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Solving Ramanujan’s differential equations

for Eisenstein series via a first order Riccati equation

by

James M. Hill (Wollongong), Bruce C. Berndt (Urbana, IL)
and Tim Huber (Urbana, IL)

1. Introduction. Ramanujan [16], [18, pp. 136–162] introduced the
three Eisenstein series P (q), Q(q), and R(q) defined for |q| < 1 by

P (q) = 1 − 24
∞

∑

k=1

kqk

1 − qk
,(1.1)

Q(q) = 1 + 240

∞
∑

k=1

k3qk

1 − qk
,(1.2)

R(q) = 1 − 504

∞
∑

k=1

k5qk

1 − qk
.(1.3)

Amongst many results, he established that P (q), Q(q), and R(q) satisfy the
differential equations

(1.4) q
dP

dq
=

1

12
(P 2−Q), q

dQ

dq
=

1

3
(PQ−R), q

dR

dq
=

1

2
(PR−Q2).

The three series P (q), Q(q), and R(q) in (1.1)–(1.3) and their differential
equations (1.4) arise in an enormous variety of contexts in number the-
ory, and, in particular, in Ramanujan’s own work. We cite just a small
sample of books and papers where (1.1)–(1.3) and (1.4) arise: [1, Chap-
ters 11–16], [3, Chapter 15], [4, pp. 484–486], [5, Chapters 4–6], [6]–[13],
[16], [17]. Furthermore, Q and R are the building blocks in the theory of
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modular forms; e.g., see R. A. Rankin’s text [20] for a development of the
theory of Eisenstein series from the viewpoint of modular forms.

In this paper we show that this system of ordinary differential equations
remains invariant under the simple one-parameter stretching group of trans-
formations (3.2). This means that we may choose new variables (3.3) so that
(1.4) can be reduced to a first order Riccati differential equation (3.8), which
may be solved explicitly in terms of hypergeometric functions, defined for
|z| < 1 by

2F1(a, b; c; z) =
∞

∑

k=0

(a)k(b)k

(c)kk!
zk,

where

(α)0 = 1, (α)k = α(α + 1)(α + 2) · · · (α + k − 1), k ≥ 1.

Furthermore, an additional transformation may be effected to give a solution
in terms of particular associated Legendre functions, but this particular line
of investigation is not explored further since these functions are themselves
hypergeometric functions. So far as the authors are aware, neither the group
invariance of the differential equations nor the reduction to a Riccati equa-
tion and its subsequent solution in terms of hypergeometric functions have
been previously explicitly stated in the literature. Accordingly, the results
of the present paper may provide a possible elementary mechanism for the
derivation of results relating to Eisenstein series.

In the following section we cite some of the standard formulas due to
Ramanujan relating P , Q, and R, and also formulas relating these series
to theta functions, complete elliptic integrals, and their representations in
terms of hypergeometric functions. In the section thereafter we show that the
differential equations (1.4) remain invariant under the simple one-parameter
group of stretching transformations, and therefore we may reduce the system
to a single first order Riccati ordinary differential equation. In Section 5, we
give the final parametric expressions for the three Eisenstein series. These
representations are different from the standard representations (2.4)–(2.6)
and are also different from the representations in Ramanujan’s cubic theory
[4, pp. 105–106]. In some sense, our new representations are variants of each
of these sets of representations.

2. Some basic results for P (q), Q(q), and R(q). In this section
we present some basic formulas for the three Eisenstein series (1.1)–(1.3).
These arise from the fundamental theorem connecting theta functions and
Eisenstein series with elliptic integrals of the first kind and hypergeometric
series. These formulas are due to Ramanujan [16], [19] and can also be
found in [3, pp. 101–102, 120, 126–127].
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The complete elliptic integral of the first kind associated with the mod-

ulus k, 0 < k < 1, is defined by [22, p. 499]

(2.1) K := K(k) :=

π/2\
0

dθ
√

1 − k2 sin2 θ
=

π

2
z,

where

z := 2F1

(

1

2
,
1

2
; 1; k2

)

,

and where the last equality in (2.1) can be obtained by expanding the inte-
grand in a binomial series and integrating termwise. Let q := e−y, where

(2.2) y = π
2F1(1/2, 1/2; 1; 1 − x)

2F1(1/2, 1/2; 1; x)
.

