Inverse zero-sum problems

by
Weidong Gao (Tianjin), Alfred Geroldinger (Graz) and Wolfgang A. Schmid (Graz)

1. Introduction. Let G be an additive finite abelian group with exponent $\exp (G)=n$. We define some central invariants in zero-sum theory: Let

- $\mathrm{D}(G)$ denote the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence.
- $\eta(G)$ denote the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence T of length $|T| \in[1, n]$.
- $\mathrm{s}(G)$ denote the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence T of length $|T|=n$.

All these three invariants have been studied since the 1960s; this was initiated by the works of P. Erdős et al. (see [17, 36], and for more detailed historical information see $[23,24]$). For groups of rank at most two the precise values of all three invariants are well known (see Theorem 2.4). In groups of higher rank precise values are known only in very special cases (see $[10,24,3]$ and the introduction of Section 3).

The investigation of inverse problems has a long tradition in combinatorial number theory (see [34]), and more recently it has been promoted by applications in the theory of non-unique factorizations (see [30]). In the present paper we study the inverse problems associated to the above invariants. More precisely, we investigate the structure of sequences of length $\mathrm{D}(G)-1$ (respectively $\eta(G)-1$ or $\mathrm{s}(G)-1$) that do not have a zero-sum subsequence (of the required length). For cyclic groups these questions are completely settled. Indeed, the answer for the invariants $\mathrm{D}(G)$ and $\eta(G)$ is straightforward (see Theorem 2.1), and the inverse problem for the invariant $\mathrm{s}(G)$, with G cyclic, gave rise to a great variety of investigations (see $[5,8,18,9,19,4,38,26,31,29])$. In this paper we study the problems for
groups G of the form $G=C_{n}^{r}$, with $n, r \geq 2$, where the emphasis is laid on groups of rank two.

Consider the following two properties.
Property C. Every sequence S over G of length $|S|=\eta(G)-1$ that has no zero-sum subsequence of length in $[1, n]$ has the form $S=T^{n-1}$ for some sequence T over G.

Property D. Every sequence S over G of length $|S|=\mathrm{s}(G)-1$ that has no zero-sum subsequence of length n has the form $S=T^{n-1}$ for some sequence T over G.

Property \mathbf{C} was first considered by P. van Emde Boas and Property D by W. D. Gao (see $[16,21]$). At the beginning of Section 3 we discuss the state of knowledge on these properties. In [24, Conjecture 7.2] it is conjectured that every group $G=C_{n}^{r}$, where $r \in \mathbb{N}$ and $n \in \mathbb{N}_{\geq 2}$, has Property D. In Theorem 3.2 we show that Properties \mathbf{C} and \mathbf{D} are both multiplicative, and thus this conjecture is essentially reduced to the case of elementary p-groups.

Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$. It is conjectured that every minimal zero-sum sequence S over G of length $|S|=\mathrm{D}(G)$ contains some element with multiplicity $n-1$ (for several equivalent conditions see [30, Theorem 5.8.7]). If this conjecture is true, then G has Property \mathbf{C} (see [23, Theorem 6.2] and $[24$, Theorem $6.7 .2(\mathrm{~b})])$. In Theorem 4.1 we show that, if $\varepsilon>0$ and n is a sufficiently large prime, then such a sequence S contains one element with multiplicity greater than $n^{1 / 4-\varepsilon}$. The proof rests on a variety of addition theorems, among them the theorem of Dias da Silva-Hamidoune (which settles the Erdős-Heilbronn conjecture).

In Section 5 we study the analogue of Property \mathbf{D} for sets (that is, for squarefree sequences) in $G=C_{p} \oplus C_{p}$, where p is a prime. W. D. Gao and R . Thangadurai proved that the maximal size of a set $S \subset C_{p} \oplus C_{p}$, for primes $p \geq 67$, without a subset of size p that sums to zero, is $2 p-2$ (see [28]). In Theorem 5.1 we completely determine the structure of all extremal sets, and moreover, we slightly improve the bound to $p \geq 47$. The proof of the inverse result is analogue to the proof of the direct result, but additionally employs some (recent) ideas from the study of Brakemeier's function due to A. Bialostocki and M. Lotspeich [5] and F. Hennecart [31] (see Lemma 5.9).

A crucial idea in all our work on groups of rank two is to find suitable epimorphisms to cyclic groups, to use results known for cyclic groups and then to shift the information back to the groups of rank two. We make use of classical results, such as the Cauchy-Davenport theorem, and list the other needed results on cyclic groups at the end of Section 2 (see Theorems 2.1 to 2.3). Of course we need the solutions of the original direct problems, which are summarized in Theorem 2.4.

Throughout this article, let G be an additive finite abelian group.
2. Notations and some main tools. Our notations and terminology are consistent with [24] and [30]. Here we briefly gather some key notions and fix the notations concerning sequences over finite abelian groups. Let \mathbb{N} denote the set of positive integers, $\mathbb{P} \subset \mathbb{N}$ the set of all prime numbers and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$ we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$, and we denote by $\lfloor a\rfloor$ the largest integer that is less than or equal to a, and by $\lceil a\rceil$ the smallest integer that is greater than or equal to a.

Throughout, all abelian groups will be written additively. For $n \in \mathbb{N}$, let C_{n} denote a cyclic group with n elements. We have

$$
G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}
$$

where $r=\mathrm{r}(G) \in \mathbb{N}_{0}$ is the rank of $G, n_{1}, \ldots, n_{r} \in \mathbb{N}$ are integers with $1<n_{1}|\ldots| n_{r}$ and $n_{r}=\exp (G)$ is the exponent of G. Let $s \in \mathbb{N}$. An s-tuple $\left(e_{1}, \ldots, e_{s}\right)$ of elements of G is said to be independent if $e_{i} \neq 0$ for all $i \in[1, s]$ and, for every s-tuple $\left(m_{1}, \ldots, m_{s}\right) \in \mathbb{Z}^{s}$,

$$
m_{1} e_{1}+\cdots+m_{s} e_{s}=0 \quad \text { implies } \quad m_{1} e_{1}=\cdots=m_{s} e_{s}=0
$$

An s-tuple $\left(e_{1}, \ldots, e_{s}\right)$ of elements of G is called a basis if it is independent and $G=\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{s}\right\rangle$.

Let $\mathcal{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathcal{F}(G)$ are called sequences over G. We write sequences $S \in \mathcal{F}(G)$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S, and we say that S contains g if $\mathrm{v}_{g}(S)>0$. Further, S is called squarefree if $\mathrm{v}_{g}(S) \leq 1$ for all $g \in G$. The unit element $1 \in \mathcal{F}(G)$ is called the empty sequence. A sequence S_{1} is called a subsequence of S if $S_{1} \mid S$ in $\mathcal{F}(G)$ (equivalently, $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G)$, and it is called a proper subsequence of S if it is a subsequence with $1 \neq S_{1} \neq S$. If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$.

For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{v_{g}(S)} \in \mathcal{F}(G)
$$

we call

- $|S|=l=\sum_{g \in G} \vee_{g}(S) \in \mathbb{N}_{0}$ the length of S,
- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G\right\} \in[0,|S|]$ the maximum of the multiplicities of S,
- $\operatorname{supp}(S)=\left\{g \in G \mid \vee_{g}(S)>0\right\} \subset G$ the support of S,
- $\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \vee_{g}(S) g \in G$ the sum of S,
- $\Sigma_{k}(S)=\left\{\sum_{i \in I} g_{i} \mid I \subset[1, l]\right.$ with $\left.|I|=k\right\}$ the set of k-term subsums of S, for all $k \in \mathbb{N}$,
- $\Sigma_{\leq k}(S)=\bigcup_{j \in[1, k]} \Sigma_{j}(S), \Sigma_{\geq k}(S)=\bigcup_{j \geq k} \Sigma_{j}(S)$,
- $\Sigma(S)=\Sigma_{\geq 1}(S)$ the set of (all) subsums of S.

The sequence S is called

- zero-sumfree if $0 \notin \Sigma(S)$,
- a zero-sum sequence if $\sigma(S)=0$,
- a minimal zero-sum sequence if it is a non-empty zero-sum sequence and every proper subsequence is zero-sumfree,
- a short zero-sum sequence if it is a zero-sum sequence of length $|S| \in$ $[1, \exp (G)]$.
Throughout the paper, we tacitly use the following argument: If $g \in G$ with $\operatorname{ord}(g)=\exp (G)=n$, then $S=g_{1} \cdot \ldots \cdot g_{l}$ has a zero-sum subsequence of length n if and only if the shifted sequence $S^{\prime}=\left(g_{1}-g\right) \cdot \ldots \cdot\left(g_{l}-g\right)$ has a zero-sum subsequence of length n.

Every group homomorphism $\varphi: G \rightarrow H$ extends to a homomorphism $\varphi: \mathcal{F}(G) \rightarrow \mathcal{F}(H)$ where $\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$. Obviously, $\varphi(S)$ is a zerosum sequence if and only if $\sigma(S) \in \operatorname{Ker}(\varphi)$. If $m \in \mathbb{N}, m \mid n_{1}$ and $\varphi: G \rightarrow G$ is the multiplication by m (defined by $\varphi(g)=m g$ for every $g \in G$), then $\operatorname{Ker}(\varphi) \cong C_{m}^{r}$ and $\varphi(G) \cong C_{n_{1} / m} \oplus \cdots \oplus C_{n_{r} / m}$.

Now we gather the results on cyclic groups that will be needed throughout this paper.

Theorem 2.1. Let G be cyclic of order $n \geq 3$ and $S \in \mathcal{F}(G)$ a zerosumfree sequence of length $|S| \geq(n+1) / 2$. Then there exists some $g \in$ $\operatorname{supp}(S)$ such that $\mathrm{v}_{g}(S) \geq 2|S|-n+1$. In particular, $\mathrm{D}(G)=n$ and the following statements hold:
(a) If $|S|=n-1$, then $S=g^{n-1}$.
(b) If $|S|=n-2$, then either $S=g^{n-3}(2 g)$ or $S=g^{n-2}$.
(c) If $|S|=n-3$, then S has one of the following forms:

$$
g^{n-5}(2 g)^{2}, \quad g^{n-4}(2 g), \quad g^{n-4}(3 g), \quad g^{n-3}
$$

Proof. This is due to J. D. Bovey, P. Erdős and I. Niven (see [7] for the original paper and also [30, Theorem 5.4.5.2]).

Theorem 2.2. Let G be prime cyclic of order $p \in \mathbb{P}$ and $S \in \mathcal{F}(G)$.
(1) Let $\mathrm{v}_{0}(S)=0$ and $|S|=p$. Then $\Sigma_{\leq \mathrm{h}(S)}(S)=G$, and in particular, S has a zero-sum subsequence of length at least $p-\mathrm{h}(S)$.
(2) Let $k \in[2, p-1],|S| \geq 2 p-k$ and $\mathrm{h}(S) \leq p-k$. Then S has a zero-sum subsequence of length p.
(3) Let $p \geq 13, \mathrm{v}_{0}(S)=0, k \in[(p+5) / 2, p-4],|S| \geq 2 p-k-2$ and $\mathrm{h}(S) \leq k$. Then S has a zero-sum subsequence T of length $|T| \in$ $[p+2-k, p-2]$.
Proof. (1)\&(2) See [28, Lemma 2.6 and Theorem 2.7].
(3) Clearly, S has a subsequence S^{\prime} of length $\left|S^{\prime}\right|=p$ and with $\mathrm{h}\left(S^{\prime}\right) \leq$ $k-2$. By (1), S^{\prime} has a zero-sum subsequence T of length $|T| \geq p-\mathrm{h}\left(S^{\prime}\right) \geq$ $p+2-k$. If $|T| \leq p-2$, then we are done. If $|T| \geq p-1$, then $\mathrm{h}(T) \leq p-4$ and Theorem 2.1 imply that T is not a minimal zero-sum subsequence. Thus it has a proper zero-sum subsequence T^{\prime} of length $\left|T^{\prime}\right| \in[(p-1) / 2, p-2] \subset$ $[p+2-k, p-2]$.

Theorem 2.3. Let G be prime cyclic of order $p \in \mathbb{P}, S \in \mathcal{F}(G)$ a squarefree sequence and $k \in[1,|S|]$.
(1) $\left|\Sigma_{k}(S)\right| \geq \min \{p, k(|S|-k)+1\}$.
(2) If $k=\lfloor|S| / 2\rfloor$, then $\left|\Sigma_{k}(S)\right| \geq \min \left\{p,\left(|S|^{2}+3\right) / 4\right\}$.
(3) If $|S|=\lfloor\sqrt{4 p-7}\rfloor+1$ and $k=\lfloor|S| / 2\rfloor$, then $\Sigma_{k}(S)=G$.

Proof. This is due to J. A. Dias da Silva and Y. O. Hamidoune (see [11] for the original paper, and also [2] and [34, Theorems 3.4 and 3.8]). Obviously, (2) and (3) are special cases of (1), which will be needed repeatedly in this form.

Theorem 2.4. Let $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1 \leq n_{1} \mid n_{2}$. Then

$$
\mathrm{s}(G)=2 n_{1}+2 n_{2}-3, \quad \eta(G)=2 n_{1}+n_{2}-2, \quad \mathrm{D}(G)=n_{1}+n_{2}-1
$$

Proof. The result on $\mathrm{D}(G)$ goes back to D. Kruyswijk and J. E. Olson, and the result on $\mathbf{s}(G)$ is based on C. Reiher's result that $\mathbf{s}\left(C_{p} \oplus C_{p}\right)=4 p-3$ (see [35] and [30, Theorem 5.8.3]).
3. Properties \mathbf{C} and \mathbf{D} in groups of the form C_{n}^{r}. Let $G=C_{n}^{r}$ with $n \geq 2, r \in \mathbb{N}$ and suppose that Property \mathbf{D} holds. Then, by definition, there exists some $c(G) \in \mathbb{N}$ such that $\mathrm{s}(G)=c(G)(n-1)+1$. Moreover, a simple argument shows that Property \mathbf{C} holds (see [24, Section 7]) and that $\eta(G)=(c(G)-1)(n-1)+1$ (see [13, Lemma 2.3]). For $r=1$ we have $c(G)=2$ and for $r=2$ we have $c(G)=4$ (see Theorem 2.4). In the case of higher ranks bounds for $c(G)$ were given by N. Alon and M. Dubiner (see [1]) and then by Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham (see $[32,15,13,12]$).

We make use of the simple fact that $\eta\left(C_{2}^{r}\right)=2^{r}$ and $\mathrm{s}\left(C_{2}^{r}\right)=2^{r}+1$ (see [30, Corollary 5.7.6]). It follows from the very definition that C_{2}^{r} satisfies Property \mathbf{D}, and a straightforward argument shows that C_{3}^{r} satisfies Property D (see [13, Lemma 2.3.3] and the subsequent discussion). However, in general only very little is known about Property D. If $r=2$ and $n \in\{2,3,5,7\}$, then G has Property \mathbf{D} by [37], and for first results in groups
of higher rank we refer to [25]. Property \mathbf{C} was first studied for groups of rank two in connection with investigations of the Davenport constant of groups having rank three (see [16, 20], and also [24, Theorem 7.9]).

