On the Stark–Shintani units and the ideal class groups in the cyclotomic \mathbb{Z}_p -extensions of class fields over real quadratic fields

by

TSUYOSHI ITOH (Tokyo)

1. Introduction. First, we briefly explain the Stark-Shintani conjecture. Let F be a real quadratic field and $H(\mathfrak{f})$ (resp. $K(\mathfrak{f})$) the narrow ray class group (resp. the narrow ray class field) of F modulo \mathfrak{f} , where \mathfrak{f} is an integral ideal of F. Let M be an abelian extension of F such that exactly one infinite prime of F (corresponding to the prescribed embedding into the real number field \mathbb{R}) splits in M. Let \mathfrak{f} be the conductor of M over F and ν a totally positive integer of F with the property that $\nu + 1 \in \mathfrak{f}$ and denote by the same letter ν the narrow ray class modulo \mathfrak{f} represented by (ν) . We know that M is a quadratic extension of the maximal totally real subfield M^+ of M and that the Galois group $\operatorname{Gal}(M/M^+)$ is generated by $\sigma(\nu)$, where $\sigma : H(\mathfrak{f}) \to \operatorname{Gal}(K(\mathfrak{f})/F)$ denotes the Artin map.

We define the Stark–Shintani ray class invariants by

$$X_{\mathfrak{f}}(c) = \exp(\zeta'_F(0,c) - \zeta'_F(0,c\nu))$$

for $c \in H(\mathfrak{f})$, where

$$\zeta_F(s,c) = \sum_{\mathfrak{a} \in c} \frac{1}{N(\mathfrak{a})^s},$$

and $\zeta'_F(s,c)$ denotes its derivative. For the subgroup G of $H(\mathfrak{f})$ corresponding to the extension M/F we put

$$X_{\mathfrak{f}}(c,G) = \prod_{g \in G} X_{\mathfrak{f}}(cg)$$

for $c \in H(\mathfrak{f})$.

In this situation, the Stark–Shintani conjecture is formulated as follows:

2000 Mathematics Subject Classification: 11R23, 11R27.

Key words and phrases: Stark-Shintani units, \mathbb{Z}_p -extension.

CONJECTURE. There exists a positive integer m such that:

(i) $X_{\mathfrak{f}}(c,G)^m$ is a unit of M for each $c \in H(\mathfrak{f})$,

(ii) $\{X_{\mathfrak{f}}(c,G)^m\}^{\sigma(c')} = X_{\mathfrak{f}}(cc',G)^m \text{ for any } c,c' \in H(\mathfrak{f}).$

Shintani proved that the conjecture is true when M^+ is an abelian extension over \mathbb{Q} (cf. [7, Theorem 2]).

Let p be an odd prime, M_{∞} the cyclotomic \mathbb{Z}_p -extension of M, and M_n the *n*-th layer of M_{∞}/M , that is, M_n is the unique cyclic extension field over M of degree p^n which is contained in M_{∞} . Arakawa pointed out that if M^+ is an abelian extension over \mathbb{Q} , the conjecture is true for all M_n , and he also gave the class number formula in terms of these units (cf. [1]).

In this paper, we assume that M and p satisfy the following two conditions (P) and (D):

(P) The Stark–Shintani conjecture holds for all M_n . Namely, for each n there exists an integer t(n) such that $X_{\mathfrak{f}_n}(c,G_n)^{t(n)}$ is a unit in M_n which satisfies $\{X_{\mathfrak{f}_n}(c,G_n)^{t(n)}\}^{\sigma(c')} = X_{\mathfrak{f}_n}(cc',G_n)^{t(n)}$ for all $c,c' \in H(\mathfrak{f}_n)$, where \mathfrak{f}_n is the conductor of M_n and G_n is the subgroup of $H(\mathfrak{f}_n)$ which corresponds to M_n . Moreover, t(n) is prime to p for each n.

(D) The prime p does not divide [M : F] and for any subfield M' of M over F with $M' \not\subset M^+$, any prime divisor \mathfrak{p} of \mathfrak{f} is a divisor of the conductor of M'/F or a divisor of p. Moreover, if \mathfrak{p} is a prime divisor of p which does not divide the conductor of M', then the decomposition field of \mathfrak{p} in M'/F is $(M')^+$.

REMARK. If M is a quadratic extension of F and no prime above p splits in M/F, then conditions (P) and (D) are satisfied (cf. [4, Theorem 1]).