Then the most important formula in Ramanujan’s theory of theta functions
is given by [19, Chapter 17, Entry 6], [3, pp. 101–102]

ϕ(q) :=

∞
∑

n=−∞

qn2

=
√

z.(2.3)

This formula then leads to the following representations for P , Q, and R
[3, pp. 120, 126–127]:

P (q) = z2(1 − 5x) + 12x(1 − x)z
dz

dx
,(2.4)

Q(q) = z4(1 + 14x + x2),(2.5)

R(q) = z6(1 + x)(1 − 34x + x2).(2.6)

These are the focus of this paper; we derive analogues of (2.4)–(2.6).

3. First order Riccati differential equation. On making the sub-
stitution q = e−y, we find that the three first order differential equations
(1.4) become

(3.1)
dP

dy
= − 1

12
(P 2−Q),

dQ

dy
= −1

3
(PQ−R),

dR

dy
= −1

2
(PR−Q2).

Theorem 3.1. The differential equations (3.1) are invariant under the

simple one-parameter group of stretching transformations

y1 = eεy, P1 = e−εP, Q1 = e−2εQ, R1 = e−3εR.(3.2)

Proof. The invariance of each equation follows in a straightforward way
from the chain rule. For example, by (3.1),

dP1

dy1

= e−2ε dP

dy
= −e−2εq

dP

dq
= − 1

12
(P 2

1 − Q1).
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We are thus motivated to consider the parameters

u =
R

Q3/2
, v =

Q1/2

P
, w = yQ1/2,(3.3)

where here and throughout the paper z1/n denotes the principal nth root
of z. In terms of these new variables, the three differential equations (3.1)
become

y
du

dy
= −w

2
(u2 − 1),(3.4)

y
dv

dy
= − w

12
(v2 − 2uv + 1),(3.5)

y
dw

dy
= w

{

1 +
w

6

(

u − 1

v

)}

,(3.6)

subject to the conditions

u, v,
w

y
→ 1 as y → ∞,(3.7)

corresponding to the requirements of (1.1)–(1.3) that P (0) = Q(0) = R(0)
= 1. Dividing, respectively, (3.5) by (3.4) and (3.4) by (3.6), we deduce that

(u2 − 1)
dv

du
=

1

6
(v2 − 2uv + 1),(3.8)

− 2

u2 − 1
=

dw

du
+

w

3

uv − 1

v(u2 − 1)
.(3.9)

The form of equation (3.8) is familiar in the theory of ordinary differential
equations and is known as a Riccati differential equation. With this in mind,
we make the transformation (see Polyanin and Zaitsev [15, p. 2])

v(u) = −6(u2 − 1)

X

dX

du
.(3.10)

Differentiating (3.10) gives

dv

du
= −12u

X

dX

du
+

6(u2 − 1)

X2

(

dX

du

)2

− 6(u2 − 1)

X

d2X

du2
.(3.11)

Inserting (3.11) and (3.10) into (3.8), and simplifying, we see that

(u2 − 1)2
d2X

du2
+

7u

3
(u2 − 1)

dX

du
+

X

36
= 0.(3.12)

As we shall show, solutions to (3.12) play an important role in equations
expressing v, w, and y in terms of the parameter u. We study solutions to
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(3.12) and their relation to hypergeometric functions in the next section. For
the present discussion, it suffices to note that if X(u) is a solution to (3.12),
then there exists a linearly independent solution X∗(u) [21, pp. 81–82] such
that

X∗(u) = X(u)
\ 1

X(u)2
exp

(

−
\ 7u

3(u2 − 1)
du

)

du(3.13)

= X(u)
\ du

(u2 − 1)7/6X(u)2
,

and where the Wronskian is given by

X
dX∗

du
− X∗

dX

du
=

1

(u2 − 1)7/6
.(3.14)

The goal of the remainder of this section is to prove the following theorem.

Theorem 3.2. Suppose that v(u) and w(u) are solutions to (3.4)–(3.7)
and that X(u) satisfies (3.10). Then for some constant A,

w(u) = 36Ay(u2 − 1)13/6

(

dX

du

)2

.(3.15)

Furthermore, if X and X∗ are linearly independent solutions to (3.12), then

2
dX∗

dX
= C0 − Ay(3.16)

for some constant C0.