Theorem 3.2 shows that both Property \mathbf{C} and Property D are multiplicative, provided that the $c(\cdot)$ invariants of all involved groups coincide (in contrast to this assumption see the investigation of C_{6}^{3} in [25]). This result generalizes earlier work (see [21] and [27, Theorem 1]), and reduces the conjecture that all groups of the form C_{n}^{r} satisfy the discussed properties to the case of elementary p-groups (under the above assumption on the $c(\cdot)$ invariants).

We start with a lemma that is used in the proof of the following theorem. It is closely related to [27, Theorem 2].

Lemma 3.1. Let $G=C_{n}^{r}$ with $n \geq 2, r \in \mathbb{N}$ and let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=\eta(G)+n-2$ that has no zero-sum subsequence of length n. If G has Property \mathbf{C} and $\mathrm{h}(S) \geq\lfloor(n-1) / 2\rfloor$, then $S=T^{n-1}$ for some $T \in \mathcal{F}(G)$.

Proof. Suppose that G has Property \mathbf{C} and let $g \in G$ be such that $\mathrm{v}_{g}(S) \geq\lfloor(n-1) / 2\rfloor$. We assume $g=0$ and set $S=0^{v} T$ with $v=\mathrm{v}_{0}(S)$ and $T \in \mathcal{F}(G)$. Since S has no zero-sum subsequence of length n, it follows that T has no zero-sum subsequence of length in $[n-v, n]$.

Assume to the contrary that $v \leq n-2$. Since $|T| \geq \eta(G)+(n-2)-v \geq$ $\eta(G), T$ has a short zero-sum subsequence, and let T_{1} be a short zero-sum subsequence of maximal length. Then we get

$$
\left|T_{1}\right| \leq n-1-v, \quad\left|T_{1}^{-1} T\right| \geq \eta(G)-1
$$

Since $\mathrm{h}\left(T_{1}^{-1} T\right) \leq \mathrm{h}(S)=v \leq n-2$ and G has Property \mathbf{C}, it follows that $T_{1}^{-1} T$ has a short zero-sum subsequence T_{2}. Since T_{1} has maximal length, we deduce that $\left|T_{1} T_{2}\right| \geq n+1$ and hence

$$
\frac{n+1}{2} \leq\left|T_{1}\right| \leq n-1-v<n-1-\frac{n-3}{2}=\frac{n+1}{2}
$$

a contradiction.
Therefore we have $v=n-1$ and $|T|=\eta(G)-1$. Since T has no short zero-sum subsequence and G has Property \mathbf{C}, it follows that S has the required form.

Theorem 3.2. Let $G=C_{m n}^{r}$ with $m, n, r \in \mathbb{N}$ and let $c \in \mathbb{N}$.
(1) If both C_{m}^{r} and C_{n}^{r} have Property \mathbf{D} and

$$
\frac{\mathrm{s}\left(C_{m}^{r}\right)-1}{m-1}=\frac{\mathrm{s}\left(C_{n}^{r}\right)-1}{n-1}=\frac{\mathrm{s}\left(C_{m n}^{r}\right)-1}{m n-1}=c
$$

then G has Property D.
(2) If both C_{m}^{r} and C_{n}^{r} have Property \mathbf{C} and

$$
\frac{\eta\left(C_{m}^{r}\right)-1}{m-1}=\frac{\eta\left(C_{n}^{r}\right)-1}{n-1}=\frac{\eta\left(C_{m n}^{r}\right)-1}{m n-1}=c
$$

then G has Property \mathbf{C}.
(3) If C_{m}^{r} has Property D, C_{n}^{r} has Property \mathbf{C}, $s\left(C_{n}^{r}\right)=\eta\left(C_{n}^{r}\right)+n-1$ and

$$
\frac{\mathbf{s}\left(C_{m}^{r}\right)-1}{m-1}=\frac{\mathbf{s}\left(C_{n}^{r}\right)-1}{n-1}=\frac{\mathbf{s}\left(C_{m n}^{r}\right)-1}{m n-1}=c, \quad m \geq \frac{n^{r}\lfloor(n-1) / 2\rfloor+c}{c n}
$$

then G has Property D.

Proof. The proofs of all three assertions are based on the inductive method.

We need the following terminology. Let $k \in \mathbb{N}$, $\mathbf{s}\left(C_{k}^{r}\right)=c(k-1)+1$ and $S \in \mathcal{F}\left(C_{k}^{r}\right)$. We say that S is of Type \mathbf{D} if $|S|=c(k-1)$, S has no zero-sum subsequence of length k, and $S=T^{k-1}$ for some $T \in \mathcal{F}\left(C_{k}^{r}\right)$. Thus the group C_{k}^{r} has Property \mathbf{D} if and only if every sequence of length $c(k-1)$ that has no zero-sum subsequence of length n is of Type \mathbf{D}. Similarly, if $\eta\left(C_{k}^{r}\right)=c(k-1)+1$ and $S \in \mathcal{F}\left(C_{k}^{r}\right)$, then we say that S is of Type \mathbf{C} if $|S|=c(k-1), S$ has no short zero-sum subsequence, and $S=T^{k-1}$ for some $T \in \mathcal{F}\left(C_{k}^{r}\right)$. Again, the group C_{k}^{r} has Property \mathbf{C} if and only if every sequence of length $c(k-1)$ that has no short zero-sum subsequence is of Type C.

Obviously we may assume that $m, n \geq 2$. Let $\varphi: G \rightarrow G$ denote the multiplication by m. Then $\operatorname{Ker}(\varphi) \cong C_{m}^{r}$ and $\varphi(G)=m G \cong C_{n}^{r}$.
(1) Let $S \in \mathcal{F}(G)$ be of length $|S|=c(m n-1)$ and such that S has no zero-sum subsequence of length $m n$. We have to show that S is of Type \mathbf{D}. Since $\mathrm{v}_{g}(S) \leq m n-1$ for every $g \in G$, it suffices to show that $|\operatorname{supp}(S)|=c$.

Since $|S|=n(c(m-1))+c(n-1)$, it follows that S admits a product decomposition

$$
S=S_{1} \cdot \ldots \cdot S_{c(m-1)} S^{\prime}
$$

where $S_{1}, \ldots, S_{c(m-1)}, S^{\prime} \in \mathcal{F}(G)$ and, for every $i \in[1, c(m-1)], \varphi\left(S_{i}\right)$ has sum zero and length $\left|S_{i}\right|=n$ (see [30, Lemma 5.7.10]). Since S has no zero-sum subsequence of length $m n, \varphi\left(S^{\prime}\right)$ has no zero-sum subsequence of length n. Clearly, we have

$$
\left|\varphi\left(S^{\prime}\right)\right|=\left|S^{\prime}\right|=|S|-n c(m-1)=c(n-1)
$$

and thus $\varphi\left(S^{\prime}\right)$ is of Type \mathbf{D}, whence in particular $\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c$. We continue with the following assertion:

A1. $|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|$.

Proof of A1. It suffices to verify that for every $i \in[1, c(m-1)]$ there is some $h \in \operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ such that $\varphi\left(S_{i}\right)=h^{n}$. Assume to the contrary that there is some $i \in[1, c(m-1)]$ for which this does not hold. We assert that $\varphi\left(S_{i} S^{\prime}\right)$ is divisible by a product of two zero-sum subsequences of length n. This implies that $\varphi(S)$ is divisible by a product of $c(m-1)+1$ zero-sum subsequences of length n, whence S has a zero-sum subsequence of length $m n$, a contradiction. We distinguish two cases.

CASE 1: $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right) \neq \emptyset$. Pick h in $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap$ $\operatorname{supp}\left(\varphi\left(S_{i}\right)\right)$. Then $h^{n} \mid \varphi\left(S_{i} S^{\prime}\right)$. Since $\varphi\left(S_{i}\right)$ is a zero-sum sequence of length n and distinct from h^{n}, it follows that $\left|\operatorname{supp}\left(h^{-1} \varphi\left(S_{i}\right)\right)\right| \geq 2$. Therefore $h^{-n} \varphi\left(S_{i} S^{\prime}\right)$ is not of Type \mathbf{D}, and thus it has a zero-sum subsequence of length n.

CASE 2: $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)=\emptyset$. Pick $h \in \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)$ and let U be a zero-sum subsequence of $h \varphi\left(S^{\prime}\right)$ of length n. Then $v_{h}(U) \geq 1$ and $\left|\operatorname{supp}\left(h^{-1} U\right)\right| \geq 2$. Consequently, $\operatorname{supp}\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)=\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ and hence $\left|\operatorname{supp}\left(\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)\left(h^{-1} \varphi\left(S_{i}\right)\right)\right)\right|>\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|$. Therefore $U^{-1} \varphi\left(S_{i} S^{\prime}\right)$ is not of Type \mathbf{D}, and thus it has a zero-sum subsequence of length n.

It remains to show that

$$
\left|\varphi^{-1}(h) \cap \operatorname{supp}(S)\right|=1 \quad \text { for every } h \in \operatorname{supp}(\varphi(S)),
$$

since we then obtain

$$
|\operatorname{supp}(S)|=|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c .
$$

Let $h \in \operatorname{supp}\left(\varphi\left(S_{1} \ldots \cdot S_{c(m-1)}\right)\right)$, and assume to the contrary that there are two distinct elements $g, g^{\prime} \in \operatorname{supp}(S)$ such that $\varphi(g)=\varphi\left(g^{\prime}\right)=h$. By A1 we may suppose that $g \mid S_{1} \cdot \ldots \cdot S_{c(m-1)}$ and $g^{\prime} \mid S^{\prime}$, say $g \mid S_{1}$. Since S has no zero-sum subsequence of length $m n$, the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{c(m-1)}\right) \in$ $\mathcal{F}(\operatorname{Ker}(\varphi))$ has no zero-sum subsequence of length m, whence it is of Type \mathbf{D}. We consider $S_{1}^{\prime}=g^{-1} g^{\prime} S_{1}$. Then $\varphi\left(S_{1}^{\prime}\right)=\varphi\left(S_{1}\right)$ and hence $\sigma\left(S_{1}\right) \neq \sigma\left(S_{1}^{\prime}\right) \in$ $\operatorname{Ker}(\varphi)$. Thus the sequence $\sigma\left(S_{1}^{\prime}\right) \sigma\left(S_{2}\right) \cdot \ldots \cdot \sigma\left(S_{c(m-1)}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is not of Type \mathbf{D} (note that in case $m=2$ we have $c=|\operatorname{Ker}(\varphi)|$), whence it has a zero-sum subsequence of length m, a contradiction.

It remains to verify that $\operatorname{supp}(\varphi(S))=\operatorname{supp}\left(\varphi\left(S_{1} \ldots . \cdot S_{c(m-1)}\right)\right)$. We set $c^{\prime}=\left|\operatorname{supp}\left(\varphi\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right)\right| \quad$ and check that $c=c^{\prime}$.
By A1 we have $|\operatorname{supp}(\varphi(S))|=c$ and the above argument shows that $\left|\operatorname{supp}\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right|=\left|\operatorname{supp}\left(\varphi\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right)\right|$. Thus it follows that

$$
\begin{aligned}
& c(m n-1)=|S|= \\
& \sum_{g \in \operatorname{supp}(S)} \mathrm{v}_{g}(S)=\sum_{g \in \operatorname{supp}\left(S_{1} \ldots . S_{c(m-1)}\right)} \mathrm{v}_{g}(S) \\
&+\left(|\operatorname{supp}(\varphi(S))|-\left|\operatorname{supp}\left(\varphi\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right)\right|\right)(n-1) \\
& \leq c^{\prime}(m n-1)+\left(c-c^{\prime}\right)(n-1),
\end{aligned}
$$

whence

$$
\left(c-c^{\prime}\right)(m n-1) \leq\left(c-c^{\prime}\right)(n-1) \quad \text { and } \quad c=c^{\prime}
$$

(2) Let $S \in \mathcal{F}(G)$ be of length $|S|=c(m n-1)$ such that S has no zero-sum subsequence of length in $[1, m n]$. We have to show that S is of Type C. Since $\vee_{g}(S) \leq m n-1$ for every $g \in G$, it suffices to show that $|\operatorname{supp}(S)|=c$.

Since $|S|=n(c(m-1))+c(n-1)$, it follows that S admits a product decomposition

$$
S=S_{1} \cdot \ldots \cdot S_{c(m-1)} S^{\prime}
$$

where $S_{1}, \ldots, S_{c(m-1)}, S^{\prime} \in \mathcal{F}(G)$ and, for every $i \in[1, c(m-1)], \varphi\left(S_{i}\right)$ has sum zero and length $\left|S_{i}\right| \in[1, n]$ (see [30, Lemma 5.7.10]). Since S has no zero-sum subsequence of length in $[1, m n], \varphi\left(S^{\prime}\right)$ has no zero-sum subsequence of length in $[1, n]$ and every sequence $\varphi\left(S_{i}\right)$ is a minimal zerosum sequence. Clearly, we have

$$
\left|\varphi\left(S^{\prime}\right)\right|=\left|S^{\prime}\right| \geq|S|-n c(m-1)=c(n-1)
$$

and thus in fact $\left|S_{i}\right|=n$ for every $i \in[1, c(m-1)]$ and furthermore $\varphi\left(S^{\prime}\right)$ is of Type \mathbf{C}, whence in particular $\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c$. We continue with the following assertion:

A2. $|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|$.
Proof of A2. It suffices to verify that for every $i \in[1, c(m-1)]$ there is some $h \in \operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ such that $\varphi\left(S_{i}\right)=h^{n}$. Assume to the contrary that there is some $i \in[1, c(m-1)]$ for which this does not hold. We assert that $\varphi\left(S_{i} S^{\prime}\right)$ is divisible by a product of two zero-sum subsequences of length in $[1, n]$. This implies that $\varphi(S)$ is divisible by a product of $c(m-1)+1$ zero-sum subsequences of length in $[1, n]$, whence S has a zero-sum subsequence of length in $[1, m n]$, a contradiction. We distinguish two cases.

CASE 1: $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right) \neq \emptyset$. We recall that $\left|\varphi\left(S_{i}\right)\right|=n$. The remaining argument is analogous to the corresponding one in (1).

CASE 2: $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)=\emptyset$. Pick $h \in \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)$ and let U be a zero-sum subsequence of $h \varphi\left(S^{\prime}\right)$ of length in $[1, n]$. If $|U|<n$, then

$$
\left|U^{-1} \varphi\left(S_{i} S^{\prime}\right)\right| \geq\left|S^{\prime}\right|+1=c(n-1)+1=\eta\left(C_{n}^{r}\right)
$$

and therefore $U^{-1} \varphi\left(S_{i} S^{\prime}\right)$ has a zero-sum subsequence of length in $[1, n]$. Suppose that $|U|=n$, and note that $\mathrm{v}_{h}(U) \geq 1$ and $\left|\operatorname{supp}\left(h^{-1} U\right)\right| \geq 2$. This implies the equality $\operatorname{supp}\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)=\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ and thus we get $\left|\operatorname{supp}\left(\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)\left(h^{-1} \varphi\left(S_{i}\right)\right)\right)\right|>\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|$. Therefore $U^{-1} \varphi\left(S_{i} S^{\prime}\right)$ is not of Type \mathbf{C}, and thus it has a zero-sum subsequence of length in $[1, n]$.

