \frac{s}{3} + \frac{1}{36} + \frac{7}{9 \cdot 2^s}.$$

The case of s even is dealt with quite analogously.

We again obtain a corollary:

COROLLARY 2. The maximum

$$\max_{\beta \, s \, b \, i \, t} \left(\beta + \sum_{u=0}^{s-1} \| 2^u \beta \| \right) = \frac{s}{3} + \frac{7}{9} + (-1)^s \, \frac{1}{9 \cdot 2^{s-1}}$$

is attained if and only if β is of the form

$$\beta_0 = \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^{s+1} \right) \quad or \quad \beta_0 = \frac{5}{6} - \frac{1}{3} \left(-\frac{1}{2} \right)^s.$$

REMARK 7. Note that here

 $\beta_0 = 0.110101...101$ or $\beta_0 = 0.101010...011$

if s is even and

$$\beta_0 = 0.101010...101$$
 or $\beta_0 = 0.110101...011$

if s is odd.

Proof of Corollary 2. If $\beta < 1/2$ then we replace β by $\beta + 1/2$ and we obtain a larger value for the sum in question. So we can assume $\beta = 0.1b_2b_3...b_s$, and we note that $\beta + \|\beta\| = 1$ always. So we have to maximize $\sum_{u=0}^{s-2} \|2^u(2\beta)\|$. By Theorem 3(a) the result follows.

For later use (proof of Theorem 4(a)) we need a further type of "spectrum" result, namely Lemma 5. To prove it, we will use Lemma 4.

LEMMA 4. Let $0 \leq \kappa < 1$. Then

(a) The maximum

$$\max_{\beta s - bit} \left(\kappa \beta + \sum_{u=0}^{s-1} \| 2^u \beta \| \right) =: \Sigma_s^{\kappa}$$

is attained by

$$\beta = \begin{cases} 0.1010 \dots 1011 & \text{for s even,} \\ 0.1010 \dots 101 & \text{for s odd.} \end{cases}$$

(b) The maximum

$$\max_{\beta s\text{-}bit} \left(-\kappa\beta + \sum_{u=0}^{s-1} \|2^u\beta\| \right) =: \Sigma_s^{-\kappa}$$

is attained by

$$\beta = \begin{cases} 0.0101 \dots 0101 & \text{for s even,} \\ 0.0101 \dots 011 & \text{for s odd.} \end{cases}$$

Proof. (a) We must have $b_1 = 1$, otherwise $1 - \beta$ gives a larger value than β . We proceed by induction on s. For s = 1, 2, 3 the assertion is easily

checked. Now (since $b_1 = 1$)

$$\Sigma_{s+2}^{\kappa} = \max_{\beta s+2\text{-bit}} \left(\kappa \beta + \sum_{u=0}^{s+1} \|2^{u}\beta\| \right)$$
$$= \max_{\beta' s+1\text{-bit}} \left(\frac{\kappa+1}{2} + \beta' \left(\frac{\kappa-1}{2} \right) + \sum_{u=0}^{s} \|2^{u}\beta'\| \right).$$

Now $(\kappa - 1)/2 < 0$, so b'_1 must be zero, otherwise $1 - \beta'$ would give a larger value. Hence $\beta' = \beta''/2$ with β'' s-bit, and therefore

$$\Sigma_{s+2}^{\kappa} = \frac{\kappa+1}{2} + \max_{\beta'' \text{ s-bit}} \left(\beta''\left(\frac{\kappa+1}{4}\right) + \sum_{u=0}^{s-1} \|2^u\beta''\|\right).$$

By the induction hypothesis the result follows.

(b) Set $\gamma = 1 - \beta$. Then

$$-\gamma \kappa + \sum_{u=0}^{s-1} \|2^{u} \gamma\| = -\kappa + \kappa \beta + \sum_{u=0}^{s-1} \|2^{u} \beta\|$$

and by part (a) the result follows. \blacksquare

The next lemma is of independent interest. Note for example that 1/4 is the "average value" for ||x||.