To make the proof of Theorem 3.2 palatable, we first establish two lem-
mas which include the basic ingredients for what follows.

Lemma 3.3. The general solution to (3.9) is given by

w(u)

(vX)2(u2 − 1)1/6
= −2

\ du

(vX)2(u2 − 1)7/6
+ C0,(3.17)

where C0 denotes the constant of integration.

Proof. Since (3.9) is a linear first order differential equation, we can solve
it by multiplying both sides by an integrating factor I(u). Thus,

d

du
(wI) = −I

2

u2 − 1
,(3.18)

and

wI = −
\ 2I

u2 − 1
du,(3.19)
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where the integrating factor I can by written via (3.8) and (3.10) as

I = exp

(

1

3

\ uv − 1

v(u2 − 1)
du

)

(3.20)

= exp

(

−1

3

\(v2 − 2uv + 1) + uv − v2

v(u2 − 1)
du

)

= exp

(

−1

3

\{
6

dv

v
+

u du

u2 − 1
+ 6

dX

X

})

= (vX)−2(u2 − 1)−1/6.

Inserting (3.20) into (3.19), we obtain (3.17).

Our next objective is to eliminate the integral appearing in the solution
(3.17) of w(u).

Lemma 3.4. If X and X∗ are linearly independent solutions of (3.12),
then for some constant C0,

w(u) = 36(u2 − 1)13/6
dX

du

(

C0

dX

du
− 2

dX∗

du

)

.(3.21)

Proof. We begin by dividing both sides of (3.12) by (u2 − 1)5/6, so that
we may recast (3.12) in the self-adjoint form

d

du

{

(u2 − 1)7/6
dX

du

}

+
X

36(u2 − 1)5/6
= 0.(3.22)

For brevity, we introduce the parameters

ξ = (u2 − 1)7/6
dX

du
, ξ∗ = (u2 − 1)7/6

dX∗

du
.(3.23)

Employing this notation, we find from (3.22) that

dξ

du
= − X

36(u2 − 1)5/6
,

dξ∗

du
= − X∗

36(u2 − 1)5/6
.(3.24)

Using (3.17), (3.10), and the notation of (3.23) and (3.24), we find that

(3.25) w(u) = (vX)2(u2 − 1)1/6

{

−2
\ du

(vX)2(u2 − 1)7/6
+ C0

}

= (vX)2(u2 − 1)1/6

{

−2
\ du

36(u2 − 1)2(dX/du)2(u2 − 1)7/6
+ C0

}

= (vX)2(u2 − 1)1/6

{

−2
\ X du

36(u2 − 1)5/6[(u2 − 1)7/6dX/du]2X
+ C0

}

= (vX)2(u2 − 1)1/6

{

2
\dξ

Xξ2
+ C0

}

.
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Integrating by parts in (3.25) and using (3.10) and (3.23), we find that

w(u) = (vX)2(u2 − 1)1/6

{

2
\1

X

dξ

ξ2
+ C0

}

(3.26)

= (vX)2(u2 − 1)1/6

{

− 2

Xξ
− 2
\dX

ξX2
+ C0

}

= − 72

{

u2−1

X

dX

du
+ (u2−1)13/6

(

dX

du

)2\ du

(u2−1)7/6X2

}

+ 36C0(u
2 − 1)13/6

(

dX

du

)2

= 36(u2 − 1)13/6
dX

du

(

C0

dX

du
− 2

dX∗

du

)

,

where the relations (3.13) and (3.14) were applied to derive the expression
on the last line.

We are finally poised to prove the main result of this section.

Proof of Theorem 3.2. We may write (3.4) as

1

y

dy

du
=

−2

(u2 − 1)w(u)
.