It remains to show that

$$
\left|\varphi^{-1}(h) \cap \operatorname{supp}(S)\right|=1 \quad \text { for every } h \in \operatorname{supp}(\varphi(S))
$$

since we then obtain

$$
|\operatorname{supp}(S)|=|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c
$$

Let $h \in \operatorname{supp}\left(\varphi\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right)$, and assume to the contrary that there are two distinct elements $g, g^{\prime} \in \operatorname{supp}(S)$ such that $\varphi(g)=\varphi\left(g^{\prime}\right)=h$. By A2 we may suppose that $g \mid S_{1} \ldots \cdot S_{c(m-1)}$ and $g^{\prime} \mid S^{\prime}$, say $g \mid S_{1}$. Since S has no zerosum subsequence of length in $[1, m n]$, the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{c(m-1)}\right) \in$ $\mathcal{F}(\operatorname{Ker}(\varphi))$ has no zero-sum subsequence of length in $[1, m]$, whence it is of Type C. We consider $S_{1}^{\prime}=g^{-1} g^{\prime} S_{1}$. Then $\varphi\left(S_{1}^{\prime}\right)=\varphi\left(S_{1}\right)$ and hence $\sigma\left(S_{1}\right) \neq$ $\sigma\left(S_{1}^{\prime}\right) \in \operatorname{Ker}(\varphi)$. Thus the sequence $\sigma\left(S_{1}^{\prime}\right) \sigma\left(S_{2}\right) \cdot \ldots \cdot \sigma\left(S_{c(m-1)}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is not of Type \mathbf{C} (note that in case $m=2$ we have $c=|\operatorname{Ker}(\varphi)|-1$), whence it has a zero-sum subsequence of length in $[1, m]$, a contradiction.

It remains to verify that $\operatorname{supp}(\varphi(S))=\operatorname{supp}\left(\varphi\left(S_{1} \cdot \ldots \cdot S_{c(m-1)}\right)\right)$. This is achieved as in (1) using A2 instead of A1.
(3) Since C_{2}^{r} has Property D, C_{4}^{r} has Property \mathbf{D} by (1). Furthermore, C_{3}^{r} has Property \mathbf{D} as mentioned at the beginning of this section. Thus for $n \in[2,4]$, the assertion follows from (1). Since $c(n-1)+1=\mathrm{s}\left(C_{n}^{r}\right) \geq$ $2^{r}(n-1)+1$ (see [13, Proposition 3.1]), we have $c \geq 2$.

Let $n \geq 5$ and let $S \in \mathcal{F}(G)$ be of length $|S|=c(m n-1)$ and such that S has no zero-sum subsequence of length $m n$. We have to show that S is of Type \mathbf{D}, and again it suffices to show that $|\operatorname{supp}(S)|=c$.

There exists some $h \in \varphi(G)$ such that

$$
\mathrm{v}_{h}(\varphi(S)) \geq \frac{|S|}{|\varphi(G)|}=\frac{c(m n-1)}{n^{r}} \geq\left\lfloor\frac{n-1}{2}\right\rfloor
$$

and then

$$
\left|h^{-\lfloor(n-1) / 2\rfloor} \varphi(S)\right| \geq n(c(m-1)-1)+\mathrm{s}\left(C_{n}^{r}\right)
$$

By [30, Lemma 5.7.10], S admits a product decomposition of the form

$$
S=S_{1} \cdot \ldots \cdot S_{c(m-1)} S^{\prime}
$$

where $S_{1}, \ldots, S_{c(m-1)}, S^{\prime} \in \mathcal{F}(G), h^{\lfloor(n-1) / 2\rfloor}$ divides $\varphi\left(S^{\prime}\right)$ and, for every $i \in[1, c(m-1)], \varphi\left(S_{i}\right)$ has sum zero and length $\left|S_{i}\right|=n$. Since S has no zero-sum subsequence of length $m n$, it follows that $\varphi\left(S^{\prime}\right)$ has no zero-sum subsequence of length n. Thus Lemma 3.1 implies that $\varphi\left(S^{\prime}\right)$ is of Type \mathbf{D}, whence in particular $\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c$. We continue with the following assertion:

A3. $|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|$.
Proof of A3. It suffices to verify that for every $i \in[1, c(m-1)]$ there is some $h \in \operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ such that $\varphi\left(S_{i}\right)=h^{n}$. Assume to the contrary that there is some $i \in[1, c(m-1)]$ for which this does not hold. We assert that $\varphi\left(S_{i} S^{\prime}\right)$ is divisible by a product of two zero-sum subsequences of length n. This implies that $\varphi(S)$ is divisible by a product of $c(m-1)+1$ zero-sum
subsequences of length n, whence S has a zero-sum subsequence of length $m n$, a contradiction. We distinguish two cases.

CASE 1: $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right) \neq \emptyset$. Pick h in $\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap$ $\operatorname{supp}\left(\varphi\left(S_{i}\right)\right)$. Then $h^{n} \mid \varphi\left(S_{i} S^{\prime}\right)$. Since $\varphi\left(S_{i}\right)$ is a zero-sum sequence of length n and distinct from h^{n}, it follows that $\left|\operatorname{supp}\left(h^{-1} \varphi\left(S_{i}\right)\right)\right| \geq 2$. Therefore $h^{-n} \varphi\left(S_{i} S^{\prime}\right)$ is not of Type \mathbf{D}. Since $c \geq 2, h^{-n} \varphi\left(S_{i} S^{\prime}\right)$ contains some element with multiplicity $n-1$, and thus by Lemma 3.1 it has a zero-sum subsequence of length n.
$\operatorname{CASE} 2: \operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right) \cap \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)=\emptyset$. Pick $h \operatorname{in} \operatorname{supp}\left(\varphi\left(S_{i}\right)\right)$ and let U be a zero-sum subsequence of $h \varphi\left(S^{\prime}\right)$ of length n. Then $v_{h}(U) \geq 1$ and $\left|\operatorname{supp}\left(h^{-1} U\right)\right| \geq 2$. Thus $\operatorname{supp}\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)=\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)$ and

$$
\left|\operatorname{supp}\left(\left(U^{-1} h \varphi\left(S^{\prime}\right)\right)\left(h^{-1} \varphi\left(S_{i}\right)\right)\right)\right|>\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right| .
$$

Therefore $U^{-1} \varphi\left(S_{i} S^{\prime}\right)$ is not of Type \mathbf{D}. Since $c \geq 2, U^{-1} \varphi\left(S_{i} S^{\prime}\right)$ contains some element with multiplicity at least $(n-1) / 2$, and thus by Lemma 3.1 it has a zero-sum subsequence of length n.

It remains to show that

$$
\left|\varphi^{-1}(h) \cap \operatorname{supp}(S)\right|=1 \quad \text { for every } h \in \operatorname{supp}(\varphi(S)),
$$

since we then obtain

$$
|\operatorname{supp}(S)|=|\operatorname{supp}(\varphi(S))|=\left|\operatorname{supp}\left(\varphi\left(S^{\prime}\right)\right)\right|=c .
$$

This can be achieved as in (1) using A3 instead of A1.
4. Properties B and \mathbf{C} in groups of rank two. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$. We say that G has Property \mathbf{B} if every minimal zero-sum sequence $S \in \mathcal{F}(G)$ of length $|S|=\mathrm{D}(G)=2 n-1$ contains some element with multiplicity $n-1$. This property was first addressed in [22], and it is conjectured that every group (of the above form) satisfies Property B. We already mentioned in the Introduction that Property B implies Property C. Various characterizations and further consequences of Property B may be found in [30, Section 5.8]. Here we only recall the following two recent results. If $n \geq 6$ and G has Property B, then $C_{2 n} \oplus C_{2 n}$ has Property B (see [23, Theorem 8.1]). If $S \in \mathcal{F}(G)$ is a minimal zero-sum sequence of length $2 n-1$ and with $|\operatorname{supp}(S)|=3$, then it contains some element with multiplicity $n-1$ (see [33, Theorem 1]).

As a main result in this section we show that, in case n is a large prime, every minimal zero-sum sequence of length $2 n-1$ contains one element with high multiplicity (cf. also [33, Theorem 3]). Let $S \in \mathcal{F}(G)$ be a sequence of length $\eta(G)-1$ that has no short zero-sum subsequence. If G has Property \mathbf{C}, then obviously $\operatorname{ord}(g)=n$ for all $g \in \operatorname{supp}(S)$. In Theorem 4.6 we establish this consequence without assuming that Property \mathbf{C} holds.

Theorem 4.1. Let $G=C_{p} \oplus C_{p}$ with $p \in \mathbb{P}$ and let $S \in \mathcal{F}(G)$. If $\varepsilon>0$ and p is sufficiently large (in dependence on ε), then the following statements hold:
(1) If S has length $|S|=\mathrm{D}(G)-1$ but no zero-sum subsequence, then $\mathrm{h}(S)>p^{1 / 4-\varepsilon}$.
(2) If S has length $|S|=\eta(G)-1$ but no short zero-sum subsequence, then $\mathrm{h}(S)>p^{1 / 4-\varepsilon}$.
By inspecting the proof of this result it can be noted that only in (4.7) does the size of p have to depend on that of ε. Though at some other places it is required that p is not too small, all these bounds are absolute and of a fairly moderate size. By some calculation it can be seen that the result holds for $p>\exp (-8 \log (\varepsilon) / \varepsilon)$. Yet no effort was made to optimize the value of this constant.

We need a series of lemmas. For a prime $p \in \mathbb{P}$ we denote by \mathbb{F}_{p} a field with p elements. The group $C_{p} \oplus C_{p}$ can be viewed as a vector space over \mathbb{F}_{p}. In particular, the notions of "independent elements" and "basis", as stated in Section 2, coincide with the notions of "linearly independent (over \mathbb{F}_{p})" and " \mathbb{F}_{p}-basis".

Lemma 4.2. Let $G=C_{p} \oplus C_{p}$ with $p \in \mathbb{P},\left(e_{1}, e_{2}\right)$ a basis of G and

$$
S=\prod_{i=1}^{l}\left(a_{i} e_{1}+b_{i} e_{2}\right) \in \mathcal{F}(G), \quad \text { where } a_{1}, b_{1}, \ldots, a_{l}, b_{l} \in \mathbb{F}_{p}
$$

a zero-sumfree sequence of length $|S|=l \geq p$. Then

$$
\mid\left\{\sum_{i \in I} b_{i} \mid \emptyset \neq I \subset[1, l] \text { with } \sum_{i \in I} a_{i}=0\right\} \mid \geq l-p+1
$$

Proof. The proof is based on recent results from the theory of coverings. We recall the required terminology. A subset $A \subset \mathbb{F}_{p}^{l}$ is called a proper coset if $A=a+N$ for some subspace $N \subset \mathbb{F}_{p}^{l}$ and some $a \in \mathbb{F}_{p}^{l} \backslash N$. For a subset $A \subset \mathbb{F}_{p}^{l}$ let $\mathbf{s}\left(A, \mathbb{F}_{p}^{l}\right)$ denote the smallest $s \in \mathbb{N}_{0} \cup\{\infty\}$ such that $A \backslash\{0\}$ is contained in a union of s proper cosets.

Let $\left(X_{1}, \ldots, X_{l}\right)$ be an \mathbb{F}_{p}-basis of \mathbb{F}_{p}^{l}, and

$$
\begin{aligned}
D & =\left\{\sum_{i \in I} X_{i} \mid I \subset[1, l], \sum_{i \in I} a_{i} \neq 0\right\} \subset \mathbb{F}_{p}^{l} \\
D_{0} & =\Sigma\left(X_{1} \cdot \ldots \cdot X_{l}\right) \backslash D=\left\{\sum_{i \in I} X_{i} \mid I \subset[1, l], \sum_{i \in I} a_{i}=0\right\} \subset \mathbb{F}_{p}^{l}
\end{aligned}
$$

Then $\mathrm{s}\left(\Sigma\left(X_{1} \cdot \ldots \cdot X_{l}\right), \mathbb{F}_{p}^{l}\right)=l$ by $\left[30\right.$, Theorem 5.6.6] and $\mathrm{s}\left(D, \mathbb{F}_{p}^{l}\right) \leq p-1$ by $\left[30\right.$, Lemma 5.6.7]. If $\theta \in \operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{l}, \mathbb{F}_{p}\right)$ is the unique homomorphism
satisfying $\theta\left(X_{i}\right)=b_{i}$ for all $i \in[1, l]$, then $0 \notin \Sigma(S)$ implies

$$
0 \notin \theta\left(D_{0}\right)=\left\{\sum_{i \in I} b_{i} \mid \emptyset \neq I \subset[1, l] \text { with } \sum_{i \in I} a_{i}=0\right\} .
$$

Therefore [30, Lemma 5.6.2.1] implies that

$$
\left|\theta\left(D_{0}\right)\right| \geq \mathrm{s}\left(D_{0}, \mathbb{F}_{p}^{l}\right) \geq \mathrm{s}\left(\Sigma\left(X_{1} \cdot \ldots \cdot X_{l}\right), \mathbb{F}_{p}^{l}\right)-\mathrm{s}\left(D, \mathbb{F}_{p}^{l}\right) \geq l-(p-1)
$$

Lemma 4.3. Let $G=C_{p} \oplus C_{p}$ with $p \in \mathbb{P}$ and let $S \in \mathcal{F}(G)$ be a zerosumfree sequence of length $|S|=2 p-2$. Then any two distinct elements of $\operatorname{supp}(S)$ are independent.

Proof. See [30, Corollary 5.6.9]. -
Lemma 4.4. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$ and $S \in \mathcal{F}(G)$.
(1) If $|S|=3 n-2$, then S has a zero-sum subsequence T of length $|T| \in\{n, 2 n\}$.
(2) If $|S|=3 n-3$ and S has no short zero-sum subsequence, then S has a minimal zero-sum subsequence T of length $|T|=2 n-1$.

Proof. (1) See [24, Theorem 6.7].
(2) Suppose that $|S|=3 n-3$ and S has no short zero-sum subsequence; set $W=0 S \in \mathcal{F}(G)$. Then (1) implies that W has a zero-sum subsequence U of length $|U| \in\{n, 2 n\}$, and by our assumption on S we get $|U|=2 n$. If U is a subsequence of S, then $\mathrm{D}(G)=2 n-1$ implies that $U=U_{1} U_{2}$, where both U_{1} and U_{2} are non-empty zero-sum sequences. Therefore, either U_{1} or U_{2} is a short zero-sum subsequence of S, a contradiction. Therefore, $U=0 T$ with $|T|=2 n-1$, and since S has no short zero-sum subsequence, it follows that T is a minimal zero-sum sequence.

