Functoriality and number of solutions of congruences

by
Henry H. Kim (Toronto and Seoul)

In this note we use Langlands functoriality to prove certain results on the number of solutions of congruences, complementing results in [F1-3]. We would like to thank the referee for pointing out a mistake.

1. Number of solutions of congruences. Let $f(x)=x^{d}+a_{1} x^{d-1}+$ $\cdots+a_{d}, a_{1}, \ldots, a_{d} \in \mathbb{Z}$ be an irreducible polynomial. Let $N_{f}(n)$ be the number of solutions of $f(x) \equiv 0(\bmod n)$. It is an important problem to study $N_{f}(n)$. Let L be the splitting field of f with the Galois group G. Let $E=\mathbb{Q}[\alpha]$, where α is a root of f. Then $[E: \mathbb{Q}]=d$. Let $\operatorname{Gal}(L / E)=H$. Let $S(L / \mathbb{Q})=\left\{p: N_{f}(p)=d\right\}$. Then it is known that $S(L / \mathbb{Q})$ determines L completely. It is a goal of the class field theory to determine the set $S(L / \mathbb{Q})$. Except for finitely many primes, $p \in S(L / \mathbb{Q})$ if and only if p splits completely in L : this comes from the fact that p splits completely in L if and only if p splits completely in E. It is clear that if p splits completely in L, then p splits completely in E. Conversely, let $\mathfrak{P}, \mathfrak{p}$ be primes in L, E, respectively, such that $\mathfrak{P}|\mathfrak{p}, \mathfrak{p}| p$. Then p splits completely in L if and only if $L_{\mathfrak{P}}=\mathbb{Q}_{p}$. We fix an embedding $\mathbb{Q}_{p} \hookrightarrow \overline{\mathbb{Q}}_{p}$. Suppose p splits completely in E. Then for any $\mathfrak{p} \mid p, E \subset E_{\mathfrak{p}}=\mathbb{Q}_{p} \hookrightarrow \overline{\mathbb{Q}}_{p}$. So every conjugate of E is contained in \mathbb{Q}_{p}. Hence L is contained in \mathbb{Q}_{p}. So p splits completely in L. By the well-known theorem of Dedekind (e.g. [N , Theorem 4.33]), except for finitely many primes (in fact, if p does not divide the discriminant of $f(x)$, or $\left.\left(\mathcal{O}_{E}: \mathbb{Z}[\alpha]\right)\right), p$ splits completely in E if and only if $N_{f}(p)=d$.

Consider $\operatorname{Ind}_{H}^{G} 1=1+\varrho$, where $\varrho: G \rightarrow \mathrm{GL}_{d-1}(\mathbb{C})$ is a direct sum of non-trivial irreducible representations of G, i.e.,

$$
\begin{equation*}
\varrho=n_{1} \varrho_{1}+\cdots+n_{k} \varrho_{k} \tag{1}
\end{equation*}
$$

where $\varrho_{1}, \ldots, \varrho_{k}$ are non-trivial irreducible representations of G. By Frobenius reciprocity, we see that if ϱ_{i} is a 1-dimensional character, then $n_{i}=1$.

[^0](See [FH], for example.) We include the case $H=\{1\}$. In particular, if G is abelian, then $\mathbb{Q}[\alpha] / \mathbb{Q}$ is Galois, and hence $E=L$, and $H=\{1\}$.

The Artin conjecture asserts that $\zeta_{E}(s) / \zeta(s)$ is entire. Langlands functoriality (the strong Artin conjecture) predicts that there exists an automorphic representation $\pi=\otimes \pi_{p}$ of $\mathrm{GL}_{d-1}(\mathbb{A})$ which corresponds to ϱ. If ϱ is irreducible, then π is cuspidal [R2]. More precisely, let π_{i} be a cuspidal representation corresponding to ϱ_{i}. Then π is the isobaric sum

$$
\pi=\underbrace{\pi_{1} \boxplus \cdots \boxplus \pi_{1}}_{n_{1}} \boxplus \cdots \boxplus \underbrace{\pi_{k} \boxplus \cdots \boxplus \pi_{k}}_{n_{k}} .
$$

In particular, the Langlands-Tunnell theorem says that if ϱ is a 2 -dimensional representation with solvable image, then the strong Artin conjecture is true.