Using (3.21) and the notation defined in the proof of Lemma 3.4, namely
(3.23) and (3.24), we may recast this identity as

1

y

dy

dξ
=

2

Xξ(C0ξ − 2ξ∗)
.(3.27)

From (3.23) and (3.14),

Xξ∗ − X∗ξ = 1,(3.28)

so that (3.24) implies that

ξ
dξ∗

du
− ξ∗

dξ

du
=

1

36(u2 − 1)5/6
.(3.29)

Equation (3.29) and the obvious relation

dξ∗

du
=

d

du
(ξ · ξ∗/ξ) =

ξ∗

ξ

dξ

du
+ ξ

d

du
(ξ∗/ξ)(3.30)

together imply that

d

du
(ξ∗/ξ) =

1

36(u2 − 1)5/6ξ2(u)
.(3.31)

Integrating both sides of (3.31) with respect to u and employing (3.24), we
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see that

ξ∗(u) = ξ(u)
\ du

36(u2 − 1)5/6ξ2(u)
+ C1 = −ξ(u)

\ dξ

Xξ2(u)
+ C1,(3.32)

where C1 is the constant of integration. The first representation for ξ∗(u)
in (3.32) allows us to write identity (3.29) as

(3.33) ξ(u)

(

dξ(u)

du
·
\ du

36(u2 − 1)5/6ξ2(u)
+

ξ(u)

36(u2 − 1)5/6ξ2(u)

)

− dξ(u)

du

(

ξ(u)
\ du

36(u2 − 1)5/6ξ2(u)
+ C1

)

=
1

36(u2 − 1)5/6
.

Simplifying (3.33) and applying (3.24), we see that

0 = C1

dξ

du
=

C1X(u)

36(u2 − 1)5/6
,(3.34)

so that C1 = 0, provided X(u) is a nontrivial solution to (3.12). Substituting
the expression for ξ∗ on the extreme right side of (3.32) into (3.27), we find
that

2

Xξ2
(

C0 + 2
T dξ

Xξ2

)
=

1

y

dy

dξ
.(3.35)

Integrating both sides of this equation with respect to ξ and exponentiating
the result, we deduce that

C0 + 2
\dξ

Xξ2
= Ay,(3.36)

where A is the constant of integration. Rewrite (3.25) in the form

w(u)

(vX)2(u2 − 1)1/6
= C0 + 2

\dξ

Xξ2
.(3.37)

We complete the proof of (3.15) by substituting (3.37) into (3.36) and using
the expansion for v(u) given in (3.10).

To prove (3.16) we refer to the evaluation of the integral
T dξ

Xξ2 appearing

within the parentheses of equation (3.26). Using (3.23) and inserting this
calculation on the left side of (3.36), we find that

Ay = C0 + 2
\dξ

Xξ2
(3.38)

= C0 −
2

X(dX/du)

{

1

(u2 − 1)7/6
+

dX

du
· X
\ du

X2(u2 − 1)7/6

}

.

The identity (3.38) simplifies via (3.13) and (3.14) to

C0 − 2
dX∗/du

dX/du
= Ay,(3.39)



Differential equations for Eisenstein series 289

or alternatively

2
dX∗

dX
= C0 − Ay.(3.40)

In summary, (3.10), (3.15), and (3.16) constitute the three basic equa-
tions for v, w, and y in terms of the parameter u and the two linearly
independent solutions of (3.12), namely X(u) and X∗(u).

Thus, the problem hinges on solving the linear second order homogeneous
differential equation (3.12), and in the following section we present these
solutions X(u) in terms of the hypergeometric function. The function X(u)
can also be represented in terms of certain associated Legendre functions,
but since they are also hypergeometric functions, we do not further pursue
this particular line of investigation.

4. Hypergeometric solution of the Riccati equation. We devote
this section to proving the following result.

Theorem 4.1. Suppose that v(u) and w(u) are solutions to (3.4)–(3.7)
and that X(u) satisfies (3.12). If λ(u) = 1 − {u − (u2 − 1)1/2}2, then for

|λ| < 1,

v(λ) = −6
(1 − λ)1/2λ

X

dX

dλ
,(4.1)

w(λ) = 36Ay(1 − λ)5/6
λ7/3

21/3

(

dX

dλ

)2

,(4.2)

X(λ) =
C

λ1/6
2F1

(

−1

6
,
1

2
; 1; λ

)

,(4.3)

for some constants A and C such that AC2 = 21/3.