Proof of Theorem 4.1. By Theorem 2.4 we have $\mathrm{D}(G)=2 p-1$ and $\eta(G)=3 p-2$. By Lemma 4.4 it suffices to prove the first assertion. Let $\left(e_{1}, e_{2}\right)$ be a basis of G and, for $i \in[1,2]$, let $\varphi_{i}: G \rightarrow\left\langle e_{i}\right\rangle$ denote the canonical projections. Let $\varepsilon>0$, let p be sufficiently large and assume to the contrary that there exists a zero-sumfree sequence

$$
S=\prod_{i=1}^{2 p-2}\left(a_{i} e_{1}+b_{i} e_{2}\right) \in \mathcal{F}(G), \quad \text { with } a_{1}, b_{1}, \ldots, a_{2 p-2}, b_{2 p-2} \in[0, p-1]
$$

of length $|S|=2 p-2$ and with $\mathrm{h}(S) \leq p^{1 / 4-\varepsilon}$. Let T denote a maximal squarefree subsequence of S and set $h=\mathrm{h}\left(\varphi_{1}(T)\right)$. After renumbering if necessary we may assume that

$$
T=\prod_{i=1}^{|T|}\left(a_{i} e_{1}+b_{i} e_{2}\right), \quad a_{1}=\cdots=a_{h}=a
$$

Now we set

$$
W=\prod_{i=1}^{h}\left(a e_{1}+b_{i} e_{2}\right), \quad S_{1}=S W^{-1}
$$

and distinguish three cases.
CASE 1: $h \geq\lfloor\sqrt{4 p-7}\rfloor+1$. We set $k=\lfloor\sqrt{4 p-7}\rfloor+1, l=\lfloor k / 2\rfloor$ and

$$
S_{2}=\prod_{i=k+1}^{2 p-2}\left(a_{i} e_{1}+b_{i} e_{2}\right)
$$

Theorem 2.3(3) implies that

$$
\begin{equation*}
\Sigma_{l}\left(\prod_{i=1}^{k} b_{i} e_{2}\right)=\left\langle e_{2}\right\rangle \tag{4.1}
\end{equation*}
$$

Consider the sequence $\varphi_{1}\left(S_{2}\right)=\prod_{i=k+1}^{2 p-2} a_{i} e_{1}$. If $a_{i}=a_{j}=0$ for some $i, j \in[k+1,2 p-2]$, then by Lemma 4.3 we obtain $b_{i}=b_{j}$. Therefore,

$$
\mathrm{v}_{0}\left(\varphi_{1}\left(S_{2}\right)\right) \leq \mathrm{h}(S)
$$

and

$$
\begin{aligned}
\left|\varphi_{1}\left(S_{2}\right)\right|-\mathrm{v}_{0}\left(\varphi_{1}\left(S_{2}\right)\right) & =2 p-2-k-\mathrm{v}_{0}\left(\varphi_{1}\left(S_{2}\right)\right) \\
& >2 p-2-\lfloor\sqrt{4 p-7}\rfloor-1-p^{1 / 4} \geq p-1
\end{aligned}
$$

where the last inequality holds since $p \geq 11$. Thus Theorem 2.2(1) implies that $\Sigma\left(\varphi_{1}\left(S_{2}\right)\right)=\left\langle e_{1}\right\rangle$. In particular, S_{2} has a non-empty subsequence S_{3} such that $\sigma\left(\varphi_{1}\left(S_{3}\right)\right)=-l a e_{1}$. By equation (4.1) there is a subset $I \subset[1, k]$ such that $\sum_{i \in I} b_{i} e_{2}=-\sigma\left(\varphi_{2}\left(S_{3}\right)\right)$ and $|I|=l$. Therefore, $S_{3} \prod_{i \in I}\left(a e_{1}+b_{i} e_{2}\right)$ is a non-empty zero-sum subsequence of S, a contradiction.

CASE 2: $5 p^{1 / 4} \leq h \leq\lfloor\sqrt{4 p-7}\rfloor$. We set $k=\lfloor h / 2\rfloor$ and $h_{1}=\mathrm{h}\left(\varphi_{1}\left(S_{1}\right)\right)$. Theorem 2.3(2) implies that

$$
\begin{equation*}
\left|\Sigma_{k}\left(\prod_{i=1}^{h} b_{i} e_{2}\right)\right| \geq \frac{h^{2}+3}{4} \tag{4.2}
\end{equation*}
$$

and by the assumption of Case 2 we get

$$
h_{1} \leq \mathrm{h}\left(\varphi_{1}(T)\right) \mathrm{h}(S)<h p^{1 / 4}
$$

Therefore, since $p \geq 53$,
$\left|\varphi_{1}\left(S_{1}\right)\right|-\mathrm{v}_{0}\left(\varphi_{1}\left(S_{1}\right)\right) \geq\left|S_{1}\right|-h_{1}=2 p-2-h-h_{1}>2 p-2-h-h p^{1 / 4} \geq p-1$, whence Theorem 2.2(1) implies

$$
\Sigma_{\leq h_{1}}\left(\varphi_{1}\left(S_{1}\right)\right)=\left\langle e_{1}\right\rangle
$$

In particular, S_{1} has a non-empty subsequence S_{4} such that

$$
\begin{equation*}
\sigma\left(\varphi_{1}\left(S_{4}\right)\right)=-k a e_{1}, \quad\left|S_{4}\right| \leq h_{1} \tag{4.3}
\end{equation*}
$$

By equations (4.2) and (4.3) we infer that

$$
\begin{equation*}
\sigma\left(S_{4}\right)+\Sigma_{k}(W) \subset\left\langle e_{2}\right\rangle, \quad\left|\sigma\left(S_{4}\right)+\Sigma_{k}(W)\right| \geq \frac{h^{2}+3}{4} \tag{4.4}
\end{equation*}
$$

Set $S_{5}=S\left(S_{4} W\right)^{-1}$. By Lemma 4.2,

$$
\left|\Sigma\left(S_{5}\right) \cap\left\langle e_{2}\right\rangle\right| \geq\left|S_{5}\right|-p+1
$$

Therefore,

$$
\begin{aligned}
\mid \sigma\left(S_{4}\right) & +\Sigma_{k}(W)\left|+\left|\Sigma\left(S_{5}\right) \cap\left\langle e_{2}\right\rangle\right|\right. \\
& \geq \frac{h^{2}+3}{4}+\left|S_{5}\right|-p+1=\frac{h^{2}+3}{4}+2 p-2-\left|S_{4}\right|-|W|-p+1 \\
& \geq \frac{h^{2}+3}{4}+p-1-h_{1}-h>\frac{h^{2}+3}{4}+p-1-h p^{1 / 4}-h \geq p
\end{aligned}
$$

where the last inequality holds since $p \geq 5^{4}$. It follows from the CauchyDavenport theorem that

$$
\left(\sigma\left(S_{4}\right)+\Sigma_{k}(W)\right)+\left(\Sigma\left(S_{5}\right) \cap\left\langle e_{2}\right\rangle\right)=\left\langle e_{2}\right\rangle
$$

whence $0 \in\left(\sigma\left(S_{4}\right)+\Sigma_{k}(W)\right)+\left(\Sigma\left(S_{5}\right) \cap\left\langle e_{2}\right\rangle\right) \subset \Sigma(S)$, a contradiction.
CASE 3: $h<5 p^{1 / 4}$. Let $m=\left\lfloor 5 p^{1 / 4}\right\rfloor$. Note that $\left|\operatorname{supp}(T) \cap\left(a e_{1}+\left\langle e_{2}\right\rangle\right)\right|$ $=h$. Thus we may suppose that, for every subgroup $H \subset G$ with $|H|=p$ and every $g \in G$,

$$
\begin{equation*}
|\operatorname{supp}(T) \cap(g+H)| \leq m \tag{4.5}
\end{equation*}
$$

since otherwise we choose a different basis $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ of G and are back to Case 1 or Case 2.

Let $\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$be the character group of G with complex values, $\chi_{0} \in \widehat{G}$ the principal character, and for any $\chi \in \widehat{G}$ let

$$
f(\chi)=\prod_{i=1}^{2 p-2}\left(1+\chi\left(a_{i} e_{1}+b_{i} e_{2}\right)\right)
$$

Clearly, we have

$$
f(\chi)=1+\sum_{g \in \Sigma(S)} c_{g} \chi(g)
$$

where $c_{g}=\left|\left\{\emptyset \neq I \subset[1,2 p-2] \mid \sum_{i \in I}\left(a_{i} e_{1}+b_{i} e_{2}\right)=g\right\}\right|$.
Since S is zero-sumfree, we have $0 \notin \Sigma(S)$ and the Orthogonality Relations (see [30, Lemma 5.5.2]) imply that

$$
\sum_{\chi \in \widehat{G}} f(\chi)=\sum_{\chi \in \widehat{G}}\left(1+\sum_{g \in \Sigma(S)} c_{g} \chi(g)\right)=|\widehat{G}|+\sum_{g \in \Sigma(S)} c_{g} \sum_{\chi \in \widehat{G}} \chi(g)=|G|
$$

Obviously, $f\left(\chi_{0}\right)=2^{|S|}$. Let $\chi \in \widehat{G} \backslash\left\{\chi_{0}\right\}$. We set $M=m \mathrm{~h}(S)$ and

$$
|S|=(2 k-1) M+q \quad \text { with } q \in[0,2 M-1],
$$

and continue with the following assertion:

A1. $|f(\chi)| \leq 2^{|S|} \exp \left(-\pi^{2} r / 2 p^{2}\right)$ with $r=2 M\left(1^{2}+2^{2}+\cdots+(k-1)^{2}\right)+$ $q k^{2}$.

Proof of A1. Let $j \in[-(p-1) / 2,(p-1) / 2]$ and $g \in G$ with $\chi(g)=$ $\exp (2 \pi i j / p)$. Note that for any real x with $|x|<\pi / 2$, we have $\cos x \leq$ $\exp \left(-x^{2} / 2\right)$. Thus

$$
\begin{equation*}
|1+\chi(g)|=2 \cos \left(\frac{\pi j}{p}\right) \leq 2 \exp \left(-\frac{\pi^{2} j^{2}}{2 p^{2}}\right) \tag{4.6}
\end{equation*}
$$

If $H=\operatorname{Ker}(\chi)$, then $|H|=p$ and $g+H=\chi^{-1}(\exp (2 \pi i j / p))$. Thus (4.5) implies that there are at most m elements $h \in \operatorname{supp}(S)$ such that $\chi(h)=\exp (2 \pi i j / p)$. Consequently, the upper bound for $|f(\chi)|$, obtained by repeated application of (4.6), is maximal if the values $0,1,-1, \ldots, k-1$, $-(k-1)$ are accepted M times each and the values $k,-k$ are accepted q times as images of $\chi(g)$ for $g \in \operatorname{supp}(S)$. Therefore

$$
|f(\chi)| \leq 2^{|S|} \exp \left(-\pi^{2} r / 2 p^{2}\right)
$$

Since $|S|=(2 k-1) M+q$, we get $k=(2 M)^{-1}(|S|-q+M)$ and hence

$$
\begin{aligned}
r & =2 M \sum_{j=1}^{k-1} j^{2}+q k^{2}=2 M \frac{(k-1) k(2 k-1)}{6}+q k^{2} \\
& =\frac{(|S|-q-M)(|S|-q+M)(|S|-q)+3 q(|S|-q+M)^{2}}{12 M^{2}}
\end{aligned}
$$

Since $q \in[0,2 M-1]$ and $q \leq|S|$, it follows that

$$
r=\frac{|S|\left(|S|^{2}-M^{2}\right)}{12 M^{2}}+\frac{q(2 M-q)(2 M+3|S|-2 q)}{12 M^{2}} \geq \frac{|S|\left(|S|^{2}-M^{2}\right)}{12 M^{2}}
$$

We deduce that (here we need p sufficiently large)

$$
\begin{equation*}
\exp \left(\frac{\pi^{2} r}{2 p^{2}}\right) \geq \exp \left(\frac{\pi^{2}|S|\left(|S|^{2}-M^{2}\right)}{24 M^{2} p^{2}}\right)>2 p^{2} \tag{4.7}
\end{equation*}
$$

Therefore it follows that

$$
\begin{aligned}
p^{2} & =|G|=\sum_{\chi \in \widehat{G}} f(\chi) \geq f\left(\chi_{0}\right)-\sum_{\chi \neq \chi_{0}}|f(\chi)| \\
& \geq 2^{|S|}\left(1-\left(p^{2}-1\right) \exp \left(\frac{-\pi^{2} r}{2 p^{2}}\right)\right)>2^{|S|}\left(1-\frac{p^{2}-1}{2 p^{2}}\right)>2^{|S|-1}>p^{2}
\end{aligned}
$$

a contradiction.
The special case $T=1$ of the following lemma may be found in [30, Proposition 5.7.11].

Lemma 4.5. Let $S \in \mathcal{F}(G)$ be a sequence, $H \subset G$ a subgroup and $T \in$ $\mathcal{F}(H)$ a subsequence of S such that

$$
|S| \geq \exp (G / H)(\eta(H)-1)+\eta(G / H)-(\exp (G / H)-1)|T|
$$

Then S has a zero-sum subsequence S^{\prime} of length $\left|S^{\prime}\right| \in[1, \exp (H) \exp (G / H)]$.

Proof. If $|T| \geq \eta(H)$, then T (and hence S) has a zero-sum subsequence S^{\prime} of length $\left|S^{\prime}\right| \in[1, \exp (H)]$. Suppose that $|T|<\eta(H)$, and let $\varphi: G \rightarrow$ G / H denote the canonical epimorphism. Since the sequence $T^{-1} S$ has length

$$
\left|T^{-1} S\right| \geq \exp (G / H)(\eta(H)-|T|-1)+\eta(G / H)
$$

it admits a product decomposition of the form $T^{-1} S=T_{1} \ldots \ldots T_{\eta(H)-|T|} T^{\prime}$, where $T_{1}, \ldots, T_{\eta(H)-|T|}, T^{\prime} \in \mathcal{F}(G)$ and, for every $i \in[1, \eta(H)-|T|], \varphi\left(T_{i}\right)$ has sum zero and length $\left|T_{i}\right| \in[1, \exp (G / H)]$ (see [30, Lemma 5.7.10]). Then the sequence $T \sigma\left(T_{1}\right) \cdot \ldots \cdot \sigma\left(T_{\eta(H)-|T|}\right) \in \mathcal{F}(H)$ has a short zero-sum subsequence V, say

$$
V=T_{0} \prod_{i \in I} \sigma\left(T_{i}\right), \quad \text { where } T_{0} \mid T \text { and } I \subset[1, \eta(H)-|T|] .
$$

Thus the sequence

$$
S^{\prime}=T_{0} \prod_{i \in I} T_{i}
$$

is a zero-sum subsequence of S of length $\left|S^{\prime}\right| \leq\left|T_{0}\right|+|I| \exp (G / H) \leq$ $\exp (H) \exp (G / H)$.