LEMMA 5.
$$\max_{\substack{\beta \, s - bit\\0 \le u_0 \le s - 1}} \sum_{\substack{u=0\\u \ne u_0}}^{s-1} \|2^u \beta\| = \max_{\beta \, s - bit} \sum_{u=0}^{s-1} \|2^u \beta\| - \frac{1}{4}$$

Proof. For u_0 fixed let

$$\Sigma_{u_0}(\beta) := \sum_{\substack{u=0\\u\neq u_0}}^{s-1} \|2^u\beta\| \text{ and } \Sigma_{u_0}(\beta_0) := \max_{\beta \text{ s-bit}} \Sigma_{u_0}(\beta).$$

By Lemma 3, β_0 must be of the form

 $\beta_0 = 0.0101 \dots b_{u_0+1} b_{u_0+2} \dots b_s$ or $\beta_0 = 0.1010 \dots b_{u_0+1} b_{u_0+2} \dots b_s$. Let

$$\overline{\beta}_0 := 0.b_1 \dots b_{u_0+1}$$
 and $\widetilde{\beta}_0 := 0.b_{u_0+2} \dots b_s.$

Then

$$\Sigma_{u_0}(\beta_0) = \sum_{u=0}^{u_0-1} \|2^u \overline{\beta}_0\| + \kappa \widetilde{\beta}_0 + \sum_{u=u_0+1}^{s-1} \|2^u \beta_0\|$$
$$= \sum_{u=0}^{u_0-1} \|2^u \overline{\beta}_0\| + \kappa \widetilde{\beta}_0 + \sum_{u=0}^{s-u_0-2} \|2^u \widetilde{\beta}_0\|$$

with $\kappa = \sum_{i=1}^{u_0} (-1)^{b_i} / 2^{u_0 + 2 - i}$. If $b_{u_0} = 0$ then $\kappa > 0$, if $b_{u_0} = 1$ then $\kappa < 0$.

So by Lemma 3 (see also Theorem 3) the form of $\overline{\beta}_0$, and by Lemma 4 and by b_{u_0} the form of $\overline{\beta}_0$ is determined (note that the form of b_{u_0+1} must be different from b_{u_0} and hence is 0 in any case).

We have

$$\widetilde{\beta}_0 = \frac{1}{3} \left(1 - \frac{(-1)^{s-u_0-1}}{2^{s-u_0-1}} \right)$$

and

$$\kappa = -\frac{1}{6} \left(1 - \frac{(-1)^{u_0}}{2^{u_0}} \right) \quad \text{or} \quad \kappa = -\frac{1}{3} \left(1 + \frac{(-1)^{u_0}}{2^{u_0+1}} \right)$$

according to which value for $\overline{\beta}_0$ is chosen from Theorem 3.

Since we want to maximize

$$\Sigma_{u_0}(\beta_0) = \sum_{u=0}^{u_0-1} \|2^u \overline{\beta}_0\| + \kappa \widetilde{\beta}_0 + \sum_{u=0}^{s-u_0-2} \|2^u \widetilde{\beta}_0\|,$$

only the larger first value for κ is of relevance. Inserting it yields

$$\max_{\beta s - \text{bit}} \left(\sum_{u=0}^{s-1} \| 2^u \beta \| - \Sigma_{u_0}(\beta_0) \right) \\ = \frac{1}{18} \left(5 + \frac{(-1)^{u_0}}{2^{u_0}} + \frac{(-1)^{s-u_0-1}}{2^{s-u_0-1}} + \frac{(-1)^{s-1}}{2^{s-2}} \right),$$

which attains its minimal value 1/4 for $u_0 = s - 2$ if s is odd, and for $u_0 = 1$ if s is even.

4. The discrepancy of the Hammersley net and an improved upper bound for the discrepancy of digital (0, s, 2)-nets. In Theorem 1 for α, β s-bit we have given an explicit formula for the discrepancy function

$$\Delta(\alpha,\beta) = A_{2^s}([0,\alpha) \times [0,\beta)) - 2^s \alpha\beta$$

of a digital (0, s, 2)-net in base 2.

Take now arbitrary α', β' with

$$\alpha - \frac{1}{2^s} < \alpha' \le \alpha$$
 and $\beta - \frac{1}{2^s} < \beta' \le \beta$.

Then (since all coordinates of the points of a digital net are s-bit) we have

$$\Delta(\alpha',\beta') = \Delta(\alpha,\beta) - 2^s(\alpha'\beta' - \alpha\beta),$$

hence for the star-discrepancy D_N^* of the net we have

$$D_N^* - \frac{1}{N} \max_{\alpha,\beta \text{ s-bit}} \Delta(\alpha,\beta) \bigg| < \frac{2}{N} - \frac{1}{N^2}$$

(note that $N = 2^s$).

We will call

$$\frac{1}{N}\max_{\alpha,\beta s\text{-bit}}\Delta(\alpha,\beta) =: D_N^{\mathrm{d}}$$

the discrete discrepancy of the net. D_N^d differs from D_N^* at most by the almost negligible quantity 2/N and seems for nets to be the more natural measure for the irregularities of distribution.

