
ACTA ARITHMETICA

128.3 (2007)

Functoriality and number of solutions of congruences

by

Henry H. Kim (Toronto and Seoul)

In this note we use Langlands functoriality to prove certain results on
the number of solutions of congruences, complementing results in [F1–3].
We would like to thank the referee for pointing out a mistake.

1. Number of solutions of congruences. Let f(x) = xd + a1x
d−1 +

· · · + ad, a1, . . . , ad ∈ Z be an irreducible polynomial. Let Nf (n) be the
number of solutions of f(x) ≡ 0 (modn). It is an important problem to
study Nf (n). Let L be the splitting field of f with the Galois group G. Let
E = Q[α], where α is a root of f . Then [E : Q] = d. Let Gal(L/E) = H.
Let S(L/Q) = {p : Nf (p) = d}. Then it is known that S(L/Q) determines
L completely. It is a goal of the class field theory to determine the set
S(L/Q). Except for finitely many primes, p ∈ S(L/Q) if and only if p splits
completely in L: this comes from the fact that p splits completely in L if
and only if p splits completely in E. It is clear that if p splits completely
in L, then p splits completely in E. Conversely, let P, p be primes in L,E,
respectively, such that P | p, p | p. Then p splits completely in L if and only
if LP = Qp. We fix an embedding Qp →֒ Qp. Suppose p splits completely

in E. Then for any p | p, E ⊂ Ep = Qp →֒ Qp. So every conjugate of E is
contained in Qp. Hence L is contained in Qp. So p splits completely in L.
By the well-known theorem of Dedekind (e.g. [N, Theorem 4.33]), except for
finitely many primes (in fact, if p does not divide the discriminant of f(x),
or (OE : Z[α])), p splits completely in E if and only if Nf (p) = d.
Consider IndGH 1 = 1 + ̺, where ̺ : G → GLd−1(C) is a direct sum of

non-trivial irreducible representations of G, i.e.,

(1) ̺ = n1̺1 + · · ·+ nk̺k
where ̺1, . . . , ̺k are non-trivial irreducible representations of G. By Frobe-
nius reciprocity, we see that if ̺i is a 1-dimensional character, then ni = 1.
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(See [FH], for example.) We include the case H = {1}. In particular, if G is
abelian, then Q[α]/Q is Galois, and hence E = L, and H = {1}.
The Artin conjecture asserts that ζE(s)/ζ(s) is entire. Langlands func-

toriality (the strong Artin conjecture) predicts that there exists an auto-
morphic representation π =

⊗
πp of GLd−1(A) which corresponds to ̺. If

̺ is irreducible, then π is cuspidal [R2]. More precisely, let πi be a cuspidal
representation corresponding to ̺i. Then π is the isobaric sum

π = π1 ⊞ · · ·⊞ π1︸ ︷︷ ︸
n1

⊞ · · ·⊞ πk ⊞ · · ·⊞ πk︸ ︷︷ ︸
nk

.

In particular, the Langlands–Tunnell theorem says that if ̺ is a 2-dimen-
sional representation with solvable image, then the strong Artin conjecture
is true.

If p is unramified, then ̺(Frobp) is the semisimple conjugacy class of πp.
Let diag(α1p, . . . , αd−1,p) give rise to the semisimple conjugacy class of πp,
and let ap = α1p+· · ·+αd−1,p. In particular, we have the L-function (without
the Γ -factors)

L(s, π) =
∏

p

L(s, πp) =
∞∑

n=1

an
ns

such that ζE(s) = ζ(s)L(s, π).