Theorem 4.6. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$ and $S \in \mathcal{F}(G)$. If there is some subsequence T of S and some divisor m of n such that $\operatorname{ord}(g) \mid m$ for every $g \in \operatorname{supp}(T)$ and

$$
|S| \geq 3 n-2-\left(\frac{n}{m}-1\right)|T|,
$$

then S has a short zero-sum subsequence. In particular, if S has length $|S|=3 n-3$ but no short zero-sum subsequence, then $\operatorname{ord}(g)=n$ for every $g \in \operatorname{supp}(S)$.

Proof. Let T and m be as above, and let $\varphi: G \rightarrow G$ denote the multiplication by m. Then $H=\operatorname{Ker}(\varphi) \cong C_{m}^{2}, G / H \cong C_{n / m}^{2}$ and $T \in \mathcal{F}(H)$. By Theorem 2.4 we infer that

$$
\begin{aligned}
|S| & \geq 3 n-2-\left(\frac{n}{m}-1\right)|T|=\frac{n}{m}(3 m-3)+\left(3 \frac{n}{m}-2\right)-\left(\frac{n}{m}-1\right)|T| \\
& =\frac{n}{m}\left(\eta\left(C_{m}^{2}\right)-1\right)+\eta\left(C_{n / m}^{2}\right)-\left(\frac{n}{m}-1\right)|T| .
\end{aligned}
$$

Thus Lemma 4.5 implies that S has a short zero-sum subsequence.
Let $|S|=3 n-3$ and $g \in \operatorname{supp}(S)$. If S has no short zero-sum subsequence, then $|S|=3 n-3<3 n-2-(n / \operatorname{ord}(g)-1)$ implies that $\operatorname{ord}(g)=n$.
5. Extremal zero-sumfree subsets in $C_{p} \oplus C_{p}$. Let $\mathrm{g}(G)$ denote the smallest integer $l \in \mathbb{N}$ such that every squarefree sequence $S \in \mathcal{F}(G)$ of length $|S| \geq l$ has a zero-sum subsequence T of length $|T|=\exp (G)$.

Some elementary properties of $g(G)$ are outlined in [24, Section 10], and a (straightforward) connection with Property \mathbf{D} (for groups of the form C_{n}^{r}) may be found in [13, Lemma 2.3]. Moreover, if G is a vector space over a finite field, then the invariant $\mathrm{g}(G)$ allows an interpretation in finite geometry. Indeed, $\mathrm{g}\left(C_{3}^{r}\right)-1$ is the maximal size of a cap in $\operatorname{AG}(r, 3)$ (see [13, Lemma 5.2] and also [25, Section 5.2]), and in this connection it found a lot of attention by finite geometers (see $[14,6]$ and the literature cited there).

In [28] it is conjectured that $\mathrm{g}\left(C_{n} \oplus C_{n}\right)$ is equal to $2 n-1$ for every odd $n \geq 3$ and equal to $2 n+1$ for every even $n \geq 3$, and it is observed that these values are lower bounds. Moreover, it is proved (see [28, Theorem 1]) that $\mathrm{g}\left(C_{p} \oplus C_{p}\right)=2 p-1$ for all primes $p \geq 67$. Now Theorem 5.1 completely solves the associated inverse problem by giving an explicit characterization of all squarefree sequences of length $2 p-2$ without a zero-sum subsequence of length p.

First we give a proof of Theorem 5.1 which is based on the following Proposition 5.2. Note that for the implication (b) \Rightarrow (a) we need no assumption on the size of the prime p. We also outline how the inverse result gives back the direct result that $\mathrm{g}(G)=2 p-1$. Then the main work will be to derive Proposition 5.2. If $G=C_{p} \oplus C_{p}$ for some prime $p \in \mathbb{P}$ and $H \subset G$ is a subgroup of order p, then a homomorphism $\varphi: G \rightarrow H$ is called a projection if $\varphi \mid H=\operatorname{id}_{H}$ and $G=H \oplus \operatorname{Ker}(\varphi)$.

Theorem 5.1. Let $G=C_{p} \oplus C_{p}$ for some $p \in \mathbb{P}$ with $p \geq 47$ and let $S \in \mathcal{F}(G)$ be a squarefree sequence of length $|S|=2 p-2$. Then the following statements are equivalent:
(a) S has no zero-sum subsequence of length p.
(b) There exists a subgroup $K \subset G$ of order p such that one of the following conditions is satisfied:

$$
\begin{aligned}
(\mathrm{b} 1) \operatorname{supp}(S)= & \{g, h\}+K \backslash\left\{g+k_{1}, h+k_{2}\right\} \\
(\mathrm{b} 2) \operatorname{supp}(S)= & \left(\{g, h\}+K \backslash\left\{g+k_{1}, g+k_{1}^{\prime}, h+k_{2}\right\}\right) \\
& \cup\left\{2 g-h+k_{1}+k_{1}^{\prime}-k_{2}\right\} \\
(\mathrm{b} 3) \operatorname{supp}(S)= & \left(\{g, h\}+K \backslash\left\{g+k_{1}, g+k_{1}^{\prime}, h+k_{2}, h+k_{2}^{\prime}\right\}\right) \\
& \cup\left\{2 g-h+k_{1}+k_{1}^{\prime}+k_{2}^{(\prime)}, 2 h-g+k_{2}+k_{2}^{\prime}+k_{1}^{(\prime)}\right\}
\end{aligned}
$$

where $g, h \in G$ with $g+K \neq h+K$ and $k_{1}, k_{1}^{\prime}, k_{2}, k_{2}^{\prime} \in K$ with $k_{i} \neq k_{i}^{\prime}$ and $k_{i}^{(\prime)} \in\left\{k_{i}, k_{i}^{\prime}\right\}$ for $i \in\{1,2\}$.
In particular, we have $\mathrm{g}(G)=2 p-1$.
Proposition 5.2. Let $G=C_{p} \oplus C_{p}$ for some $p \in \mathbb{P}$ with $p \geq 47$ and let $S \in \mathcal{F}(G)$ be a squarefree sequence of length $|S|=2 p-2$ that has no zero-sum subsequence of length p. Then there exist a subgroup $H \subset G$ of order p, a projection $\varphi: G \rightarrow H$ and distinct elements $g, h \in H$ such that
$\varphi(S)$ has one of the following forms:

$$
g^{p-1} h^{p-1}, \quad g^{p-2} h^{p-1}(2 g-h) \quad \text { or } \quad g^{p-2} h^{p-2}(2 g-h)(2 h-g) .
$$

Proof of Theorem 5.1 (using Proposition 5.2). (a) $\Rightarrow(\mathrm{b})$. By Proposition 5.2 there exists a subgroup $H \subset G$ of order p and a projection $\varphi: G \rightarrow H$ such that $\varphi(S)$ has one of the indicated forms. Then $G=H \oplus K$ with $K=\operatorname{Ker}(\varphi)$. If $\varphi(S)=g^{p-1} h^{p-1}$ with distinct elements $g, h \in H$, then obviously

$$
\operatorname{supp}(S)=(g+K) \cup(h+K) \backslash\left\{g+k_{1}, h+k_{2}\right\} \quad \text { for some } k_{1}, k_{2} \in K
$$

The remaining cases are similar (cf. the proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$ below).
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Assume to the contrary that S has a zero-sum subsequence T of length $|T|=p$. Without restriction we may assume that $h=0$. Then $g \notin K, G=\langle g\rangle \oplus K$ and let $\varphi:\langle g\rangle \oplus K \rightarrow\langle g\rangle$ denote the canonical projection. Clearly, $\varphi(T)$ is a zero-sum subsequence of $\varphi(S)$ of length p.

If (b1) holds, then $\varphi(S)=g^{p-1} 0^{p-1}$. This sequence has no zero-sum subsequence of length p, a contradiction.

If (b2) holds, then $\varphi(S)=g^{p-2} 0^{p-1}(2 g)$ and $\varphi(T)=g^{p-2} 0(2 g)$. Let $k^{\prime} \in \operatorname{supp}(T)$ with $\varphi\left(k^{\prime}\right)=0$. We have $(\mathrm{id}-\varphi)(T)=\left(\prod_{k \in K \backslash\left\{k_{1}, k_{1}^{\prime}\right\}} k\right) k^{\prime}\left(k_{1}+\right.$ $\left.k_{1}^{\prime}-k_{2}\right)$. Since $\sigma(T)=0$ it follows that $0=\sigma((\operatorname{id}-\varphi)(T))=\left(-k_{1}-k_{1}^{\prime}\right)+$ $k^{\prime}+\left(k_{1}+k_{1}^{\prime}-k_{2}\right)$, whence $k^{\prime}=k_{2}$, a contradiction to $k_{2} \notin \operatorname{supp}(S)$.

If (b3) holds, then $\varphi(S)=g^{p-2} 0^{p-2}(2 g)(-g)$ and $\varphi(T)=g^{p-2} 0(2 g)$ or $\varphi(T)=g 0^{p-2}(-g)$. First, suppose that $\varphi(T)=g^{p-2} 0(2 g)$. Let $k^{\prime} \in \operatorname{supp}(T)$ with $\varphi\left(k^{\prime}\right)=0$. We have $(\operatorname{id}-\varphi)(T)=\left(\prod_{k \in K \backslash\left\{k_{1}, k_{1}^{\prime}\right\}} k\right) k^{\prime}\left(k_{1}+k_{1}^{\prime}-k_{2}^{(\prime)}\right)$. It follows that $0=\sigma((\operatorname{id}-\varphi)(T))=\left(-k_{1}-k_{1}^{\prime}\right)+k^{\prime}+\left(k_{1}+k_{1}^{\prime}-k_{2}^{(\prime)}\right)$, whence $k^{\prime}=k_{2}^{(\prime)}$, a contradiction.

Now, suppose that $\varphi(T)=g 0^{p-2}(-g)$. Let $k^{\prime} \in \operatorname{supp}(T)$ with $\varphi\left(k^{\prime}\right)=g$. We have $(\operatorname{id}-\varphi)(T)=\left(\prod_{k \in K \backslash\left\{k_{2}, k_{2}^{\prime}\right\}} k\right) k^{\prime}\left(k_{2}+k_{2}^{\prime}-k_{1}^{(\prime)}\right)$. It follows that $0=\sigma((\operatorname{id}-\varphi)(T))=\left(-k_{2}-k_{2}^{\prime}\right)+k^{\prime}+\left(k_{2}+k_{2}^{\prime}-k_{1}^{(\prime)}\right)$, whence $k^{\prime}=k_{1}^{(\prime)}$, a contradiction.

It remains to verify the additional statement, and for that it suffices to prove that $\mathrm{g}(G) \leq 2 p-1$. Let $R \in \mathcal{F}(G)$ be a squarefree sequence of length $|R|=2 p-1$, and assume to the contrary that R has no zero-sum subsequence of length p. Let T be a subsequence of R of length $|T|=2 p-2$. By (b), there exist a subgroup $K_{T} \subset G$ of order p and two elements $g_{T}, h_{T} \in G$ such that, for $A_{T}=\operatorname{supp}(T) \cap\left(g_{T}+K_{T}\right)$ and $B_{T}=\operatorname{supp}(T) \cap\left(h_{T}+K_{T}\right)$, we have

$$
\left|A_{T}\right| \geq p-2, \quad\left|B_{T}\right| \geq p-2, \quad g_{T}-h_{T} \notin K_{T}
$$

Next we verify that K_{T}, g_{T} and h_{T} are independent of T. Let T^{\prime} be a subsequence of R of length $\left|T^{\prime}\right|=2 p-2$. Then $\left|A_{T^{\prime}} \cap A_{T}\right| \geq 2$ or $\left|A_{T^{\prime}} \cap B_{T}\right|$
≥ 2, since otherwise we would have

$$
\begin{aligned}
\left|A_{T^{\prime}}\right| & =\left|A_{T} \cup A_{T^{\prime}} \cup B_{T}\right|-\left|A_{T}\right|-\left|B_{T}\right|+\left|A_{T^{\prime}} \cap A_{T}\right|+\left|A_{T^{\prime}} \cap B_{T}\right| \\
& \leq(2 p-1)-(p-2)-(p-2)+1+1=5<p-2
\end{aligned}
$$

a contradiction. Hence, $\left|A_{T^{\prime}} \cap A_{T}\right| \geq 2$ or $\left|A_{T^{\prime}} \cap B_{T}\right| \geq 2$. This implies that $K_{T}=K_{T^{\prime}}$, and we set $K=K_{T}$. If there are three distinct elements in $\left\{g_{T}, h_{T}, g_{T^{\prime}}, h_{T^{\prime}}\right\}$, then

$$
2 p-1=|\operatorname{supp}(R)| \geq 3(p-2), \quad \text { a contradiction. }
$$

Therefore it follows that $\left\{g_{T}, h_{T}\right\}=\left\{g_{T^{\prime}}, h_{T^{\prime}}\right\}$, and we set $\{g, h\}=\left\{g_{T}, h_{T}\right\}$.
Thus for every subsequence T of R of length $|T|=2 p-2$ we have $|\operatorname{supp}(T) \cap(g+K)| \geq p-2, \quad|\operatorname{supp}(T) \cap(h+K)| \geq p-2, \quad g-h \notin K$. This implies that $|\operatorname{supp}(R) \cap(g+K)| \geq p-1$ and $|\operatorname{supp}(R) \cap(h+K)| \geq p-1$. Without restriction we may suppose that $h=0$. Since by assumption R has no zero-sum subsequence of length p, we infer that

$$
|\operatorname{supp}(R) \cap K|=|\operatorname{supp}(R) \cap(g+K)|=p-1
$$

and

$$
R=\left(m g+g_{p}\right) \prod_{i=1}^{p-1} k_{i} \prod_{i=1}^{p-1}\left(g+g_{i}\right)
$$

where $k_{i} \in K$ for every $i \in[1, p-1], g_{i} \in K$ for every $i \in[1, p]$ and $m \in[2, p-1]$. Theorem 2.3 and the Cauchy-Davenport theorem imply

$$
\begin{aligned}
& \left|\Sigma_{m-1}\left(\prod_{i=1}^{p-1} k_{i}\right)+\Sigma_{p-m}\left(\prod_{i=1}^{p-1} g_{i}\right)\right| \\
& \geq \min \{p,((m-1)(p-m)+1)+((p-m)(p-1-(p-m))+1)-1\}=p
\end{aligned}
$$

and hence there are some $I \subset[1, p-1]$ with $|I|=m-1$ and some $J \subset[1, p-1]$ with $|J|=p-m$ such that

$$
\left(m g+g_{p}\right) \prod_{i \in I} k_{i} \prod_{j \in J}\left(g+g_{j}\right)
$$

is a zero-sum subsequence of R of length p, a contradiction.
The rest of this section is devoted to the proof of Proposition 5.2. It is based on a series of lemmas, and its strategy can be seen best by browsing through the (short) Proof of Proposition 5.2 at the very end of the section. We fix our notations which remain valid throughout what follows:

Let $G=C_{p} \oplus C_{p}$ for some odd prime $p \in \mathbb{P}, H \subset G$ a subgroup of order $p, \varphi: G \rightarrow H$ a projection and let $S \in \mathcal{F}(G)$ be a squarefree sequence.