For a sequence of digital (0, s, 2)-nets, $s = 1, 2, \ldots, N = 2^s$, we have

$$\limsup_{N \to \infty} \frac{ND_N^*}{\log N} = \limsup_{N \to \infty} \frac{ND_N^d}{\log N}$$

(the same holds for lim inf and for lim if it exists).

But if we want to obtain "exact results" the quantity D_N^d in spite of the minimal difference is much easier to handle than D_N^* .

This is clearly illustrated by the proof of the following theorem, in which we give the exact value of D_N^d and of D_N^* for the Hammersley net and the exact places where they are attained. For D_N^d we moreover give the "second successive maxima" and the exact places where they are attained. The proof for D_N^d is much shorter than the one for D_N^* .

In [4] Halton and Zaremba claim that they give the exact value of D_N^* , but they only give a vague hint on how to prove the extremality of the extremal intervals. Entacher [3] uses their result.

THEOREM 4. (a) For the discrete discrepancy D_N^d of the Hammersley net with $N = 2^s$ points we have

$$ND_N^{\rm d} = \max_{\boldsymbol{\alpha},\boldsymbol{\beta}\,s\text{-}bit} \boldsymbol{\varDelta}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{s}{3} + \frac{1}{9} - \frac{(-1)^s}{9\cdot 2^s}$$

and the maximum will be attained if and only if α, β are of the form α_0, β_0 with:

• for s odd,

$$\alpha_0 = 0.0101 \dots 1011, \quad \beta_0 = 0.1010 \dots 0101$$

or

$$\alpha_0 = 0.1010 \dots 0101, \quad \beta_0 = 0.0110 \dots 1011,$$

• for s even,

$$\alpha_0 = \beta_0 = 0.1010 \dots 1011$$
 or $\alpha_0 = \beta_0 = 0.0101 \dots 0101$

The second successive maximum for $\Delta(\alpha,\beta)$ $(\alpha,\beta$ s-bit) is given by

$$\max_{\substack{\alpha,\beta \ s-bit\\(\alpha,\beta)\neq(\alpha_0,\beta_0)}} \Delta(\alpha,\beta) = \frac{s}{3} + \frac{1}{36} - (-1)^s \frac{7}{9 \cdot 2^s}$$

and the places where this is attained can easily be obtained from the proof and from Theorem 3(b).

(b) For the star-discrepancy D_N^* of the Hammersley net with $N = 2^s$ points we have

$$ND_N^* = \frac{s}{3} + \frac{13}{9} - (-1)^s \frac{4}{9 \cdot 2^s}$$

and the maximum is attained if and only if α, β are of the form α_0, β_0 with:

• for s odd,

$$\alpha_0 = 0.1010 \dots 10111, \quad \beta_0 = 0.1101 \dots 01011$$

or

$$\alpha_0 = 0.1101 \dots 01011, \quad \beta_0 = 0.1010 \dots 10111,$$

• for s even,

$$\alpha_0 = \beta_0 = 0.1010 \dots 01011$$
 or $\alpha_0 = \beta_0 = 0.1101 \dots 10111$

for $s \ge 4$. For $s \le 3$ the extremal values (α_0, β_0) are (1/2, 1/2) (s = 1), (3/4, 3/4) (s = 2) and (7/8, 7/8) (s = 3).

Let us first draw a further consequence from the result and let us defer the proof of Theorem 4 to the end of this section.

As an almost immediate consequence we get the following bound for the discrepancy of digital (0, s, 2)-nets in base 2, which improves the bounds (1) and (2).

THEOREM 5. For the star-discrepancy D_N^* of a digital (0, s, 2)-net in base 2 we have

$$ND_N^* \le \frac{s}{3} + \frac{19}{9}.$$

This bound is (by Theorem 4(b)) up to the summand 19/9 (which could be improved to 15/9) best possible.

In particular,

$$\lim_{N \to \infty} \max \frac{ND_N^*}{\log N} = \frac{1}{3\log 2} = 0.4808\dots$$

where the maximum is taken over all digital (0, s, 2)-nets in base 2.

The value $1/(3 \log 2)$ is attained for example for the sequence of Hammersley nets.