If p is unramified, then $\varrho\left(\right.$ Frob $\left._{p}\right)$ is the semisimple conjugacy class of π_{p}. Let $\operatorname{diag}\left(\alpha_{1 p}, \ldots, \alpha_{d-1, p}\right)$ give rise to the semisimple conjugacy class of π_{p}, and let $a_{p}=\alpha_{1 p}+\cdots+\alpha_{d-1, p}$. In particular, we have the L-function (without the Γ-factors)

$$
L(s, \pi)=\prod_{p} L\left(s, \pi_{p}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

such that $\zeta_{E}(s)=\zeta(s) L(s, \pi)$.
We prove that if $\sigma=\operatorname{Ind}_{H}^{G} 1$, then $\chi_{\sigma}\left(\operatorname{Frob}_{p}\right)=N_{f}(p)$, so that $N_{f}(p)=$ $1+a_{p}$. We can see this in two ways. First, by the property of the Artin L-function, $L\left(s, \operatorname{Ind}_{H}^{G} 1, L / \mathbb{Q}\right)=\zeta_{E}(s)$. Let $\zeta_{E}(s)=\prod_{p} L_{p}(s)$. If $N_{f}(p)=a$, then $L_{p}(s)$ has the form $\left(1-p^{-s}\right)^{-a} \prod_{i=1}^{r}\left(1-p^{-k_{i} s}\right)^{-1}$, where $k_{i} \geq 2$. Hence $L_{p}(s)=\left(1-a p^{-s}+\cdots \pm p^{-d s}\right)^{-1}$.

Second, $\sigma=\operatorname{Ind}_{H}^{G} 1$ is the permutation representation of G on the left cosets of H in G. Let $\left\{g_{i} H: i=1, \ldots, d\right\}$ be the left cosets. Then $\chi_{\sigma}(g)$ is the trace of the permutation matrix given by $g_{i} H \mapsto g g_{i} H$. It is the number of the left cosets such that $g_{i}^{-1} g g_{i} \in H$. Suppose p decomposes as $p \mathcal{O}_{E}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ such that each \mathfrak{p}_{i} is unramified, and has the residual degree f_{i}. Then $d=f_{1}+\cdots+f_{k}$. If $\mathfrak{P} \mid \mathfrak{p}_{i}$, then $\left(\frac{L / E}{\mathfrak{P}}\right)=\left(\frac{L / \mathbb{Q}}{\mathfrak{P}}\right)^{f_{i}} \in H$. Hence $\left(\frac{L / \mathbb{Q}}{\mathfrak{W}}\right) \in H$ if and only if $f_{i}=1$. Pick $\mathfrak{P}_{i} \mid \mathfrak{p}_{i}$ for each i. Pick elements τ_{i} which send \mathfrak{p}_{1} to \mathfrak{p}_{i} for $i=1, \ldots, k$. Then $\tau_{i}\left(\frac{L / \mathbb{Q}}{\mathfrak{P}_{i}}\right)^{k_{i}}, i=1, \ldots, k, 0 \leq k_{i} \leq f_{i}-1$, are coset representatives [N , Theorem 7.29]. Hence $\chi_{\sigma}\left(\mathrm{Frob}_{p}\right)$ is the number of i 's such that $f_{i}=1$. It is exactly $N_{f}(p)$. So $\chi_{\sigma}\left(\operatorname{Frob}_{p}\right)=N_{f}(p)$.

Since π is an automorphic representation of $\mathrm{GL}_{d-1}(\mathbb{A}), L(s, \pi)$ has an analytic continuation to all of \mathbb{C}, and satisfies an appropriate functional equation. Hence we have

Proposition 1 ([FI]). Let a_{n} be as above. Then

$$
\sum_{n \leq x} a_{n}=O\left(x^{(d-2) / d+\varepsilon}\right)
$$

Hence the series $\sum_{n=1}^{\infty} a_{n} / n^{s}$ converges for $\operatorname{Re}(s)>(d-2) / d+\varepsilon$. In particular,

$$
\sum_{p \leq x} \frac{a_{p}}{p}=O(1)
$$

2. Distribution of values of $r_{2}(n)$. Let $r_{2}(n)=\sum_{x_{1}^{2}+x_{2}^{2}=n} 1$. We are interested in

$$
\sum_{n \leq x} r_{2}(f(n))
$$

If $f(x)=a x^{2}+b x+c$, then (see [F2] for the details)

$$
\sum_{n \leq x} r_{2}(f(n))= \begin{cases}A(f) x \log x+O(x \log \log x) & \text { if } b^{2}-4 a c=-\mu^{2} \tag{2}\\ B(f) x+O\left(x^{8 / 9}(\log x)^{3}\right) & \text { if } b^{2}-4 a c \neq-\mu^{2}\end{cases}
$$