Lemma 5.3.
(1) If $\varphi(S)$ has a zero-sum subsequence T such that

$$
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \geq p-1
$$

then S has a zero-sum subsequence T^{*} of length $\left|T^{*}\right|=|T|$.
(2) If $|S|=2 p-2$ and $\mathrm{h}(\varphi(S)) \in[(p+5) / 2, p-4]$, then S has a zero-sum subsequence of length p.
(3) If $\mathrm{h}(\varphi(S)) \geq p$, then S has a zero-sum subsequence of length p.

Proof. (1) See [25, Lemma 5.2].
(2) Let $g \in \operatorname{supp}(\varphi(S))$ with $\operatorname{v}_{g}(\varphi(S))=\mathrm{h}(\varphi(S))=h$. We assume $g=0$ and set $\varphi(S)=0^{h} T$. By Theorem $2.2(3)$ the sequence T has a zero-sum subsequence R of length $|R| \in[p+2-h, p-2]$. Now the assertion follows from (1), applied with $T=0^{p-|R|} R$.
(3) Let T be a subsequence of S such that $\varphi(T)=g^{p}$. Since $K=$ $\operatorname{Ker}(\varphi) \subset G$ is a subgroup of order p and T is squarefree, it follows that $T=\prod_{k \in K}(g+k)$ and hence $\sigma(T)=0$.

Lemma 5.4. Let $p \geq 7,|S|=2 p-2$ and $\mathrm{h}(\varphi(S))=p-1$. If S has no zero-sum subsequence of length p, then there exist distinct elements $g, h \in H$ such that

$$
\varphi(S)=g^{p-1} h^{p-1} \quad \text { or } \quad \varphi(S)=g^{p-2} h^{p-1}(2 g-h)
$$

Proof. Let $h \in \operatorname{supp}(\varphi(S))$ with $\mathrm{v}_{h}(\varphi(S))=\mathrm{h}(\varphi(S))$. We assume $h=0$ and set $\varphi(S)=0^{p-1} T$. If T is zero-sumfree or a minimal zero-sum sequence, then Theorem 2.1 implies that $\varphi(S)$ has the required form. If T has a zerosum subsequence R of length $|R| \in[3, p-2]$, then $0^{p-|R|} R$ is a zero-sum subsequence of $\varphi(S)$ of length p, and hence, by Lemma $5.3(1)$, S has a zero-sum subsequence of length p. Thus it remains to consider the case that all zero-sum subsequences R of T have length $|R|=2$ and $R^{-1} T$ is zero-sumfree. Let R be such a sequence, say $R=(-g) g$ for some $g \in H$. Since $R^{-1} T$ is a zero-sumfree sequence of length $p-3$, Theorem 2.1 implies that there is some $e \in H$ such that $R^{-1} T$ has one of the following forms: $e^{p-3}, e^{p-4}(2 e), e^{p-4}(3 e)$ or $e^{p-5}(2 e)^{2}$. Since T has no zero-sum subsequence of length greater than 2 , it follows that $e \in\{-g, g\}$. Now we again apply Lemma $5.3(1)$ with $0^{p-|R|} R$ and infer that S has a zero-sum subsequence of length p.

LEmma 5.5. Let $p \geq 11,|S|=2 p-2$ and $\mathrm{h}(\varphi(S))=p-2$. If S has no zero-sum subsequence of length p, then there exist distinct elements $g, h \in H$ such that $\varphi(S)=g^{p-2} h^{p-2}(-g+2 h)(2 g-h)$.

Proof. Let $h \in \operatorname{supp}(\varphi(S))$ with $\mathrm{v}_{h}(\varphi(S))=\mathrm{h}(\varphi(S))$. We assume $h=0$ and set $\varphi(S)=0^{p-2} T$. If T has a zero-sum subsequence R of length $|R| \in$
$[4, p-2]$, then S has a zero-sum subsequence of length p by Lemma 5.3(1). Suppose that T has no such zero-sum subsequences, and let R denote a zero-sum subsequence of T of maximal length. We distinguish two cases.

CASE 1: $|R| \geq p-1$. We may assume that R is a minimal zero-sum subsequence, since otherwise there exists a zero-sum subsequence of length in $[4, p-2]$. Since $\mathrm{h}(\varphi(S))=p-2$, Theorem 2.1 implies that $R=e^{p-2}(2 e)$ for some $e \in H$. Let $g \in H$ be such that $T=R g$. We note that $g \neq e$. If $g \notin\{-e,-2 e\}$, it follows that T has a zero-sum subsequence of length in $[4, p-2]$, a contradiction. If $g=-2 e$, then $(-2 e) e^{2} 0^{p-3}$ is a zero-sum subsequence of $\varphi(S)$ of length p, and Lemma 5.3(1) implies that S has a zero-sum subsequence of length p. If $g=-e$, then $\varphi(S)$ has the asserted form.

CASE 2: $|R| \leq 3$. Suppose that $|R|=2$, say $R=(-g) g$ for some $g \in H$. Then $R^{-1} T$ is a zero-sumfree sequence of length $p-2$ and thus by Theorem 2.1 equal to $e^{p-3}(2 e)$ or e^{p-2} for some $e \in H$. Note that in the latter case necessarily $g \neq e$. However, this implies that the sequence T has a zerosum subsequence of length greater than 2 , a contradiction. Thus we obtain $|R|=3$. The sequence $R^{-1} T$ is a zero-sumfree sequence of length $p-3$. By Theorem 2.1 there exists some $e \in H$ such that $R^{-1} T$ has one of the following forms: $e^{p-5}(2 e)^{2}, e^{p-4}(2 e), e^{p-4}(3 e)$, or e^{p-3}. If there exists some $g \in \operatorname{supp}(R)$ such that $g \notin\{-2 e,-e, e, 2 e\}$, then there exists a zero-sum subsequence of T of length greater than 3 , a contradiction. If $-2 e \in \operatorname{supp}(R)$, then $(-2 e) e^{2} 0^{p-3}$ is a zero-sum subsequence of $\varphi(S)$ of length p, and Lemma $5.3(1)$ implies that S has a zero-sum subsequence of length p. Therefore we deduce that $\operatorname{supp}(R) \subset\{-e, e, 2 e\}, R=(2 e)(-e)^{2}$ and thus $(-e)^{2} e^{2}$ is a zero-sum subsequence of T of length 4, a contradiction.

Lemma 5.6. Let $p \geq 11,|S|=2 p-2$ and $\mathrm{h}(\varphi(S))=p-3$. Then S has a zero-sum subsequence of length p.

Proof. Let $h \in \operatorname{supp}(\varphi(S))$ with $\mathrm{v}_{h}(\varphi(S))=\mathrm{h}(\varphi(S))$. We assume $h=0$ and set $\varphi(S)=0^{p-3} T$. Let R be a zero-sum subsequence of T of maximal length. If $|R| \in[5, p-2]$, the result follows by Lemma 5.3(1). If $|R| \geq p-1$, then we may assume that R is a minimal zero-sum subsequence. However, since $\mathrm{h}(\varphi(S))=p-3$ this is impossible by Theorem 2.1.

It remains to consider the case that $|R| \leq 4$. Since R has maximal length, $R^{-1} T$ is zero-sumfree. Since $\mathrm{h}(\varphi(S))=p-3$, we have $|T|=p+1$, and thus Theorem 2.1 implies that $|R| \geq 3$. We distinguish two cases.

Case 1: $|R|=3$. By Theorem 2.1 we have $R^{-1} T=e^{p-3}(2 e)$. We note that $\operatorname{supp}(R) \not \subset\{-e,-2 e\}$. However, this implies that there exists a zerosum subsequence of T of length greater than 3 .

CASE 2: $|R|=4$. The sequence $R^{-1} T$ is a zero-sumfree sequence of length $p-3$. By Theorem 2.1 it is equal to $e^{p-3}, e^{p-4}(2 e), e^{p-4}(3 e)$, or $e^{p-5}(2 e)^{2}$ for some $e \in H$. Since T has no zero-sum subsequence of length greater than 4 , we infer that $\operatorname{supp}(R) \subset\{-3 e,-2 e,-e, e, 2 e\}$. If $-3 e \in$ $\operatorname{supp}(R)$, then $(-3 e) e^{3} 0^{p-4}$ is a zero-sum subsequence of $\varphi(S)$ of length p, and the assertion follows by Lemma 5.3(1). Thus, we may assume $\operatorname{supp}(R) \subset$ $\{-2 e,-e, e, 2 e\}$. If $(-2 e)^{2} \mid R$, then $(-2 e)^{2} e^{4}$ is a zero-sum subsequence of T of length 6 . Therefore R is equal to $(-2 e)(-e)(2 e) e$ or to $(-e)^{2} e^{2}$, and in both cases we have $\mathrm{v}_{e}(R)>0$. Applying Lemma $5.3(1)$ with $R 0^{p-4}$ we conclude that S has a zero-sum subsequence of length p.

In all the remaining lemmas we use the following notation:
Let

$$
\varphi(S)=R^{\prime} R^{3} U^{2} V \quad \text { where } R^{\prime}, R, U, V \in \mathcal{F}(H)
$$

R, U, V are squarefree, $\operatorname{supp}(V)$ consists of those elements $h \in H$ with $\mathrm{v}_{h}(\varphi(S))=1, \operatorname{supp}(U)$ of those $h \in H$ with $\mathrm{v}_{h}(\varphi(S))=2$ and $\operatorname{supp}(R)$ of those $h \in H$ with $\mathrm{v}_{h}(\varphi(S)) \geq 3$.

Lemma 5.7. Let $p \geq 5$, $|\operatorname{supp}(\varphi(S))| \leq(p+3) / 2$ and suppose that $R^{\prime} R U V$ has a zero-sum subsequence of length p. Then S has a zero-sum subsequence of length p.

Proof. Let W be a zero-sum subsequence of $R^{\prime} R U V$ of length p. We set $W=W_{1} W_{2}$, where W_{1} is the subsequence of elements occurring with multiplicity 1 in W, and thus $W_{2} \mid R R^{\prime}$. Since $\left|W_{1}\right|+\left|W_{2}\right|=p,\left|\operatorname{supp}\left(W_{1}\right)\right|+$ $\left|\operatorname{supp}\left(W_{2}\right)\right| \leq(p+3) / 2$ and W_{1} is squarefree, it follows that $W_{2} \neq 1,\left|W_{1}\right|=$ $\left|\operatorname{supp}\left(W_{1}\right)\right| \leq(p+1) / 2$ and $\left|W_{2}\right| \geq(p-1) / 2$. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(W)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(W)\right) & \geq \sum_{g \in \operatorname{supp}\left(W_{2}\right)} \mathrm{v}_{g}(W)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(W)\right) \\
& \geq \sum_{g \in \operatorname{supp}\left(W_{2}\right)} 2\left(\mathrm{v}_{g}(\varphi(S))-2\right) \\
& \geq \sum_{g \in \operatorname{supp}\left(W_{2}\right)} 2 \mathrm{v}_{g}(W)=2\left|W_{2}\right| \geq p-1
\end{aligned}
$$

Lemma $5.3(1)$ implies that S has a zero-sum subsequence of length p. -
Lemma 5.8. Let $p \geq 5,|S|=2 p-2$ and $2|\operatorname{supp}(\varphi(S))|+\mathrm{h}(\varphi(S)) \leq p$. Then S has a zero-sum subsequence of length p.

Proof. We set $s=|\operatorname{supp}(\varphi(S))|$ and note that $s \leq(p-1) / 2$ whence $\mathrm{h}(\varphi(S)) \geq 3$ and $s \leq(p-3) / 2$. Since

$$
\left|R^{\prime} R U V\right|=|\varphi(S)|-2|R|-|U| \geq 2 p-2-2 s
$$

and

$$
\mathrm{h}\left(R^{\prime} R U V\right)=\mathrm{h}(\varphi(S))-2 \leq p-2-2 s
$$

Theorem 2.2(2) implies that $R^{\prime} R U V$ has a zero-sum subsequence of length p, and therefore the assertion follows from Lemma 5.7.

Lemma 5.9. Let $p \geq 47,|S|=2 p-2, \mathrm{~h}(\varphi(S)) \leq(p+3) / 2$ and $|\operatorname{supp}(\varphi(S))| \in[(p-1) / 4,(p-1) / 3]$. Then S has a zero-sum subsequence of length p.

Proof. By Lemma 5.7 it suffices to show that $R^{\prime} R U V$ has a zero-sum subsequence of length p. We set $s=|\operatorname{supp}(\varphi(S))|=|R U V|$, and obtain

$$
\left|R^{\prime} R U V\right|=|S|-2|R|-|U| \geq 2 p-2-2 s, \quad\left|R^{\prime}\right| \geq 2 p-2-3 s
$$

By Theorem 2.3(1) we have $\left|\Sigma_{\lceil s / 2\rceil}(R U V)\right| \geq \min \{p,\lceil s / 2\rceil\lfloor s / 2\rfloor+1\}=t$. Since $\mathrm{h}\left(R^{\prime}\right)=\mathrm{h}(\varphi(S))-3 \leq(p-3) / 2$ and $\left|R^{\prime}\right| \geq p-1, R^{\prime}$ allows a product decomposition of the form

$$
R^{\prime}=Q^{\prime} \prod_{i \in I} Q_{i}
$$

where all Q_{i} are squarefree sequences of length $2,|I|=\left\lfloor\left|R^{\prime}\right| / 2\right\rfloor$ and $\left|Q^{\prime}\right| \in$ $\{0,1\}$.

We assert that $|I| \geq p-t$. This is clear for $t=p$, and we suppose that $t=\lceil s / 2\rceil\lfloor s / 2\rfloor+1$. Since $t \geq\left(s^{2}-1\right) / 4+1, s \geq(p-1) / 4$ and $p \geq 37$, it follows that

$$
|I|=\left\lfloor\left|R^{\prime}\right| / 2\right\rfloor \geq \frac{p-1}{2} \geq p-\frac{((p-1) / 4)^{2}-1}{4}-1 \geq p-t
$$

If $J \subset I$, then

$$
\Sigma_{|J|}\left(\prod_{i \in J} Q_{i}\right) \supset \sum_{i \in J} \operatorname{supp}\left(Q_{i}\right)
$$

and therefore the Cauchy-Davenport theorem implies that

$$
\left|\Sigma_{|J|}\left(\prod_{i \in J} Q_{i}\right)\right| \geq\left|\sum_{i \in J} \operatorname{supp}\left(Q_{i}\right)\right| \geq \min \{p,|J|+1\}
$$

If $J \subset I$ with $|J|=p-t$, then

$$
\Sigma_{p-t+\lceil s / 2\rceil}\left(R U V \prod_{i \in J} Q_{i}\right) \supset \Sigma_{\lceil s / 2\rceil}(R U V)+\Sigma_{|J|}\left(\prod_{i \in J} Q_{i}\right)
$$

The Cauchy-Davenport theorem and the previous estimate imply that $\min \{p, t+(|J|+1)-1\}=p$ is a lower bound for the cardinality of the latter sumset, whence both sets are equal to H.