Proof. We have

$$D_N^* \le D_N^{\rm d} + \frac{2}{N} - \frac{1}{N^2},$$

hence by Theorems 1 and 3,

$$ND_N^* \le 2 + \max_{\beta \text{ s-bit}} \sum_{u=0}^{s-1} \|2^u \beta\| - \frac{1}{2^s} \le \frac{s}{3} + \frac{19}{9}.$$

From this and from Theorem 4,

$$\lim_{N \to \infty} \max \frac{ND_N^*}{\log N} = \frac{1}{3\log 2}. \bullet$$

For the proof of part (b) of Theorem 4 we need some notation:

Remark 8. For

$$\alpha = 0.a_1 \dots a_t \dots a_s, \qquad \beta = 0.b_1 \dots b_{s-t} \dots b_s$$

we define

$$\alpha_t := 0.a_1 \dots a_t, \qquad \beta_t := 0.b_{s+1-t} \dots b_s,$$

$$\overline{\alpha}_t := 0.a_{t+1} \dots a_s, \qquad \overline{\beta}_t := 0.b_1 \dots b_{s-t}.$$

Further, set

$$\Sigma_s(\alpha,\beta) := \sum_{u=0}^{s-1} \|2^u\beta\|\sigma(u) \quad \text{with} \quad \sigma(u) := a_{s-u} \oplus a_{s+1-j(u)}.$$

In $\sigma(u)$ we usually set $a_{s+1-j(u)} = 0$ as long as j(u) = 0. If in this case we alternatively set $a_{s+1-j(u)} := 1$ then we denote the corresponding sum by $\Sigma_s^1(\alpha, \beta)$.

Further we define

$$T_s(\alpha,\beta) := \alpha + \beta + \Sigma_s(\alpha,\beta).$$

For $\kappa, \tau \in \mathbb{R}$ we more generally define

$$T_s^{\tau,\kappa}(\alpha,\beta) := \tau\alpha + \kappa\beta + \Sigma_s(\alpha,\beta).$$

Now

$$T_s(\alpha,\beta) = \alpha + \beta + \Sigma_s(\alpha,\beta)$$

$$= \alpha + \beta + \sum_{s-t} (\overline{\alpha}_t, \overline{\beta}_t) + \beta_t \sum_{u=0}^{s-t-1} \frac{(-1)^{b_{u+1}}}{2^{s-t-u}} \sigma(u) + \widetilde{\Sigma}_t(\alpha_t, \beta_t).$$

Here $\widetilde{\Sigma}_t(\alpha_t, \beta_t)$ is either $\Sigma_t(\alpha_t, \beta_t)$ or $\Sigma_t^1(\alpha_t, \beta_t)$. Since $\alpha = \alpha_t + \frac{1}{2^t}\overline{\alpha}_t$ and $\beta = \overline{\beta}_t + \frac{1}{2^{s-t}}\beta_t$ we get

$$T_s(\alpha,\beta) = T_{s-t}^{\tau,1}(\overline{\alpha}_t,\overline{\beta}_t) + \widetilde{T}_t^{1,\kappa_t}(\alpha_t,\beta_t),$$

where \widetilde{T} is defined via $\widetilde{\Sigma}$ instead of Σ , and $\tau = 1/2^t$, and

$$\kappa_t = \frac{1}{2^{s-t}} + \sum_{u=0}^{s-t-1} \frac{(-1)^{b_{u+1}}}{2^{s-t-u}} \,\sigma(u).$$

Here it is important to note that κ only depends on the form of $\overline{\alpha}_t$ and $\overline{\beta}_t$.

Let us consider for example t = 6. Then it is an easy task to show with the help of MATHEMATICA that for all $d \in \{0, \dots, 2^6 - 1\}$ we have

$$|\max_{\alpha_{6},\beta_{6}}T_{6}^{1,d/2^{\mathfrak{b}}}(\alpha_{6},\beta_{6})-\max_{\alpha_{6},\beta_{6}}\widetilde{T}_{6}^{1,d/2^{\mathfrak{b}}}(\alpha_{6},\beta_{6})| \leq 1/2^{6}.$$

Hence for all κ

$$\max_{\alpha_{6},\beta_{6}} T_{6}^{1,\kappa}(\alpha_{6},\beta_{6}) - \max_{\alpha_{6},\beta_{6}} \widetilde{T}_{6}^{1,\kappa}(\alpha_{6},\beta_{6})| < 1/2^{5}.$$

Further we need the following lemma:

LEMMA 6. If

$$T_s(\alpha_0, \beta_0) = \max_{\alpha, \beta \ s - bit} T_s(\alpha, \beta),$$

then β_0 has at most three consecutive equal digits $b_i b_{i+1} b_{i+2}$, $i \geq 2$, in its base 2 representation.

Proof. First we note that the first digit of β_0 must be one, otherwise replacing β_0 by $\beta_0 + 1/2$ and choosing a suitable α_0 gives a larger value T.