We prove that if σ = IndGH 1, then χσ(Frobp) = Nf (p), so that Nf (p) =
1 + ap. We can see this in two ways. First, by the property of the Artin

L-function, L(s, IndGH 1, L/Q) = ζE(s). Let ζE(s) =
∏
p Lp(s). If Nf (p) = a,

then Lp(s) has the form (1−p−s)−a
∏r
i=1(1−p−kis)−1, where ki ≥ 2. Hence

Lp(s) = (1− ap−s + · · · ± p−ds)−1.
Second, σ = IndGH 1 is the permutation representation of G on the left

cosets of H in G. Let {giH : i = 1, . . . , d} be the left cosets. Then χσ(g)
is the trace of the permutation matrix given by giH 7→ ggiH. It is the
number of the left cosets such that g−1i ggi ∈ H. Suppose p decomposes
as pOE = p1 · · · pk such that each pi is unramified, and has the residual

degree fi. Then d = f1+· · ·+fk. If P | pi, then
(L/E

P

)
=
(L/Q

P

)fi ∈ H. Hence
(L/Q

P

)
∈ H if and only if fi = 1. PickPi | pi for each i. Pick elements τi which

send p1 to pi for i = 1, . . . , k. Then τi
(L/Q

Pi

)ki
, i = 1, . . . , k, 0 ≤ ki ≤ fi − 1,

are coset representatives [N, Theorem 7.29]. Hence χσ(Frobp) is the number
of i’s such that fi = 1. It is exactly Nf (p). So χσ(Frobp) = Nf (p).

Since π is an automorphic representation of GLd−1(A), L(s, π) has an
analytic continuation to all of C, and satisfies an appropriate functional
equation. Hence we have
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Proposition 1 ([FI]). Let an be as above. Then
∑

n≤x

an = O(x
(d−2)/d+ε).

Hence the series
∑∞
n=1 an/n

s converges for Re(s) > (d− 2)/d + ε. In
particular, ∑

p≤x

ap
p
= O(1).

2. Distribution of values of r2(n). Let r2(n) =
∑
x2
1
+x2
2
=n 1. We are

interested in ∑

n≤x

r2(f(n)).

If f(x) = ax2 + bx+ c, then (see [F2] for the details)

(2)
∑

n≤x

r2(f(n)) =

{
A(f)x log x+O(x log log x) if b2 − 4ac = −µ2,
B(f)x+O(x8/9(log x)3) if b2 − 4ac 6= −µ2.

We use (see [F2] for the precise reference)

Lemma 2. Let t(n) be a multiplicative function such that t(n) ≥ 0 and
t(pk) ≪ kc, k ∈ N (p prime, and c constant). Let f(x) =

∑l
i=0 aix

i ∈ Z[x]
be irreducible such that (a0, . . . , al) = 1. Then

∑

n≤x

t(f(n))≪ x exp
(∑

p≤x

Nf (p)(t(p)− 1)
p

)
,

where the implied constant depends on t(n) and f(n).

Hence we need to compute
∑

p≤x

Nf (p)(r2(p)− 1)
p

.

Here we have removed finitely many primes p where πp is not spherical,

or p = 2. However, if p 6= 2, then r2(p) = 1 +
(
−1
p

)
. Let χ4 be the non-

trivial character of (Z/4Z)×. Then χ4(p) =
(
−1
p

)
. Since

∑∞
n=1 χ4(n)/n

s is

holomorphic at s = 1,
∑
p≤x χ4(p)/p = O(1). Also

∞∑

n=1

anχ4(n)

ns
= L(s, π ⊗ χ4).

If π is not cuspidal, and χ4 occurs in the decomposition (1), then it occurs
with multiplicity one, and hence L(s, π⊗χ4) has a simple pole at s = 1. So∑
p≤x apχ4(p)/p = log log x+O(1). Otherwise, L(s, π ⊗ χ4) is holomorphic
at s = 1, and

∑
p≤x apχ4(p)/p = O(1). Here we note that χ4 occurs in



238 H. H. Kim

the decomposition (1) if and only if χ4 is an irreducible character of G and
χ4|H = 1. Hence it is the case if and only if Q[

√
−1] ⊂ E. Hence

∑

p≤x

Nf (p)(r2(p)− 1)
p

=

{
log log x+O(1) if Q[

√
−1] ⊂ E,

O(1) otherwise.