Proof. On making the substitution ω = u/(u2−1)1/2, we can write (3.12)
in the form

(ω2 − 1)
d2X

dω2
+

2

3
ω

dX

dω
+

X

36
= 0.(4.4)

The linear change of variable γ = (ω + 1)/2 translates (4.4) into the hyper-
geometric equation

γ(1 − γ)
d2X

dγ2
+

(

1

3
− 2

3
γ

)

dX

dγ
− X

36
= 0.(4.5)

These transform (3.10) and (3.15), respectively, into

v(γ) = 6
{γ(γ − 1)}1/2

X

dX

dγ
,(4.6)

w(γ) = 36Ay
{γ(γ − 1)}5/6

21/3

(

dX

dγ

)2

.(4.7)
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We next make the substitutions γ = 1/λ and X(γ) = λ−1/6Y (λ) in (4.5).
Let us denote by Y ′(λ) differentiation with respect to λ, so that

dX

dγ
=

dλ

dγ

dX

dλ
= −λ2

d

dλ
(λ−1/6Y ) =

1

6
λ5/6(Y (λ) − 6λY ′(λ)),

and also

d2X

dγ2
=

dλ

dγ

d

dλ

(

dλ

dγ

dX

dλ

)

= −λ2
d

dλ

(

1

6
λ5/6(Y − 6λY ′)

)

=
1

36
λ11/6(−5Y + 12λ(5Y ′ + 3Y ′′)).

Inserting these calculations into (4.5) and multiplying both sides by −λ−5/6,
we obtain the equation

λ(1 − λ)
d2Y

dλ2
+

{

1 −
(

−1

6
+

1

2
+ 1

)

λ

}

dY

dλ
+

1

12
Y = 0.(4.8)

With these changes of variables, relations (4.6) and (4.7) transform into (4.1)
and (4.2), respectively. Since the general solution of (4.8) that is analytic at
the origin is given by [2, p. 1]

Y (λ) = C · 2F1

(

−1

6
,
1

2
; 1; λ

)

, |λ| < 1,(4.9)

we see that (4.3) holds for 0 < |λ| < 1 and for some constant C. By (3.7)
and (4.2),

1 = lim
λ→0

w(λ)

y
= lim

λ→0

36A(1 − λ)5/6
λ7/3

21/3

(

dX

dλ

)2

=
AC2

21/3
.(4.10)

In fact, we see that each of the initial conditions in (3.7) is satisfied as long
as A and C satisfy (4.10). (If we had chosen a linear combination of (4.9)
and a second linearly independent solution of (4.8), then (4.10) would not
be satisfied.)

If instead of proceeding from (4.4) to (4.5), we make the transformation

X(s) = (1 − s2)1/3Z(s),(4.11)

then from (4.4) we may show that Z(s) satisfies

(1 − s2)
d2Z

ds2
− 2s

dZ

ds
−

{

1

4
+

4

9

1

1 − s2

}

Z = 0.(4.12)

Two linearly dependent solutions for this associated Legendre equation are
Pµ

ν and Qµ
ν with ν = −1/2 and µ = 2/3. Since these functions can also

be expressed in terms of hypergeometric functions (see, for example,
[14, p. 999]), we do not further pursue this line of investigation.
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5. Final parametric expressions for P , Q and R. Recalling the re-
lations between the parameters (2.2) and the substitutions from the previous
section

ω =
u

(u2 − 1)1/2
, γ =

ω + 1

2
, γ =

1

λ
,(5.1)

we may show that u = (1− λ/2)/(1− λ)1/2. Employing (4.1) and (4.2) and
noting that, by (3.3),

P (e−y) =
w

vy
, Q(e−y) =

w2

y2
, R(e−y) =

w3u

y3
,

we deduce from Theorem 4.1 the following parametric representations for
Eisenstein series.

Theorem 5.1. For |λ| < 1,

P (q) = P (e−y) = −6(1 − λ)1/3λ4/3X
dX

dλ
,(5.2)

Q(q) = Q(e−y) = 64(1 − λ)5/3λ14/3

(

dX

dλ

)4

,(5.3)

R(q) = R(e−y) = 66

(

1 − λ

2

)

(1 − λ)2λ7

(

dX

dλ

)6

,(5.4)

where X(λ) is defined by the equation

X(λ) = λ−1/6
2F1

(

−1

6
,
1

2
; 1; λ

)

,(5.5)

and where y is defined by (2.2).

Here we have taken C = 1 and A = 21/3 in accordance with (4.10).