Then we note that, as is easily calculated, the special choice

$$\alpha' = 0.101 \dots 1011, \quad \beta' = 0.101 \dots 1011$$

if s is even and

$$\alpha' = 0.1101 \dots 1011, \quad \beta' = 0.1010 \dots 0111$$

if s is odd gives the value

$$T_s(\alpha',\beta') = \frac{s}{3} + \frac{13}{9} + \frac{1}{2^s} - (-1)^s \frac{4}{9} \cdot \frac{1}{2^s}.$$

Assume now on the contrary that β_0 has at least four equal digits $b_i b_{i+1} b_{i+2} b_{i+3}$, $i \geq 2$, in its base 2 representation. Assume these are ones (the other case is handled in the same way). Then

$$T_s(\alpha_0, \beta_0) \le 1 + \beta_0 + \sum_{u=0}^{s-1} \|2^u \beta_0\|.$$

Now we can apply some of the transformations from Corollary 1 to β_0 until $b_i b_{i+1}$ is the first block of equal digits (with $i \ge 2$). Therefore

$$\beta_0 + \sum_{u=0}^{s-1} \|2^u \beta_0\|$$

will not decrease. Now we can apply two times one of the last two transformations from Corollary 1 to $b_i b_{i+1}$ and then to $b_{i+1} b_{i+2}$. Note that $\tau \geq 3/4$ in the first application and $\tau \geq 1/2$ in the second. Therefore

$$\beta_0+\sum_{u=0}^{s-1}\|2^u\beta_0\|$$

increases at least by

$$\frac{1}{3} \cdot \frac{3}{4} \left(1 - \frac{(-1)^{i-1}}{2^{i-1}} \right) + \frac{1}{3} \cdot \frac{1}{2} \left(1 - \frac{(-1)^i}{2^i} \right) = \frac{5}{12} + \frac{(-1)^i}{3 \cdot 2^i} \ge \frac{3}{8}$$

Hence we have, by the remark at the beginning of this proof and by Corollary 2,

$$\frac{s}{3} + \frac{13}{9} + \frac{1}{2^s} - (-1)^s \frac{4}{9} \cdot \frac{1}{2^s} \le T_s(\alpha_0, \beta_0)$$
$$\le 1 + \max_{\beta \, s \text{-bit}} \left(\beta + \sum_{u=0}^{s-1} \|2^u \beta\|\right) - \frac{3}{8}$$
$$= \frac{5}{8} + \frac{s}{3} + \frac{7}{9} + (-1)^s \frac{2}{9 \cdot 2^s},$$

hence

$$\frac{1}{24} + \frac{1}{2^s} \left(1 - \frac{2}{3} (-1)^s \right) \le 0,$$

a contradiction. \blacksquare

REMARK 9. It is easy to show with the help of a C⁺⁺ program that the assertion of Theorem 4(b) holds for $s \leq 11$.

In fact it is not difficult to prove (with the help of Lemmas 5 and 6) that the extremal values α_0, β_0 from Theorem 4(b) must have the property that $a_{s-u} \oplus a_{s+1-j(u)} = 1$ for all $u = 0, \ldots, s - 1$. Hence for every β_0 there is only one possible α_0 . So it was easily possible to carry out the numerical calculation with MATHEMATICA.

Proof of Theorem 4. (a) We use Example 2. For a given β the value

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^{u}\beta\| (a_{s-u} \oplus a_{s+1-j(u)})$$

always becomes maximal if α is chosen such that $a_{s-u} \oplus a_{s+1-j(u)} = 1$ for all u. Hence D_N^d is attained for the β maximizing

$$\sum_{u=0}^{s-1} \|2^u\beta\|$$

(those are provided by Theorem 3) and the corresponding α . This gives the values claimed in the result.

For the second successive maximum there are principally two possible cases: either $a_{s-u} \oplus a_{s+1-j(u)} = 1$ for all u, and then β must be of the form from Theorem 3(b), or $a_{s-u} \oplus a_{s+1-j(u)} = 0$ for some u. But comparing Theorem 3 and Lemma 5 shows that only the first case can give the second successive maximum.