We use (see [F2] for the precise reference)
Lemma 2. Let $t(n)$ be a multiplicative function such that $t(n) \geq 0$ and $t\left(p^{k}\right) \ll k^{c}, k \in \mathbb{N}$ (p prime, and c constant). Let $f(x)=\sum_{i=0}^{l} a_{i} x^{i} \in \mathbb{Z}[x]$ be irreducible such that $\left(a_{0}, \ldots, a_{l}\right)=1$. Then

$$
\sum_{n \leq x} t(f(n)) \ll x \exp \left(\sum_{p \leq x} \frac{N_{f}(p)(t(p)-1)}{p}\right)
$$

where the implied constant depends on $t(n)$ and $f(n)$.
Hence we need to compute

$$
\sum_{p \leq x} \frac{N_{f}(p)\left(r_{2}(p)-1\right)}{p}
$$

Here we have removed finitely many primes p where π_{p} is not spherical, or $p=2$. However, if $p \neq 2$, then $r_{2}(p)=1+\left(\frac{-1}{p}\right)$. Let χ_{4} be the nontrivial character of $(\mathbb{Z} / 4 \mathbb{Z})^{\times}$. Then $\chi_{4}(p)=\left(\frac{-1}{p}\right)$. Since $\sum_{n=1}^{\infty} \chi_{4}(n) / n^{s}$ is holomorphic at $s=1, \sum_{p \leq x} \chi_{4}(p) / p=O(1)$. Also

$$
\sum_{n=1}^{\infty} \frac{a_{n} \chi_{4}(n)}{n^{s}}=L\left(s, \pi \otimes \chi_{4}\right)
$$

If π is not cuspidal, and χ_{4} occurs in the decomposition (1), then it occurs with multiplicity one, and hence $L\left(s, \pi \otimes \chi_{4}\right)$ has a simple pole at $s=1$. So $\sum_{p \leq x} a_{p} \chi_{4}(p) / p=\log \log x+O(1)$. Otherwise, $L\left(s, \pi \otimes \chi_{4}\right)$ is holomorphic at $s=1$, and $\sum_{p \leq x} a_{p} \chi_{4}(p) / p=O(1)$. Here we note that χ_{4} occurs in
the decomposition (1) if and only if χ_{4} is an irreducible character of G and $\left.\chi_{4}\right|_{H}=1$. Hence it is the case if and only if $\mathbb{Q}[\sqrt{-1}] \subset E$. Hence

$$
\sum_{p \leq x} \frac{N_{f}(p)\left(r_{2}(p)-1\right)}{p}= \begin{cases}\log \log x+O(1) & \text { if } \mathbb{Q}[\sqrt{-1}] \subset E \\ O(1) & \text { otherwise }\end{cases}
$$

Therefore, we obtain
Theorem 3. Suppose we have the strong Artin conjecture for $L(s, \varrho)$. Then

$$
\sum_{n \leq x} r_{2}(f(n)) \ll \begin{cases}x \log x & \text { if } \mathbb{Q}[\sqrt{-1}] \subset E \\ x & \text { otherwise }\end{cases}
$$

If $f(x)=a x^{2}+b x+c, b^{2}-4 a c=-\mu^{2}$, then $E=\mathbb{Q}[\sqrt{-1}]$, and hence $\zeta_{E}(s)=\zeta(s) L\left(s, \chi_{4}\right)$. So the estimate (2) is the best possible. If $f(x)$ is the m th cyclotomic polynomial, and $4 \mid m$, then $\mathbb{Q}[\sqrt{-1}] \subset E=\mathbb{Q}\left[e^{2 \pi i / m}\right]$. Hence $\sum_{n \leq x} r_{2}(f(n)) \ll x \log x$.