Now we choose some $J \subset I$ with $|J|=p-t$, set

$$
R^{*}=R^{\prime}\left(\prod_{i \in J} Q_{i}\right)^{-1}
$$

and assert that

$$
\left|R^{*}\right| \geq t-\lceil s / 2\rceil
$$

Suppose that this is proved. Then R^{*} has a subsequence Y of length $t-\lceil s / 2\rceil$. Since $R U V \prod_{i \in J} Q_{i}$ has a subsequence X of length $p-t+\lceil s / 2\rceil$ with $\sigma(X)=$ $-\sigma(Y)$, it follows that $X Y$ is a zero-sum sequence of $R^{\prime} R U V$ of length $|X Y|=p$.

Since

$$
\left|R^{*}\right|=\left|R^{\prime}\right|-2|J|=\left|R^{\prime}\right|-2(p-t) \geq 2 p-2-3 s-2 p+2 t=2 t-2-3 s
$$

it suffices to show that

$$
t-2-3 s \geq-\lceil s / 2\rceil
$$

Since $s \leq(p-1) / 3$ and $s \geq(p-1) / 4 \geq 2$, this is clear for $t=p$. For $t=\lceil s / 2\rceil\lfloor s / 2\rfloor+1$ we have to show that

$$
\lceil s / 2\rceil\lfloor s / 2\rfloor-1-3 s+\lceil s / 2\rceil \geq 0
$$

Since $p \geq 47$, we have $s \geq(p-1) / 4 \geq 23 / 2$, and thus the inequality holds.
Lemma 5.10. Let $p \geq 41,|S|=2 p-2$ and $|\operatorname{supp}(\varphi(S))| \in[(p+1) / 3$, $p-5]$. Then S has a zero-sum subsequence of length p.

Proof. Let W be a subsequence of $R U V$ of length $|W|=\lceil p / 3\rceil$ such that $|\operatorname{gcd}(W, R)|$ is minimal. Then W is squarefree, and Theorem 2.3(1) implies that $\Sigma_{4}(W)=H$. Since $|\operatorname{gcd}(W, R)|$ is minimal, we have either $W \mid U V$ or $U V \mid W$. If $W \mid U V$, then $\operatorname{gcd}(W, R)=1$ and

$$
\left|\operatorname{gcd}(W, R)^{-1} R R^{\prime} R U\right|=\left|R R^{\prime} R U\right|=2 p-2-|R U V| \geq p+3
$$

If $U V \mid W$, then $|\operatorname{gcd}(W, R)|=|W|-|U V|$, and since $|R| \leq(2 p-2) / 3$, we obtain

$$
\left|\operatorname{gcd}(W, R)^{-1} R R^{\prime} R U\right|=2 p-2-(|R|+\lceil p / 3\rceil) \geq p-2
$$

In both cases $\operatorname{gcd}(W, R)^{-1} R R^{\prime} R U$ has a subsequence Y of length $p-4$ such that $R U \mid Y$. Let X be a subsequence of W of length 4 such that $\sigma(X)=$ $-\sigma(Y)$. Then $T=X Y$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
& \sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad=\sum_{g \in \operatorname{supp}(R)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right)+\sum_{g \in \operatorname{supp}(U)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad \geq \sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
& \quad=\left|R^{\prime} R^{2}\right|+|U|-4=|\varphi(S)|-|\operatorname{supp}(S)|-4 \geq p-1,
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.

Lemma 5.11. Let $p \geq 17,|S|=2 p-2$ and $|\operatorname{supp}(\varphi(S))|=p-4$. Then S has a zero-sum subsequence of length p.

Proof. Let W be a subsequence of $R U V$ of length $(p+3) / 2$ such that $|\operatorname{gcd}(W, R)|$ is minimal. We distinguish two cases.

Case 1: $|\operatorname{gcd}(W, R)| \leq 4$. Since

$$
\begin{aligned}
\left|\operatorname{gcd}(W, R)^{-1} R R^{\prime} R U\right| & =\left|R^{\prime} R^{2}\right|+|U|-|\operatorname{gcd}(W, R)| \\
& \geq 2 p-2-(p-4)-4=p-2
\end{aligned}
$$

$\operatorname{gcd}(W, R)^{-1} R R^{\prime} R U$ has a subsequence Y of length $p-2$ such that $R U \mid Y$. By Theorem 2.3(1) we have $\Sigma_{2}(W)=H$, and thus W has a subsequence X of length 2 such that $\sigma(X)=-\sigma(Y)$. Then $T=X Y$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
& \sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad=\sum_{g \in \operatorname{supp}(R)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right)+\sum_{g \in \operatorname{supp}(U)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad \geq \sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
& \quad=\left|R^{\prime} R^{2}\right|+|U|-2=|\varphi(S)|-|\operatorname{supp}(S)|-2 \geq p
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
CASE 2: $|\operatorname{gcd}(W, R)| \geq 5$. By the minimality of $|\operatorname{gcd}(W, R)|$ we have $U V \mid W$. Then $|U V|=|W|-|\operatorname{gcd}(W, R)| \leq(p+3) / 2-5$ and $|R U V|=p-4$. Thus it follows that $|R| \geq(p-1) / 2$. Therefore Theorem $2.3(1)$ implies that $\Sigma_{4}(R)=H$. Let X be a subsequence of R of length 4 such that $T=X R U V$ is a zero-sum sequence. Then $|T|=p$, and since

$$
\begin{aligned}
& \sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad=\sum_{g \in \operatorname{supp}(R)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right)+\sum_{g \in \operatorname{supp}(U)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad \geq \sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U)} 1 \\
& \quad=\left|R^{\prime} R^{2}\right|+|U|=|\varphi(S)|-|\operatorname{supp}(S)| \geq p+2
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p. ■
Lemma 5.12. Let $p \geq 23,|S|=2 p-2$ and $|\operatorname{supp}(\varphi(S))|=p-3$. Then S has a zero-sum subsequence of length p.

Proof. We have $\left|R^{\prime} R^{2} U\right|=|S|-|\operatorname{supp}(\varphi(S))|=p+1$, in particular $R \neq 1$. We distinguish two cases.

Case 1: $|R| \geq 7$. By the Cauchy-Davenport theorem and by Theorem 2.3(1), we obtain

$$
\begin{aligned}
\left|\Sigma_{4}(R)-\operatorname{supp}(U V)\right| & \geq \min \{p, 4(|R|-4)+|U|+|V|\} \\
& =\min \{p, 3|R|-16+|\operatorname{supp}(\varphi(S))|\}=p
\end{aligned}
$$

and therefore $\Sigma_{4}(R)-\operatorname{supp}(U V)=H$. Thus there exist a subsequence R^{*} of R of length 4 and some $x \in \operatorname{supp}(U V)$ such that $T=R^{*} x^{-1} R U V$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) & \geq \sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash\{x\}} 1 \\
& \geq\left|R^{\prime} R^{2}\right|+|U|-1=p
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
CASE 2: $|R| \leq 6$. We choose some $r \in \operatorname{supp}(R)$ and distinguish two cases.

CASE 2.1: $|U| \geq(p+3) / 2$. Then $\Sigma_{2}(U)=H$. Thus U has a subsequence X of length 2 such that $T=r R U V X$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \geq\left|R^{\prime} R^{2}\right|+|U|-2=p-1
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
CASE 2.2: $|U| \leq(p+1) / 2$. Since $\left|R^{\prime} R^{2} U\right|=p+1,|R| \leq 6$ and $p \geq 23$, it follows that $\left|R^{\prime} R\right| \geq(p+1) / 2-6 \geq 6$, and hence $R^{\prime} R$ has a subsequence R^{*} of length 5 . Since $|U V| \geq|R U V|-6=p-9 \geq(p+3) / 2$, it follows that $\Sigma_{2}(U V)=H$, and hence $U V$ has a subsequence X of length 2 such that $T=R^{*} R U V X^{-1}$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \geq\left|R^{\prime} R^{2}\right|+|U|-2=p-1
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
Lemma 5.13. There exist a subgroup $H^{*} \subset G$ of order p and a projection $\varphi^{*}: G \rightarrow H^{*}$ such that

$$
\sum_{h \in H}\binom{\mathrm{v}_{h}\left(\varphi^{*}(S)\right)}{2} \geq\binom{|S|}{2}(p+1)^{-1}
$$

In particular, $|S|=2 p-2$ and $p \geq 7$ imply that $\mathrm{h}\left(\varphi^{*}(S)\right) \geq 3$.

Proof. For a subgroup $H^{\prime} \subset G$ of order p we define

$$
A_{H^{\prime}}=\mid\left\{g g^{\prime} \in \mathcal{F}(G) \mid g g^{\prime} \text { is a subsequence of } S \text { and } g-g^{\prime} \in H^{\prime}\right\} \mid
$$

Since G has $p+1$ subgroups of order p and S has $\binom{|S|}{2}$ subsequences of length 2 , it follows that there exists some subgroup $K \subset G$ such that $A_{K} \geq$ $\binom{|S|}{2} /(p+1)$. Let $\kappa: G \rightarrow K$ denote a projection. We define $\varphi^{*}=\mathrm{id}-\kappa$ and $H^{*}=\operatorname{Im}(\mathrm{id}-\kappa)=\operatorname{Ker}(\kappa)$. Note that $g-g^{\prime} \in K$ if and only if $\varphi^{*}(g)=$ $\varphi^{*}\left(g^{\prime}\right)$. Since there exist $\sum_{h \in H}\binom{\mathrm{v}_{h}\left(\varphi_{2}^{*}(S)\right)}{2}$ subsequences $g g^{\prime}$ of S such that $\varphi^{*}(g)=\varphi^{*}\left(g^{\prime}\right)$, the first assertion follows.

Let $|S|=2 p-2, p \geq 7$ and assume to the contrary that $\mathrm{h}\left(\varphi^{*}(S)\right) \leq 2$. Then

$$
\binom{2 p-2}{2}(p+1)^{-1} \leq \sum_{h \in H}\binom{\mathrm{v}_{h}\left(\varphi^{*}(S)\right)}{2} \leq\left|\operatorname{supp}\left(\varphi^{*}(S)\right)\right| \leq p
$$

a contradiction.
A pair $\left(H^{*}, \varphi^{*}\right)$ consisting of a subgroup $H^{*} \subset G$ and a projection $\varphi^{*}: G \rightarrow H^{*}$ is called suitable (with respect to S) if it has the property given in Lemma 5.13.

In the following lemmas there is a trade-off between the length of the argument and the range of primes for which the results are valid. Some arguments could be slightly shortened when allowing p to be larger, and conversely, with more involved proofs some of the results could be obtained for (slightly) smaller primes. Our aim is to obtain results (at least) for primes p with $p \geq 47$, which is the bound given by Lemma 5.9.

LEmmA 5.14. Let $p \geq 23,|S|=2 p-2,|\operatorname{supp}(\varphi(S))|=p$ and (H, φ) suitable. Then S has a zero-sum subsequence of length p.

Proof. Since $|R U V|=p$ and $\left|R^{3} U^{2} V\right| \leq|S|=2 p-2$, it follows that $\left|R^{2} U\right| \leq p-2$ and thus $|R| \leq(p-3) / 2$. This implies that $|U V| \geq(p+3) / 2$ and hence $\Sigma_{2}(U V)=H$ by Theorem 2.3(1). Furthermore, we have $\left|R^{\prime} R^{2} U\right|$ $=|S|-|\operatorname{supp}(\varphi(S))|=p-2$.

We assert that one of the following three statements holds:

- $\mathrm{h}(\varphi(S)) \geq 6$.
- There exist two distinct elements $r_{1}, r_{2} \in H$ whose multiplicities in $\varphi(S)$ are at least 5 and 4 , respectively.
- There exist three distinct elements $r_{1}, r_{2}, r_{3} \in H$ whose multiplicities in $\varphi(S)$ are at least 4.
Assume to the contrary that none of these statements holds. Since (H, φ) is suitable, we have

$$
2 p-6 \leq\binom{|S|}{2}(p+1)^{-1} \leq \sum_{h \in H}\binom{\mathrm{v}_{h}(\varphi(S))}{2}
$$

Since none of the statements holds, the last sum is bounded above either by

$$
\binom{5}{2}+(|R|-1)\binom{3}{2}+|U|\binom{2}{2}=7+3|R|+|U|
$$

or by

$$
2\binom{4}{2}+(|R|-2)\binom{3}{2}+|U|\binom{2}{2}=6+3|R|+|U|
$$

Since $\left|R^{3} U^{2} V\right| \leq 2 p-2$, it follows that either $|U V| \leq 11$ or $|U V| \leq 10$, a contradiction to $|U V| \geq(p+3) / 2$.

Now we distinguish three cases.
CASE 1: $\mathrm{h}(\varphi(S)) \geq 6$. Let $r \in \operatorname{supp}(R)$ with $\mathrm{v}_{r}(\varphi(S))=\mathrm{h}(\varphi(S))$, and let X be a subsequence of $U V$ of length 2 such that $T=r^{2} R U V X^{-1}$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(T) & \left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
= & 3\left(\mathrm{v}_{r}(\varphi(S))-3\right)+\sum_{g \in \operatorname{supp}(R) \backslash\{r\}} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& +\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
\geq & 3\left(\mathrm{v}_{r}(\varphi(S))-3\right)+\sum_{g \in \operatorname{supp}(R) \backslash\{r\}}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+|U|-2 \\
= & 2 \mathrm{v}_{r}(\varphi(S))-8+\left|R^{\prime} R^{2}\right|+|U|-2 \geq\left|R^{\prime} R^{2}\right|+|U|+2=p
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
CASE 2: There exist distinct elements $r_{1}, r_{2} \in H$ with $\mathrm{v}_{r_{1}}(\varphi(S)) \geq 5$ and $\mathrm{v}_{r_{2}}(\varphi(S)) \geq 4$. Let X be a subsequence of $U V$ of length 2 such that $T=r_{1} r_{2} R U V X^{-1}$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\right. & \left.\mathrm{v}_{g}(T)\right) \\
= & 2\left(\mathrm{v}_{r_{1}}(\varphi(S))-2\right)+2\left(\mathrm{v}_{r_{2}}(\varphi(S))-2\right) \\
& +\sum_{g \in \operatorname{supp}(R) \backslash\left\{r_{1}, r_{2}\right\}} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& +\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
\geq & \mathrm{v}_{r_{1}}(\varphi(S))+\mathrm{v}_{r_{2}}(\varphi(S))-6+\left|R^{\prime} R^{2}\right|+|U|-2 \\
\geq & \left|R^{\prime} R^{2}\right|+|U|+1=p-1
\end{aligned}
$$

Lemma $5.3(1)$ implies that S has a zero-sum subsequence of length p.