(b) For α, β s-bit $\Delta(\alpha, \beta)$ always is positive by Example 2. Hence D_N^* will certainly be attained for intervals of the form

$$[0, \alpha - 1/2^s] \times [0, \beta - 1/2^s]$$

with α, β s-bit, and therefore

$$ND_N^* = \max_{\alpha,\beta \text{ s-bit}} (\Delta(\alpha,\beta) + \alpha + \beta) - 1/2^s$$

(see Remark 2). By Remark 9 it suffices to assume that $s \ge 12$. Let $\alpha^{(0)}, \beta^{(0)}$ be such that

$$T_s(\alpha^{(0)}, \beta^{(0)}) = \max_{\alpha, \beta \text{ s-bit}} T_s(\alpha, \beta).$$

By Lemma 6, $\beta^{(0)}$ has at most three consecutive equal digits (after the first place) and the first digit b_1 of $\beta^{(0)}$ is 1. Assume there is a $u \leq s - 12$ with $\sigma(u) = 0$ (see Remark 8 for the notations here and in the following), and let u_0 be maximal with this property. Then change a_{s-u_0}, \ldots, a_7 so that $\sigma(u_0)$ becomes 1 and $\sigma(u_0+1), \ldots, \sigma(s-7)$ remain unchanged. Thereby κ_6 changes at most by $1/2^{s-6-u_0} \leq 1/2^6$. Finally choose a_6, \ldots, a_1 and b_{s-5}, \ldots, b_s so that $\widetilde{T}^{1,\kappa_6}(\alpha'_6,\beta'_6)$ becomes maximal for the new values α',β' . Then (see Remark 8),

$$T_s(\alpha',\beta') = T_{s-6}^{\tau,1}(\overline{\alpha}_6',\overline{\beta}_6') + \widetilde{T}_6^{1,\kappa_6'}(\alpha_6',\beta_6')$$

(note that we obtain a new summand of value at least 1/4, but α may decrease to almost zero)

$$\geq T_{s-6}^{\tau,1}(\overline{\alpha}_{6}^{(0)},\overline{\beta}_{6}^{(0)}) + \frac{1}{4} - \tau - |\kappa_{6}' - \kappa_{6}| + \widetilde{T}_{6}^{1,\kappa_{6}}(\alpha_{6}',\beta_{6}')$$

(by the numerical result in Remark 8; note that the tilde on \widetilde{T} is here related to α', β' and in the following line to $\alpha^{(0)}, \beta^{(0)}$)

$$\geq T_{s-6}^{\tau,1}(\overline{\alpha}_{6}^{(0)},\overline{\beta}_{6}^{(0)}) + \frac{1}{4} - \tau - \frac{1}{2^{6}} + \widetilde{T}_{6}^{1,\kappa_{6}'}(\alpha_{6}^{(0)},\beta_{6}^{(0)}) - \frac{1}{2^{5}}$$

> $T_{s}(\alpha^{(0)},\beta^{(0)}) + \frac{1}{2^{4}} - \frac{4}{2^{6}}$
= $T_{s}(\alpha^{(0)},\beta^{(0)}),$

a contradiction. Hence

$$T_s(\alpha^{(0)}, \beta^{(0)}) = \beta^{(0)} + \sum_{u=0}^{s-12} \|2^u \beta^{(0)}\| + \frac{1}{2^{11}} \overline{\alpha}_{11}^{(0)} + \alpha_{11}^{(0)} + \widetilde{\Sigma}_{11}(\alpha_{11}^{(0)}, \beta_{11}^{(0)}).$$

Therefore by Corollary 1, $b_1^{(0)}, \ldots, b_{s-11}^{(0)}$ and $a_{12}^{(0)}, \ldots, a_s^{(0)}$ must be of the form (we concentrate on "s odd", "s even" being carried out quite analogously)

$$\overline{\beta}_{11}^{(0)} = 0.110101\dots01, \quad \overline{\alpha}_{11}^{(0)} = 0.0101\dots0111$$

or

$$\bar{\beta}_{11}^{(0)} = 0.1010\dots011, \quad \bar{\alpha}_{11}^{(0)} = 0.0101\dots011.$$

So it remains to maximize $\widetilde{T}_{11}^{1,\kappa}(\alpha_{11},\beta_{11})$.

In the first case we have

$$\left|\kappa + \frac{1}{3} \left(1 - \frac{1}{2^{12}}\right)\right| < \frac{1}{2^{13}},$$

in the second case we have

$$\left|\kappa - \frac{1}{3} \left(1 - \frac{1}{2^{12}}\right)\right| < \frac{1}{2^{13}},$$

so it suffices to maximize

 $\widetilde{T}_{11}^{1,-\frac{1}{3}(1-1/2^{12})}(\alpha_{11},\beta_{11})$ respectively $\widetilde{T}_{11}^{1,\frac{1}{3}(1-1/2^{12})}(\alpha_{11},\beta_{11}).$

This is easily done with a MATHEMATICA program and the result follows. \blacksquare

5. A class of nets with smaller star-discrepancy. We have seen in Theorem 5 that the Hammersley net essentially is the "worst" distributed digital (0, s, 2)-net in base 2.