We give five examples which satisfy the condition in Theorem 3.
Example 1. Suppose $f(x)=x^{3}+a x^{2}+b x+c$, and its Galois group is S_{3} with the discriminant D. Then $\varrho: S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is the irreducible 2dimensional representation. Hence ϱ gives rise to a cuspidal representation π of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Let $L(s, \pi)=\sum_{n=1}^{\infty} a_{n} n^{-s}$. Then $N_{f}(p)=1+a_{p}$. In particular, if ϱ is odd, i.e., $D<0$, it comes from a holomorphic cusp form F of weight 1 and level $|D|$. Then $F(z)=\sum_{n=1}^{\infty} a_{n} q^{n}, q=e^{2 \pi i z}$. In this case, $S(L / \mathbb{Q})=$ $\left\{p: a_{p}=2,\left(\frac{D}{p}\right)=1\right\}$ and $\sum_{n \leq x} r_{2}(f(n)) \ll x$.

Example 2. Let $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, and assume its Galois group is S_{4} with discriminant D. Here $\varrho: S_{4} \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ is one of the two irreducible 3-dimensional representations. There exists a Galois extension $\widetilde{L} / \mathbb{Q}$ such that $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \simeq \operatorname{GL}_{2}\left(\mathbb{F}_{3}\right)$, and $[\widetilde{L}: L]=2$. Then $\varrho=\operatorname{Sym}^{2}(\sigma)$, where σ is the 2-dimensional representation $\sigma: \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ (see [Ki2] for the details). Since $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ is solvable, by the Langlands-Tunnell theorem, σ gives rise to a cuspidal representation π (if $D<0$, it is odd and it comes from a holomorphic cusp form of weight 1). Let $L(s, \pi)=$ $\sum_{n=1}^{\infty} b_{n} n^{-s}$. Then the central character is $\omega_{\pi}(p)=\left(\frac{p}{D}\right)$. Then ϱ gives rise to the Gelbart-Jacquet lift $\operatorname{Sym}^{2}(\pi)$ and $a_{p}=b_{p}^{2}-\omega_{\pi}(p)$. Hence $N_{f}(p)=$ $1+b_{p}^{2}-\left(\frac{p}{D}\right)$. Since σ is not of dihedral type, $\operatorname{Sym}^{2}(\pi)$ is cuspidal.

In this case, $S(L / \mathbb{Q})=\left\{p: a_{p}= \pm 2,\left(\frac{p}{D}\right)=1\right\}$, and $\sum_{n \leq x} r_{2}(f(n)) \ll x$.
Example 3. Let $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ with Galois group A_{4} and discriminant D. Here $\varrho: S_{4} \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ is the irreducible 3-dimensional representation. In this case, there exists a Galois extension $\widetilde{L} / \mathbb{Q}$ such that $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$, and $[\widetilde{L}: L]=2$. Then $\varrho=\operatorname{Sym}^{2}(\sigma)$, where σ is the

2-dimensional representation $\sigma: \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$. This is similar to the S_{4} case.

Example 4. Let $f(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e$ with Galois group A_{5} and discriminant D. Here $\varrho: A_{5} \rightarrow \mathrm{GL}_{4}(\mathbb{C})$ is the irreducible 4dimensional representation. There exists a Galois extension $\widetilde{L} / \mathbb{Q}$ such that $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{5}\right)$, and $[\widetilde{L}: L]=2$. Then $\varrho=\sigma \otimes \sigma^{\tau}$, where σ is one of the 2-dimensional representations $\sigma: \mathrm{SL}_{2}\left(\mathbb{F}_{5}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$, and τ is the automorphism $\sqrt{5} \mapsto-\sqrt{5}$ (see [Ki1] for the details). Suppose σ is odd, and it gives rise to a cuspidal representation π which is attached to a holomorphic cusp form of weight $1, F(z)=\sum_{n=1}^{\infty} b_{n} q^{n}$. Then ϱ gives rise to the functorial product $\pi \boxtimes \pi^{\tau}$ (see [R1]), and $a_{p}=b_{p} b_{p}^{\tau}$. Hence $N_{f}(p)=1+b_{p} b_{p}^{\tau}$.
R. Taylor [T] proved infinitely many cases of modularity of odd icosahedral Galois representations. In particular, the following quintic polynomials give rise to holomorphic cusp forms of weight 1 :

$$
\begin{aligned}
& x^{5}+2 x^{4}+6 x^{3}+8 x^{2}+10 x+8 \\
& x^{5}+6 x^{4}+x^{3}+4 x^{2}-24 x+32, \\
& x^{5}-2 x^{3}+2 x^{2}+5 x+6 \\
& x^{5}+5 x^{4}+8 x^{3}-20 x^{2}-21 x-5 .
\end{aligned}
$$