CASE 3: There exist three distinct elements $r_{1}, r_{2}, r_{3} \in H$ with $\mathrm{v}_{r_{i}}(\varphi(S))$ ≥ 4 for all $i \in[1,3]$. As $|R U V|=p$ and $3+\left|R^{3} U^{2} V\right| \leq\left|R^{\prime} R^{3} U^{2} V\right|=2 p-2$, we infer that $\left|R^{2} U\right| \leq p-5,|R| \leq(p-5) / 2$ and therefore $|U V| \geq(p+5) / 2$. Note that $V \neq 1$, and we choose some $v \in \operatorname{supp}(V)$. Then $\Sigma_{2}\left(U V v^{-1}\right)=H$, and therefore $U V v^{-1}$ has a subsequence X of length 2 such that $T=$ $r_{1} r_{2} r_{3} R U V v^{-1} X^{-1}$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(T) & \left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
= & \sum_{i=1}^{3} 2\left(\mathrm{v}_{r_{i}}(\varphi(S))-2\right)+\sum_{g \in \operatorname{supp}(R) \backslash\left\{r_{1}, r_{2}, r_{3}\right\}} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \quad+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& \geq \sum_{i=1}^{3}\left(\mathrm{v}_{r_{i}}(\varphi(S))-3\right)+\left|R^{\prime} R^{2}\right|+|U|-2 \geq\left|R^{\prime} R^{2}\right|+|U|+1=p-1
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
Lemma 5.15. Let $p \geq 23,|S|=2 p-2,|\operatorname{supp}(\varphi(S))|=p-1$ and (H, φ) suitable. Then S has a zero-sum subsequence of length p.

Proof. Since $|R U V|=p-1$ and $\left|R^{3} U^{2} V\right| \leq|S|=2 p-2$, it follows that $\left|R^{2} U\right| \leq p-1$ and thus $|R| \leq(p-1) / 2$. This implies that $|U V| \geq(p-1) / 2$ and hence $\Sigma_{3}(U V)=H$.

Since $p \geq 23$ and (H, φ) is suitable, one of the following five statements holds:

- There exists an element $r_{1} \in H$ whose multiplicity in $\varphi(S)$ is at least 7 .
- There exist two distinct elements $r_{1}, r_{2} \in H$ whose multiplicities in $\varphi(S)$ are at least 6 and 3 , respectively.
- There exist two distinct elements $r_{1}, r_{2} \in H$ whose multiplicities in $\varphi(S)$ are at least 5 .
- There exist three distinct elements $r_{1}, r_{2}, r_{3} \in H$ whose multiplicities in $\varphi(S)$ are at least 5,4 and 3 , respectively.
- There exist four distinct elements $r_{1}, r_{2}, r_{3}, r_{4} \in H$ whose multiplicities in $\varphi(S)$ are at least $4,4,4$ and 3 , respectively.

Corresponding to the five cases let R^{*} be one of the following five sequences:

$$
r_{1}^{4}, \quad r_{1}^{3} r_{2}, \quad r_{1}^{2} r_{2}^{2}, \quad r_{1}^{2} r_{2} r_{3}, \quad \text { or } \quad r_{1} r_{2} r_{3} r_{4}
$$

Let X be a subsequence of $U V$ of length 3 such that $T=R^{*} R U V X^{-1}$ is a
zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} & \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& =\sum_{g \in \operatorname{supp}\left(R^{*}\right)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
& +\sum_{g \in \operatorname{supp}(R) \backslash \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
& =\sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right) \\
& +\sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
\geq & \sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right)+\left|R^{\prime} R^{2}\right|+|U|-3 \\
= & \sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right)+(p-4) \geq p-1
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
Lemma 5.16. Let $p \geq 23,|S|=2 p-2,|\operatorname{supp}(\varphi(S))|=p-2$ and (H, φ) suitable. Then S has a zero-sum subsequence of length p.

Proof. We have $\left|R^{\prime} R^{2} U\right|=|S|-|\operatorname{supp}(\varphi(S))|=p$. We distinguish two cases.

CASE 1: $|R| \geq 6$. By the Cauchy-Davenport theorem and by Theorem 2.3(1),

$$
\begin{aligned}
\left|\Sigma_{3}(R)-\operatorname{supp}(U V)\right| & \geq \min \{p, 3(|R|-3)+|U|+|V|\} \\
& =\min \{p, 2|R|-9+|\operatorname{supp}(\varphi(S))|\}=p
\end{aligned}
$$

and therefore $\Sigma_{3}(R)-\operatorname{supp}(U V)=H$. Thus there exist a subsequence R^{*} of R of length 3 and some $x \in \operatorname{supp}(U V)$ such that $\sigma\left(R^{*}\right)-x=-\sigma(R U V)$ and hence $T=R^{*} x^{-1} R U V$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
\sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) & \geq \sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash\{x\}} 1 \\
& \geq\left|R^{\prime} R^{2}\right|+|U|-1=p-1
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
CASE 2: $|R| \leq 5$. Since $p \geq 23$ and (H, φ) is suitable, one of the following six statements holds:

- There exists an element $r_{1} \in H$ whose multiplicity in $\varphi(S)$ is at least 7 .
- There exist two distinct elements $r_{1}, r_{2} \in H$ whose multiplicities in $\varphi(S)$ are at least 6 and 3 , respectively.
- There exist two distinct elements $r_{1}, r_{2} \in H$ whose multiplicities in $\varphi(S)$ are at least 5 and 4 , respectively.
- There exist three distinct elements $r_{1}, r_{2}, r_{3} \in H$ whose multiplicities in $\varphi(S)$ are at least 5,3 and 3 , respectively.
- There exist three distinct elements $r_{1}, r_{2}, r_{3} \in H$ whose multiplicities in $\varphi(S)$ are at least 4,4 and 3 , respectively.
- There exist four distinct elements $r_{1}, r_{2}, r_{3}, r_{4} \in H$ whose multiplicities in $\varphi(S)$ are at least $4,3,3$ and 3 , respectively.
Corresponding to the six cases let R^{*} be one of the following six sequences:

$$
r_{1}^{4}, \quad r_{1}^{3} r_{2}, \quad r_{1}^{2} r_{2}^{2}, \quad r_{1}^{2} r_{2} r_{3}, \quad r_{1} r_{2}^{2} r_{3} \quad \text { or } \quad r_{1} r_{2} r_{3} r_{4}
$$

Since $|U V| \geq|R U V|-5=p-7 \geq(p+3) / 2$, it follows that $\Sigma_{2}(U V)=H$, and hence $U V$ has a subsequence X of length 2 such that $T=R^{*} R U V X^{-1}$ is a zero-sum subsequence of $\varphi(S)$ of length p. Since

$$
\begin{aligned}
& \sum_{g \in H} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
&=\sum_{g \in \operatorname{supp}\left(R^{*}\right)} \mathrm{v}_{g}(T)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)\right) \\
&+\sum_{g \in \operatorname{supp}(R) \backslash \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
&=\sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right) \\
&+\sum_{g \in \operatorname{supp}(R)}\left(\mathrm{v}_{g}(\varphi(S))-1\right)+\sum_{g \in \operatorname{supp}(U) \backslash \operatorname{supp}(X)} 1 \\
& \geq \sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right)+\left|R^{\prime} R^{2}\right|+|U|-2 \\
& \quad=\sum_{g \in \operatorname{supp}\left(R^{*}\right)}\left(\mathrm{v}_{g}(T)-1\right)\left(\mathrm{v}_{g}(\varphi(S))-\mathrm{v}_{g}(T)-1\right)+p-2 \geq p-1
\end{aligned}
$$

Lemma 5.3(1) implies that S has a zero-sum subsequence of length p.
Proof of Proposition 5.2. Let $p \in \mathbb{P}$ with $p \geq 47$ and let $S \in \mathcal{F}(G)$ be a squarefree sequence of length $|S|=2 p-2$. By Lemma 5.13 there exists a subgroup $H \subset G$ of order p and a projection $\varphi: G \rightarrow H$ such that (H, φ) is suitable and thus in particular $\mathrm{h}(\varphi(S)) \geq 3$.

If $\mathrm{h}(\varphi(S)) \geq p$, then S has a zero-sum subsequence of length p by Lemma $5.3(3)$. If h $(\varphi(S))=p-1$, then S either has a zero-sum subsequence of length p or it is of the asserted form by Lemma 5.4. If $\mathrm{h}(\varphi(S))=p-2$, then S either has a zero-sum subsequence of length p or it is of the asserted form by Lemma 5.5. If $\mathrm{h}(\varphi(S))=p-3$, then S has a zero-sum subsequence of length p by Lemma 5.6. If $\mathrm{h}(\varphi(S)) \in[(p+5) / 2, p-4]$, then S has a zero-sum subsequence of length p by Lemma $5.3(2)$.

Now suppose that $\mathrm{h}(\varphi(S)) \in[3,(p+3) / 2]$. Then S has a zero-sum subsequence of length p : Indeed,

- for $|\operatorname{supp}(\varphi(S))|=p$, see Lemma 5.14,
- for $|\operatorname{supp}(\varphi(S))|=p-1$, see Lemma 5.15,
- for $|\operatorname{supp}(\varphi(S))|=p-2$, see Lemma 5.16,
- for $|\operatorname{supp}(\varphi(S))|=p-3$, see Lemma 5.12,
- for $|\operatorname{supp}(\varphi(S))|=p-4$, see Lemma 5.11,
- for $|\operatorname{supp}(\varphi(S))| \in[(p+1) / 3, p-5]$, see Lemma 5.10,
- for $|\operatorname{supp}(\varphi(S))| \in[(p-1) / 4,(p-1) / 3]$, see Lemma 5.9,
- for $|\operatorname{supp}(\varphi(S))| \leq(p-3) / 4$, see Lemma 5.8.

Acknowledgements. The first author is supported by NSFC, Project No. 10671011 and by the 973 Program, Project No. 2006CB805900. The second and the third authors are supported by the Austrian Science Fund FWF, Project No. P18779-N13. This paper was completed during a onemonth stay of the second author at the Center for Combinatorics, Nankai University. He would like to thank for the excellent working conditions and for all the hospitality.

References

[1] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15 (1995), 301-309.
[2] N. Alon, M. B. Nathanson, and I. Z. Ruzsa, Adding distinct congruence classes modulo a prime, Amer. Math. Monthly 102 (1995), 250-255.
[3] G. Bhowmik and J.-C. Schlage-Puchta, Davenport's constant for groups of the form $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3 d}$, manuscript.
[4] A. Bialostocki, P. Dierker, D. Grynkiewicz, and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv Theorem II, Acta Arith. 110 (2003), 173-184.
[5] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv Theorem I, in: Sets, Graphs and Numbers, Colloq. Math. Soc. János Bolyai 60, North-Holland, 1992, 97-117.
[6] J. Bierbrauer and Y. Edel, Bounds on affine caps, J. Combin. Des. 10 (2002), 111115.
[7] J. D. Bovey, P. Erdős, and I. Niven, Conditions for zero sum modulo n, Canad. Math. Bull. 18 (1975), 27-29.
[8] Y. Caro, On zero-sum Ramsey numbers—stars, Discrete Math. 104 (1992), 1-6.
[9] -, Zero-sum problems - a survey, ibid. 152 (1996), 93-113.
[10] S. T. Chapman, M. Freeze, W. Gao, and W. W. Smith, On Davenport's constant of finite abelian groups, Far East J. Math. Sci. 5 (2002), 47-54.
[11] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140-146.
[12] Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length $\exp (G)$, Des. Codes Cryptography, to appear.
[13] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., to appear.
[14] Y. Edel, S. Ferret, I. Landjev, and L. Storme, The classification of the largest caps in AG(5, 3), J. Combin. Theory Ser. A 99 (2002), 95-110.
[15] C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica 24 (2004), 351-358.
[16] P. van Emde Boas, A combinatorial problem on finite abelian groups II, report ZW-1969-007, Math. Centre, Amsterdam, 1969.
[17] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel Sect. F Math. Phys. 10 (1961), 41-43.
[18] C. Flores and O. Ordaz, On the Erdös-Ginzburg-Ziv theorem, Discrete Math. 152 (1996), 321-324.
[19] W. D. Gao, An addition theorem for finite cyclic groups, ibid. 163 (1997), 257-265.
[20] -, On Davenport's constant of finite abelian groups with rank three, ibid. 222 (2000), 111-124.
[21] -, Two zero sum problems and multiple properties, J. Number Theory 81 (2000), 254-265.
[22] W. D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hungar. 38 (1999), 179-211.
$[23]-$, 一, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers 3 (2003), A08, 45pp.
[24] -, -, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369.
[25] W. D. Gao, Q. H. Hou, W. A. Schmid, and R. Thangadurai, On short zero-sum subsequences $I I$, Integers 7 (2007), A21, 22 pp.
[26] W. D. Gao, A. Panigrahi, and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 67-77.
[27] W. D. Gao and R. Thangadurai, On the structure of sequences with forbidden zerosum subsequences, Colloq. Math. 98 (2003), 213-222.
[28] -, -, A variant of Kemnitz conjecture, J. Combin. Theory Ser. A 107 (2004), 69-86.
[29] W. D. Gao, R. Thangadurai, and J. Zhuang, Addition theorems on the cyclic groups of order p^{l}, Discrete Math., to appear.
[30] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman \& Hall/CRC, 2006.
[31] F. Hennecart, La fonction de Brakemeier dans le problème d'Erdős-Ginzburg-Ziv, Acta Arith. 117 (2005), 35-50.
[32] S. Kubertin, Nullsummen in \mathbb{Z}_{p}^{d}, master's thesis, Technical Univ. Clausthal, 2002.
[33] G. Lettl and W. A. Schmid, Minimal zero-sum sequences in $C_{n} \oplus C_{n}$, Eur. J. Comb. 28 (2007), 742-753.
[34] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[35] C. Reiher, On Kemnitz' conjecture concerning lattice points in the plane, Ramanujan J. 13 (2007), 333-337.
[36] K. Rogers, A combinatorial problem in abelian groups, Proc. Cambridge Philos. Soc. 59 (1963), 559-562.
[37] B. Sury and R. Thangadurai, Gao's conjecture on zero-sum sequences, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 399-414.
[38] C. Wang, Note on a variant of the Erdös-Ginzburg-Ziv problem, Acta Arith. 108 (2003), 53-59.

Center for Combinatorics Institut für Mathematik und Wissenschaftliches Rechnen
Nankai University
Tianjin 300071, P.R. China
E-mail: wdgao_1963@yahoo.com.cn
Heinrichstraße 36
8010 Graz, Austria
E-mail: alfred.geroldinger@uni-graz.at wolfgang.schmid@uni-graz.at

Received on 9.11.2006
and in revised form on 19.2.2007