Therefore, we obtain

Theorem 3. Suppose we have the strong Artin conjecture for L(s, ̺).
Then

∑

n≤x

r2(f(n))≪
{
x log x if Q[

√
−1] ⊂ E,

x otherwise.

If f(x) = ax2 + bx + c, b2 − 4ac = −µ2, then E = Q[
√
−1], and hence

ζE(s) = ζ(s)L(s, χ4). So the estimate (2) is the best possible. If f(x) is
the mth cyclotomic polynomial, and 4 |m, then Q[

√
−1] ⊂ E = Q[e2πi/m].

Hence
∑
n≤x r2(f(n))≪ x log x.

We give five examples which satisfy the condition in Theorem 3.

Example 1. Suppose f(x) = x3 + ax2 + bx + c, and its Galois group
is S3 with the discriminant D. Then ̺ : S3 → GL2(C) is the irreducible 2-
dimensional representation. Hence ̺ gives rise to a cuspidal representation π
of GL2(AQ). Let L(s, π) =

∑∞
n=1 ann

−s. Then Nf (p) = 1+ap. In particular,
if ̺ is odd, i.e., D < 0, it comes from a holomorphic cusp form F of weight 1
and level |D|. Then F (z) = ∑∞n=1 anqn, q = e2πiz. In this case, S(L/Q) ={
p : ap = 2,

(
D
p

)
= 1
}
and
∑
n≤x r2(f(n))≪ x.

Example 2. Let f(x) = x4 + ax3 + bx2 + cx+ d, and assume its Galois
group is S4 with discriminant D. Here ̺ : S4 → GL3(C) is one of the two
irreducible 3-dimensional representations. There exists a Galois extension
L̃/Q such that Gal(L̃/Q) ≃ GL2(F3), and [L̃ : L] = 2. Then ̺ = Sym2(σ),
where σ is the 2-dimensional representation σ : GL2(F3) → GL2(C) (see
[Ki2] for the details). Since GL2(F3) is solvable, by the Langlands–Tunnell
theorem, σ gives rise to a cuspidal representation π (if D < 0, it is odd
and it comes from a holomorphic cusp form of weight 1). Let L(s, π) =∑∞
n=1 bnn

−s. Then the central character is ωπ(p) =
(
p
D

)
. Then ̺ gives rise

to the Gelbart–Jacquet lift Sym2(π) and ap = b
2
p − ωπ(p). Hence Nf (p) =

1 + b2p −
(
p
D

)
. Since σ is not of dihedral type, Sym2(π) is cuspidal.

In this case, S(L/Q) =
{
p : ap = ±2,

(
p
D

)
= 1
}
, and

∑
n≤x r2(f(n))≪ x.

Example 3. Let f(x) = x4 + ax3 + bx2 + cx+ d with Galois group A4
and discriminant D. Here ̺ : S4 → GL3(C) is the irreducible 3-dimensional
representation. In this case, there exists a Galois extension L̃/Q such that

Gal(L̃/Q) ≃ SL2(F3), and [L̃ : L] = 2. Then ̺ = Sym2(σ), where σ is the
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2-dimensional representation σ : SL2(F3) → GL2(C). This is similar to the
S4 case.

Example 4. Let f(x) = x5 + ax4 + bx3 + cx2 + dx + e with Galois
group A5 and discriminant D. Here ̺ : A5 → GL4(C) is the irreducible 4-
dimensional representation. There exists a Galois extension L̃/Q such that

Gal(L̃/Q) ≃ SL2(F5), and [L̃ : L] = 2. Then ̺ = σ ⊗ στ , where σ is one
of the 2-dimensional representations σ : SL2(F5) → GL2(C), and τ is the
automorphism

√
5 7→ −

√
5 (see [Ki1] for the details). Suppose σ is odd, and

it gives rise to a cuspidal representation π which is attached to a holomorphic
cusp form of weight 1, F (z) =

∑∞
n=1 bnq

n. Then ̺ gives rise to the functorial
product π ⊠ πτ (see [R1]), and ap = bpb

τ
p . Hence Nf (p) = 1 + bpb

τ
p .