In this case, $S(L / \mathbb{Q})=\left\{p: b_{p}= \pm 2\right\}$, and $\sum_{n \leq x} r_{2}(f(n)) \ll x$.
Example 5 ([F2]). Let $f(x)=x^{4}-m$, where m is a positive integer which is not a square. Then $L=\mathbb{Q}\left[\sqrt{-1}, m^{1 / 4}\right]$. Let $E=\mathbb{Q}\left[m^{1 / 4}\right]$. Then we can show that $\operatorname{Ind}_{H}^{G} 1$ is the direct sum of the trivial character, one nontrivial 1-dimensional character χ and the unique 2-dimensional irreducible representation ϱ. Then ϱ gives rise to a holomorphic cusp form F of weight 1 . Let $F(z)=\sum_{n=1}^{\infty} a_{n} q^{n}, q=e^{2 \pi i z}$, and assume χ gives rise to a Dirichlet character $\chi(p)=\left(\frac{m_{0}}{p}\right)$, where m_{0} is the square-free part of m. Then $N_{f}(p)=$ $1+\left(\frac{m_{0}}{p}\right)+a_{p}$. In this case, $S(L / \mathbb{Q})=\left\{p: a_{p}=2,\left(\frac{m_{0}}{p}\right)=1\right\}$, and $\sum_{n \leq x} r_{2}(f(n)) \ll x$.
3. The sum $\sum_{n \leq x}|b(f(n))|^{2}$. Let $\pi^{\prime}=\bigotimes_{p} \pi_{p}^{\prime}$ be a cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$, and let $L\left(s, \pi^{\prime}\right)=\prod_{p} L\left(s, \pi_{p}^{\prime}\right)=\sum_{n=1}^{\infty} b(n) n^{-s}$ (without the Γ-factor). Let f be as in Section 1. We assume that $L\left(s, \pi \times \operatorname{Ad}\left(\pi^{\prime}\right)\right)$ is holomorphic at $s=1$, where π corresponds to ϱ. In particular, it is the case if π^{\prime} is attached to a holomorphic cusp form of weight $k \geq 2$. Note that $L\left(s, \pi \times \operatorname{Ad}\left(\pi^{\prime}\right)\right)$ has a pole at $s=1$ if and only if $\pi \simeq \operatorname{Ad}\left(\pi^{\prime}\right)$. So it is very rare.

We are interested in the sum

$$
\sum_{n \leq x}|b(f(n))|^{2}
$$

If the Ramanujan conjecture holds, then $|b(n)| \leq d(n)$, where $d(n)$ is the number of divisors of n, and we know that

$$
\sum_{n \leq x} d(f(n))^{2} \ll x(\log x)^{3}
$$

(We can obtain this from Lemma 2 by observing that $\zeta(s)^{2}=\sum_{n=1}^{\infty} d(n) / n^{s}$. Namely, $d(n)$ is the Fourier coefficients for the automorphic representation $\pi^{\prime}=1 \boxplus 1 ; L\left(s, \pi^{\prime}\right)=\zeta(s)^{2}$. Then $L\left(s, \pi^{\prime} \times \pi^{\prime}\right)$ has a pole of order 4 at $s=1$. Hence $\sum_{p \leq x} d(p)^{2} / p=4 \log \log x+O(1)$ and $\sum_{p \leq x} a_{p} d(p)^{2} / p=O(1)$.)

This gives a trivial estimate (see [F3] for the details)

$$
\sum_{n \leq x}|b(f(n))|^{2} \ll x(\log x)^{3}
$$

We would like to obtain a better estimate. Furthermore, we do not assume the Ramanujan conjecture for π^{\prime}.