We will show here that the star-discrepancy of the nets generated by

	$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \end{pmatrix}$			$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	1 1	 1 1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$C_1 =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and	$C_2 =$	 1	 1	 0	 0
	$0 0 \dots 0 1/$			$\backslash 1$	0	 0	0/

is essentially smaller. Indeed it seems, by numerical experiments carried out by Entacher, that these nets are the essentially best distributed digital (0, s, 2)-nets in base 2. We have

THEOREM 6. For the star-discrepancy D_N^* of the digital net in base 2 generated by

$$C_{1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \quad and \quad C_{2} = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$

we have

(7)
$$\frac{ND_N^*}{s} \ge 0.2$$

for all N $(N = 2^s)$ and

(8)
$$\limsup_{N \to \infty} \frac{ND_N^*}{s} \le 0.226341\dots$$

REMARK 10. Hence for these nets we have

$$0.2885\ldots = \frac{1}{5\log 2} \le \liminf_{N \to \infty} \frac{ND_N^*}{\log N} \le \limsup_{N \to \infty} \frac{ND_N^*}{\log N} \le 0.32654\ldots$$

Indeed we conjecture that

$$\lim_{N\to\infty}\frac{ND_N^*}{\log N}=\frac{1}{5\log 2},$$

and that this is the best possible value at all, i.e.

$$\lim_{N \to \infty} \min \frac{ND_N^*}{\log N} = \frac{1}{5\log 2},$$

where the minimum is taken over all digital (0, s, 2)-nets in base 2.

Proof of Theorem 6. We will show that the lower bound even holds for

$$\max_{\alpha,\beta \text{ s-bit}} \Delta(\alpha,\beta),$$

and also for the upper bound it suffices to consider $\Delta(\alpha, \beta)$ for α, β s-bit. Recall from Example 3 that for α, β s-bit we have

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^{u}\beta\|(-1)^{a_{1}+\ldots+a_{s-u}} \frac{(-1)^{a_{s-u}} - (-1)^{a_{s+1-j(u)}}}{2}$$
$$= \sum_{u=0}^{s-1} \|2^{u}\beta\|(-1)^{a_{1}+\ldots+a_{s-u-1}} (a_{s-u} \oplus a_{s+1-j(u)}),$$

where

$$j(u) := \begin{cases} 0 & \text{if } u = 0, \\ 0 & \text{if } a_1 \oplus \ldots \oplus a_{s+1-j} = b_j \text{ for } j = 1, \ldots, u, \\ \max\{j \le u : a_1 \oplus \ldots \oplus a_{s+1-j} \ne b_j\} & \text{otherwise.} \end{cases}$$

We set $\tilde{a}_i := a_1 \oplus \ldots \oplus a_{s+1-i}$ and $\tilde{\alpha} := 0.\tilde{a}_1 \ldots \tilde{a}_s$. Then

$$a_{s+1-i} = \widetilde{a}_i \oplus \widetilde{a}_{i+1}, \quad a_{s+1-j(u)} = \widetilde{a}_{r(u)} \oplus \widetilde{a}_{r(u)+1},$$

where

$$r(u) := \begin{cases} 0 & \text{if } u = 0, \\ 0 & \text{if } b_j = \widetilde{a}_j \text{ for } j = 1, \dots, u, \\ \max\{r \le u : b_j \ne \widetilde{a}_j\} & \text{otherwise,} \end{cases}$$

and where we have to set $\tilde{a}_{r(u)} \oplus \tilde{a}_{r(u)+1} := 0$ if r(u) = 0 and $\tilde{a}_{s+1} := 0$. Then

$$\Delta(\alpha,\beta) = \sum_{u=0}^{s-1} \|2^u\beta\|\varrho(u) =: \delta(\widetilde{\alpha},\beta),$$

where

$$\varrho(u) := (-1)^{\widetilde{a}_{u+2}} (\widetilde{a}_{u+1} \oplus \widetilde{a}_{u+2} \oplus \widetilde{a}_{r(u)} \oplus \widetilde{a}_{r(u)+1}).$$