R. Taylor [T] proved infinitely many cases of modularity of odd icosahe-
dral Galois representations. In particular, the following quintic polynomials
give rise to holomorphic cusp forms of weight 1:

x5 + 2x4 + 6x3 + 8x2 + 10x+ 8,

x5 + 6x4 + x3 + 4x2 − 24x+ 32,
x5 − 2x3 + 2x2 + 5x+ 6,
x5 + 5x4 + 8x3 − 20x2 − 21x− 5.

In this case, S(L/Q) = {p : bp = ±2}, and
∑
n≤x r2(f(n))≪ x.

Example 5 ([F2]). Let f(x) = x4 − m, where m is a positive integer
which is not a square. Then L = Q[

√
−1,m1/4]. Let E = Q[m1/4]. Then

we can show that IndGH 1 is the direct sum of the trivial character, one non-
trivial 1-dimensional character χ and the unique 2-dimensional irreducible
representation ̺. Then ̺ gives rise to a holomorphic cusp form F of weight 1.
Let F (z) =

∑∞
n=1 anq

n, q = e2πiz, and assume χ gives rise to a Dirichlet

character χ(p) =
(
m0
p

)
, wherem0 is the square-free part ofm. Then Nf (p) =

1 +
(
m0
p

)
+ ap. In this case, S(L/Q) =

{
p : ap = 2,

(
m0
p

)
= 1
}
, and∑

n≤x r2(f(n))≪ x.

3. The sum
∑
n≤x |b(f(n))|2. Let π′ =

⊗
p π
′
p be a cuspidal represen-

tation of GL2(AQ), and let L(s, π
′) =
∏
p L(s, π

′
p) =
∑∞
n=1 b(n)n

−s (without
the Γ -factor). Let f be as in Section 1. We assume that L(s, π × Ad(π′))
is holomorphic at s = 1, where π corresponds to ̺. In particular, it is the
case if π′ is attached to a holomorphic cusp form of weight k ≥ 2. Note that
L(s, π ×Ad(π′)) has a pole at s = 1 if and only if π ≃ Ad(π′). So it is very
rare.
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We are interested in the sum
∑

n≤x

|b(f(n))|2.

If the Ramanujan conjecture holds, then |b(n)| ≤ d(n), where d(n) is the
number of divisors of n, and we know that

∑

n≤x

d(f(n))2 ≪ x(logx)3.

(We can obtain this from Lemma 2 by observing that ζ(s)2 =
∑∞
n=1 d(n)/n

s.
Namely, d(n) is the Fourier coefficients for the automorphic representation
π′ = 1⊞1; L(s, π′) = ζ(s)2. Then L(s, π′×π′) has a pole of order 4 at s = 1.
Hence

∑
p≤x d(p)

2/p = 4 log log x+O(1) and
∑
p≤x apd(p)

2/p = O(1).)

This gives a trivial estimate (see [F3] for the details)
∑

n≤x

|b(f(n))|2 ≪ x(log x)3.

We would like to obtain a better estimate. Furthermore, we do not assume
the Ramanujan conjecture for π′.

Theorem 4. Let f, ̺ be as in Section 1. Suppose we have the strong
Artin conjecture for L(s, ̺), and that L(s, π × Ad(π′)) is holomorphic at
s = 1, where π corresponds to ̺. Then

∑

n≤x

|b(f(n))|2 ≪ x.

Proof. We follow [F3]. By Lemma 2, we need to compute

∑

p≤x

Nf (p)(|b(p)|2 − 1)
p

.