Theorem 4. Let f, ϱ be as in Section 1. Suppose we have the strong Artin conjecture for $L(s, \varrho)$, and that $L\left(s, \pi \times \operatorname{Ad}\left(\pi^{\prime}\right)\right)$ is holomorphic at $s=1$, where π corresponds to ϱ. Then

$$
\sum_{n \leq x}|b(f(n))|^{2} \ll x
$$

Proof. We follow [F3]. By Lemma 2, we need to compute

$$
\sum_{p \leq x} \frac{N_{f}(p)\left(|b(p)|^{2}-1\right)}{p}
$$

Here we have removed finitely many primes p where π_{p} or π_{p}^{\prime} is not spherical. Since $N_{f}(p)=1+a_{p}$, we need to consider $\sum_{p \leq x}|b(p)|^{2} / p$ and $\sum_{p \leq x} a_{p}|b(p)|^{2} / p$.

Since $L\left(s, \pi^{\prime} \times \widetilde{\pi}^{\prime}\right)$ has a simple pole at $s=1$, we have $\sum_{p \leq x}|b(p)|^{2} / p=$ $\log \log x+O(1)$. Since the triple product L-function $L\left(s, \pi \times \pi^{\prime} \times \widetilde{\pi}^{\prime}\right)=$ $L\left(s, \pi \times \operatorname{Ad}\left(\pi^{\prime}\right)\right) L(s, \pi)$ is holomorphic at $s=1$, we have $\sum_{p \leq x} a_{p}|b(p)|^{2} / p=$ $O(1)$. Since $\sum_{p \leq x} 1 / p=\log \log x+O(1)$ we get

$$
\sum_{p \leq x} \frac{N_{f}(p)\left(|b(p)|^{2}-1\right)}{p}=O(1)
$$

We have the result unconditionally for the polynomials in the examples in Section 2.
4. Distribution of values of $N_{f}(n)$. Let f, ϱ be as in Section 1. In this section we do not need to assume the strong Artin conjecture for $L(s, \varrho)$. We are interested in the quantities

$$
\sum_{n \leq x} N_{f}(n), \quad \sum_{p \leq x} N_{f}(p)
$$

Erdős proved (see [F1] for the precise reference)

$$
\sum_{p \leq x} N_{f}(p)=\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right), \quad \sum_{p \leq x} \frac{N_{f}(p)}{p}=\log \log x+c(f)+o(1)
$$

One can also show (see [F1] for the details)

$$
\sum_{n \leq x} N_{f}(n)=C(f) x+O\left(\frac{x}{(\log x)^{1 / 2-\varepsilon}}\right)
$$

where $C(f)=e^{-\gamma+c(f)} P$. Here γ is the Euler constant and

$$
P=\prod_{p} e^{-N_{f}(p) / p}\left(1+\frac{N_{f}(p)}{p}+\frac{N_{f}\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

We would like to obtain a better error term, following [F1]. Consider

$$
L(s)=\sum_{n=1}^{\infty} \frac{N_{f}(n)}{n^{s}}
$$

Since $N_{f}(n)$ is multiplicative, we can write

$$
L(s)=\prod_{p}\left(1+\frac{N_{f}(p)}{p^{s}}+\frac{N_{f}\left(p^{2}\right)}{p^{2 s}}+\cdots\right)
$$

for $\operatorname{Re}(s)>1$. Here

$$
\zeta_{E}(s)=\prod_{p}\left(1-\frac{N_{f}(p)}{p^{s}}+\cdots \pm \frac{1}{p^{d s}}\right)^{-1}
$$

Hence $L(s) / \zeta_{E}(s)$ is absolutely convergent for $\operatorname{Re}(s)>1 / 2$. Hence it is holomorphic and non-vanishing for $\operatorname{Re}(s)>1 / 2$. Let $L(s)=\zeta_{E}(s) A(s)$ for $\operatorname{Re}(s)>1$, where $A(s)$ is holomorphic and non-vanishing for $\operatorname{Re}(s)>1 / 2$. This provides the meromorphic continuation of $L(s)$ to $\operatorname{Re}(s)>1 / 2$. Since $\zeta_{E}(s)$ has a simple pole at $s=1, L(s)$ has a simple pole at $s=1$. We use Perron's formula:

$$
\sum_{n \leq x} N_{f}(n)=\frac{1}{2 \pi i} \int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s} L(s) d s+O\left(\frac{x^{1+2 \varepsilon}}{T}\right)
$$