To obtain the lower bound consider

 $\beta = 0.00100010001 \dots b_s, \quad \tilde{\alpha} = 0.10001000100 \dots a_s$

with the exception that $b_s = 1$ instead of 0 if s = 4l + 1 or s = 4l + 2. Then

$$\varrho(u) = \begin{cases} -1 & \text{if } u = 4l + 3, \\ 1 & \text{otherwise} \end{cases}$$

with the only exception that $\rho(s-1) = 0$ if s = 4l. Then

$$\beta = \sum_{i=0}^{\lfloor s/4 \rfloor - 1} \frac{1}{2^{4i+3}} + \frac{b_s}{2^s},$$

hence

$$\|2^{u}\beta\| = \sum_{i=\lceil u/4-1/2\rceil}^{\lfloor s/4\rfloor-1} \frac{1}{2^{4i+3-u}} + \frac{b_{s}}{2^{s-u}}$$

for $u \neq 4l + 2$ and it is 1 minus this quantity if u = 4l + 2. So

$$\delta(\widetilde{\alpha},\beta) = \sum_{l=0}^{\lfloor (s-5)/4 \rfloor} (\|2^{4l}\beta\| + \|2^{4l+1}\beta\| + \|2^{4l+2}\beta\| - \|2^{4l+3}\beta\|) + R,$$

with

$$R = \begin{cases} 1/2 & \text{if } s = 4l + 1, \\ 3/4 & \text{if } s = 4l + 2, \\ 7/8 & \text{else.} \end{cases}$$

Inserting for $||2^u\beta||$ and evaluating the resulting finite geometric series then yields

$$\delta(\widetilde{\alpha},\beta) = \frac{4}{5} \left[\frac{s-1}{4} \right] + \frac{16^{[(s-1)/4]} - 1}{16^{[s/4]}} \cdot \begin{cases} 2/25 + 7/8 & \text{if } s = 4l, \\ (-11/50) + 1/2 & \text{if } s = 4l + 1, \\ (-7/100) + 3/4 & \text{if } s = 4l + 2, \\ 1/200 + 7/8 & \text{if } s = 4l + 3. \end{cases}$$

Now it is a simple task to check that in each of the four cases $\delta(\tilde{\alpha}, \beta)/s$ is decreasing to 1/5, and so the lower bound follows.

To obtain the upper bound consider for given $r \in \mathbb{N}$ the quantity

$$\delta_r := \sup_{\alpha,\beta} \sum_{u=0}^{r-1} \varrho(u) \| 2^u \beta \|,$$

where the supremum is taken over all $\beta \in [0,1)$ and over all r + 1-bit $\alpha = 0.a_1 \dots a_{r+1}$. (Note that this means that a_{r+1} is not automatically set to 0 as is done for r-bit α .)

This supremum is obviously attained (respectively approached) in the following form: let u_0 be the largest index such that $\rho(u_0) \neq 0$; then $\rho(u_0) = 1$. Further the supremum is attained for some β with $b_{r+1} = b_{r+2} = \ldots = 0$ if $b_{u_0+1} = 1$ and it is approached by β with $b_{r+1} = b_{r+2} = \ldots = 1$ if $b_{u_0+1} = 0$. So it can be shown for example with MATHEMATICA that

$$\delta_{11} = \frac{5099}{2048} = 2.48975\dots,$$

and this value is attained with $b_{u_0+1} = 1$.

Now for s with s = 11q + w, $0 \le w \le 10$, for all $\tilde{\alpha}, \beta$ we have $\delta(\tilde{\alpha}, \beta) \le q\delta_{11} + w$, hence

$$\frac{\delta(\widetilde{\alpha},\beta)}{s} \le \frac{1}{s} \left[\frac{s}{11} \right] \cdot 2.48975 \ldots + \frac{10}{s},$$

which tends to 0.226341... as $s \to \infty$, and the result follows.

References

- R. Béjian, Minoration de la discrépance d'une suite quelconque sur T, Acta Arith. 41 (1982), 185–202.
- [2] L. de Clerck, A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley, Monatsh. Math. 101 (1986), 261–278.
- K. Entacher, Haar function based estimates of the star-discrepancy of plane digital nets, ibid. 130 (2000), 99–108.
- [4] J. H. Halton and S. K. Zaremba, The extreme and the L^2 discrepancies of some plane sets, ibid. 73 (1969), 316–328.
- [5] G. Larcher, H. Niederreiter and W. Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration, ibid. 121 (1996), 231–253.
- G. Larcher and F. Pillichshammer, Walsh series analysis of the L₂-discrepancy of symmetrized point sets, ibid. 132 (2001), 1–18.
- [7] G. Larcher and G. Pirsic, Base change problems for generalized Walsh series and multivariate numerical integration, Pacific J. Math. 189 (1999), 75–105.
- [8] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.

Institut für Analysis Universität Linz Altenbergerstraße 69 A-4040 Linz, Austria E-mail: gerhard.larcher@jku.at friedrich.pillichshammer@jku.at

> Received on 7.5.2001 and in revised form on 20.3.2002 (4024)