A few remarks should be made on the region of validity of Theorem 5.1.
First note that each variable appearing in the theorem is a function of x,
the square of the elliptic modulus, appearing in (2.2) and (2.1). Using (2.5),
(2.6), and (3.3), we find that

λ(u) = 1 − [u − (u2 − 1)1/2]2, u(x) =
(1 + x)(1 − 34x + x2)

(1 + 14x + x2)3/2
,(5.6)

and so, for 0 < x < 1,

(5.7) (λ ◦ u)(x)

= 1 −
(

−6
√

3

√

− x(x − 1)4

x2 + 14x + 1
+

(1 + x)(x2 − 34x + 1)

(x2 + 14x + 1)3/2

)2

=
216(x − 1)4x

(x2 + 14x + 1)3
+

12
√

3x (x − 1)2(1 + x)(x2 − 34x + 1)

(x2 + 14x + 1)3
i.
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It follows that

(5.8) |(λ ◦ u)(x) − 1|

=

(

(x6 − 174x5 + 1455x4 + 1532x3 + 1455x2 − 174x − 1)2

(x2 + 14x + 1)6

+
432x(x − 1)4(x + 1)2(1 − 34x + x2)2

(x2 + 14x + 1)6

)1/2

= 1.

After a tedious but elementary calculation, we find that

d

dx
Re(λ ◦ u(x)) =

216(1 − x)3(1 + x)(1 − 34x + x2)

(1 + 14x + x2)4
(5.9)

and

(5.10)
d

dx
Im(λ ◦ u(x))

=
6
√

3(1−x)(1−10x + x2)(1−164x−186x2−164x3 + x4)

x1/2(1 + 14x + x2)4
.

The polynomial 1 − 164x − 186x2 − 164x3 + x4 has the zero set
{

41 + 24
√

3 ± 4

√

3(71 + 41
√

3), 41 + 24
√

3 ± 4i

√

3(71 + 41
√

3)
}

.

Likewise, the zeros of 1 − 10x + x2 and 1 − 34x + x2 are, respectively,

{5 ± 2
√

6} and {(17 + 12
√

2)±1}.
Noting the sign of each polynomial appearing in (5.9) on the intervals cor-
responding to zeros lying in (0, 1), we see that Re(λ ◦ u) increases for

0 < x < (17 + 12
√

2)−1

and decreases for
(17 + 12

√
2)−1 < x < 1.

A similar analysis shows that Im(λ ◦ u) is increasing for

0 < x < 41 + 24
√

3 − 4

√

3(71 + 41
√

3) and 5 − 2
√

6 < x < 1,

and decreasing for

41 + 24
√

3 − 4

√

3(71 + 41
√

3) < x < 5 − 2
√

6.

In addition, we list the values taken on by the real and imaginary parts of
λ ◦ u at these extrema.

x 0, 1 41 + 24
√

3 − 4
√

3(71 + 41
√

3) 1

17+12
√

2
5 − 2

√
6

Re(λ ◦ u) 0 1 2 1

Im(λ ◦ u) 0 1 0 −1
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Thus we see that as x ranges from 0 to 1, (λ◦u)(x) gives a parametrization of
the circle {1+ eiθ | 0 < θ < 2π}. These observations imply that the solution
X(λ) to (4.5) and the subsequent parametrizations for the Eisenstein series
in Theorem 5.1 are valid for values of x such that 0 < x < ζ or α < x < 1,
where α, ζ ∈ (0, 1) are the unique constants satisfying, respectively,

(λ ◦ u)(ζ) = eπi/3 and (λ ◦ u)(α) = e−πi/3.(5.11)

6. Conclusions. We have examined Ramanujan’s differential relations
(1.4) for the three Eisenstein series P (q), Q(q), and R(q). The differential
relations (1.4) remain invariant under the stretching group of transforma-
tions (3.2), giving rise to the invariants u = R/Q3/2, v = Q1/2/P , and
w = yQ1/2, where y = − log q. By solving a first order Riccati equation,
we have shown that the three Eisenstein series are given parametrically by
(5.2)–(5.5) in terms of the parameter λ defined by λ = 1−{u−(u2−1)1/2}2.
Using these formulas and (5.6), we have computed power series representa-
tions for the series P , Q, and R in the variable x, the square of the el-
liptic modulus. We have verified that, within the specified domains, the
parametrizations presented in this paper agree with the classical represen-
tations for these series in terms of the elliptic parameters [3, pp. 126–129].
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