for any $1 \leq T \leq x$, where $\alpha=1+\varepsilon$. We move the integration to the parallel segment with $\operatorname{Re}(s)=1 / 2+\varepsilon$. Then

$$
\sum_{n \leq x} N_{f}(n)=x \operatorname{Res}_{s=1} L(s)+\frac{1}{2 \pi i} \int_{1 / 2+\varepsilon-i T}^{1 / 2+\varepsilon+i T} \frac{x^{s}}{s} L(s) d s+O\left(\frac{x^{1+2 \varepsilon}}{T}\right) .
$$

We have the convexity bound for $\zeta_{E}(s)$ at $\operatorname{Re}(s)=1 / 2+\varepsilon$ (see [CN]):

$$
\left|\zeta_{E}(1 / 2+\varepsilon+i t)\right| \ll(1+|t|)^{d / 4}
$$

Hence

$$
\frac{1}{2 \pi i} \int_{\alpha-i T}^{\alpha+i T} \frac{x^{s}}{s} L(s) d s \ll x^{1 / 2+\varepsilon} \int_{0}^{T} t^{d / 4-1} d t=O\left(x^{1 / 2+\varepsilon} T^{d / 4}\right)
$$

Take $T=x^{2 /(d+4)}$. Then

$$
\sum_{n \leq x} N_{f}(n)=x \operatorname{Res}_{s=1} L(s)+O\left(x^{(d+2) /(d+4)+\varepsilon}\right) .
$$

We have proved

Theorem 5. Let $f, L(s)$ be as above. Then $L(s)$ has a simple pole at $s=1$, and

$$
\sum_{n \leq x} N_{f}(n)=x \operatorname{Res}_{s=1} L(s)+O\left(x^{(d+2) /(d+4)+\varepsilon}\right) .
$$

Remark. Note that the above error estimate holds even when G is abelian, or $G=S_{3}$, improving the result in [F1]. We have the convexity bounds for Dirichlet L-functions, namely, $|L(1 / 2+\varepsilon+i t, \chi)| \ll(1+|t|)^{1 / 6+\varepsilon}$. So if G is abelian, $\left|\zeta_{E}(1 / 2+\varepsilon+i t)\right| \ll(1+|t|)^{d / 6+\varepsilon}$. Then the error bound is improved to $O\left(x^{(d+3) /(d+6)+\varepsilon}\right)$.

References

[CN] K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann. 152 (1963), 30-64.
[F1] O. M. Fomenko, The mean number of solutions of certain congruences, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 254 (1998), 192-206 (in Russian); English transl.: J. Math. Sci. (New York) 105 (2001), 2257-2268.
[F2] -, Distribution of values of Fourier coefficients for modular forms of weight 1, ibid. 226 (1996), 196-227 (in Russian); English transl.: ibid. 89 (1998), 1050-1071.
[F3] -, Fourier coefficients of cusp forms and automorphic L-functions, ibid. 237 (1997), 194-226 (in Russian); English transl.: ibid. 95 (1999), 2295-2316.
[FI] J. Friedlander and H. Iwaniec, Summation formulae for coefficients of L-functions, Canad. J. Math. 57 (2005), 494-505.
[FH] W. Fulton and J. Harris, Representation Theory, Springer, 1991.
[Ki1] H. Kim, An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math. 156 (2004), 495-502.
[Ki2] -, On symmetric powers of cusp forms on GL_{2}, in: The Conference on L-Functions, World Sci., 2007, 95-113.
[N] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 2004.
[R1] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. 152 (2000), 45-111.
[R2] -, Irreducibility and cuspidality, in: Representation Theory and Automorphic Forms, Progr. Math., Springer-Birkhäuser, to appear.
[T] R. Taylor, On icosahedral Artin representations II, Amer. J. Math. 125 (2003), 549-566.

Department of Mathematics
Korea Institute for Advanced Study
University of Toronto
Seoul, Korea
Toronto, ON M5S 2E4, Canada
E-mail: henrykim@math.toronto.edu

Received on 6.11.2006
and in revised form on 26.2.2007

[^0]: 2000 Mathematics Subject Classification: 11N37, 11F70.
 Partially supported by NSERC grant.