Here we have removed finitely many primes p where πp or π
′
p is not

spherical. Since Nf (p) = 1 + ap, we need to consider
∑
p≤x |b(p)|2/p and∑

p≤x ap|b(p)|2/p.
Since L(s, π′× π̃′) has a simple pole at s = 1, we have

∑
p≤x |b(p)|2/p =

log log x + O(1). Since the triple product L-function L(s, π × π′ × π̃′) =
L(s, π×Ad(π′))L(s, π) is holomorphic at s = 1, we have∑p≤x ap|b(p)|2/p =
O(1). Since

∑
p≤x 1/p = log log x+O(1) we get

∑

p≤x

Nf (p)(|b(p)|2 − 1)
p

= O(1).

We have the result unconditionally for the polynomials in the examples
in Section 2.
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4. Distribution of values of Nf (n). Let f, ̺ be as in Section 1. In this
section we do not need to assume the strong Artin conjecture for L(s, ̺).
We are interested in the quantities

∑

n≤x

Nf (n),
∑

p≤x

Nf (p).

Erdős proved (see [F1] for the precise reference)

∑

p≤x

Nf (p) =
x

log x
+O

(
x

(logx)2

)
,
∑

p≤x

Nf (p)

p
= log log x+ c(f) + o(1).

One can also show (see [F1] for the details)

∑

n≤x

Nf (n) = C(f)x+O

(
x

(log x)1/2−ε

)
,

where C(f) = e−γ+c(f)P . Here γ is the Euler constant and

P =
∏

p

e−Nf (p)/p
(
1 +
Nf (p)

p
+
Nf (p

2)

p2
+ · · ·

)
.

We would like to obtain a better error term, following [F1]. Consider

L(s) =
∞∑

n=1

Nf (n)

ns
.

Since Nf (n) is multiplicative, we can write

L(s) =
∏

p

(
1 +
Nf (p)

ps
+
Nf (p

2)

p2s
+ · · ·

)

for Re(s) > 1. Here

ζE(s) =
∏

p

(
1− Nf (p)

ps
+ · · · ± 1

pds

)−1
.

Hence L(s)/ζE(s) is absolutely convergent for Re(s) > 1/2. Hence it is
holomorphic and non-vanishing for Re(s) > 1/2. Let L(s) = ζE(s)A(s) for
Re(s) > 1, where A(s) is holomorphic and non-vanishing for Re(s) > 1/2.
This provides the meromorphic continuation of L(s) to Re(s) > 1/2. Since
ζE(s) has a simple pole at s = 1, L(s) has a simple pole at s = 1. We use
Perron’s formula:

∑

n≤x

Nf (n) =
1

2πi

α+iT\
α−iT

xs

s
L(s) ds+O

(
x1+2ε

T

)
,
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for any 1 ≤ T ≤ x, where α = 1+ ε. We move the integration to the parallel
segment with Re(s) = 1/2 + ε. Then

∑

n≤x

Nf (n) = xRess=1 L(s) +
1

2πi

1/2+ε+iT\
1/2+ε−iT

xs

s
L(s) ds+O

(
x1+2ε

T

)
.

We have the convexity bound for ζE(s) at Re(s) = 1/2 + ε (see [CN]):

|ζE(1/2 + ε+ it)| ≪ (1 + |t|)d/4.
Hence

1

2πi

α+iT\
α−iT

xs

s
L(s) ds≪ x1/2+ε

T\
0

td/4−1 dt = O(x1/2+εT d/4).

Take T = x2/(d+4). Then
∑

n≤x

Nf (n) = xRess=1 L(s) +O(x
(d+2)/(d+4)+ε).

We have proved

Theorem 5. Let f, L(s) be as above. Then L(s) has a simple pole at
s = 1, and

∑

n≤x

Nf (n) = xRess=1 L(s) +O(x
(d+2)/(d+4)+ε).

Remark. Note that the above error estimate holds even when G is
abelian, or G = S3, improving the result in [F1]. We have the convexity
bounds for Dirichlet L-functions, namely, |L(1/2+ε+it, χ)| ≪ (1+|t|)1/6+ε.
So if G is abelian, |ζE(1/2+ ε+ it)| ≪ (1 + |t|)d/6+ε. Then the error bound
is improved to O(x(d+3)/(d+6)+ε).
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