Under conditions (P) and (D), we let E_n be the full unit group of M_n and C_n the subgroup of E_n generated by $X_{\mathfrak{f}_n}(c, G_n)$ with $c \in H(\mathfrak{f}_n)/G_n$. We also put

$$E_n^- = \{ u \in E_n \mid N_{M_n/M_n^+}(u) = 1 \}.$$

Because $X_{\mathfrak{f}_n}(c,G_n)^{\sigma(\nu_n)} = X_{\mathfrak{f}_n}(c,G_n)^{-1}$ where ν_n is an element of $H(\mathfrak{f}_n)/G_n$ which corresponds to the generator of $\operatorname{Gal}(M_n/M_n^+)$ by class field theory, we see that $C_n \subset E_n^-$. Then by Arakawa's class number formula which we recall later, we can see that C_n has a finite index in E_n^- .

Our main theorem in this paper is the following:

MAIN THEOREM. Let F be a real quadratic field and M an abelian extension over F in which exactly one infinite prime of F corresponding to the prescribed embedding of F into \mathbb{R} splits. Suppose that M and p satisfy conditions (P) and (D). Let A_n be a Sylow p-subgroup of the ideal class group of M_n and $A_n^- = \{c \in A_n \mid c^{\sigma(\nu_n)} = c^{-1}\}$, where M_n^+ is the maximal totally real subfield of M_n , and let B_n be a Sylow p-subgroup of E_n^-/C_n . Moreover, we assume that $|A_n^-|$ is bounded with respect to n and that all primes of F above p do not split in M/M^+ . Then for any sufficiently large n, there exists an isomorphism

$$A_n^- \cong B_n$$

as Galois modules.

REMARK. This theorem is an analogue to Ozaki's result for the cyclotomic \mathbb{Z}_p -extension and the cyclotomic units of real abelian fields (cf. [6]).

Acknowledgements. The author would like to thank Professor K. Komatsu for checking results and giving useful advice.

2. Properties of Stark–Shintani units. Nakagawa dealt in [4], [5] with the Stark–Shintani units in the cyclotomic \mathbb{Z}_p -extension of certain abelian extensions of real quadratic fields. He rewrote Arakawa's class number formula in terms of $X_{\mathfrak{f}}(c, G)$ and showed that each Tate cohomology group $\widehat{H}^i(\Gamma_{m,n}, C_m) = 0$ always vanishes for i = 0, 1.

Assume that M and p satisfy conditions (P) and (D). Let \mathfrak{f}_n, c_n, G_n and ν_n be as in the previous section.

For any character χ of $H(\mathfrak{f}_n)/G_n$ with $\chi(\nu_n) = -1$, we know that

$$L'_F(0,\chi) = \sum_{c \in H(\mathfrak{f}_n)/\langle G_n, \nu_n \rangle} \chi(c) \log X_{\mathfrak{f}_n}(c,G_n),$$

where $L_F(s, \chi)$ is the Hecke *L*-function of *F* associated to χ . Let \mathfrak{f}_{χ} be the conductor of χ and $\tilde{\chi}$ the primitive character associated to χ . Then we have the equality

$$L'_F(0,\chi) = L'_F(0,\widetilde{\chi}) \prod_{\mathfrak{p}|\mathfrak{f}_n,\,\mathfrak{p}\nmid\mathfrak{f}_\chi} (1-\widetilde{\chi}(\mathfrak{p})).$$

Under assumption (D), we know that $\widetilde{\chi}(\mathfrak{p}) = -1$ for every \mathfrak{p} such that $\mathfrak{p} | \mathfrak{f}_n$ and $\mathfrak{p} \nmid \mathfrak{f}_{\chi}$.

Using the same method as in [1] or [5], we have another version of Arakawa's class number formula.

THEOREM 1 (cf. [5, Theorem 1]). Assume that M and p satisfy conditions (P) and (D). Let $h(M_n)$ (resp. $h(M_n^+)$) be the class number of M_n (resp. M_n^+). Then

$$h(M_n)/h(M_n^+) = (power \ of \ 2) \cdot t(n)^{-[M_n^+:F]} \cdot [E_n^-:C_n].$$

Moreover, Nakagawa showed the following:

THEOREM 2 (cf. [5, Proposition 2]). For any integers $m \ge n > 0$,

- (i) $\widehat{H}^i(\Gamma_{m,n}, C_m) = 0$ for all i,
- (ii) the natural map $E_n^-/C_n \to E_m^-/C_m$ is injective.

3. Proof of the main theorem. We fix an odd prime p. Let I_n (resp. P_n) be the ideal group (resp. the principal ideal group) of M_n and A_n a Sylow p-subgroup of the ideal class group of M_n . We identify all $\sigma(\nu_n)$ and write this as τ . For any $\operatorname{Gal}(M_n/M_n^+)$ -module N, let the relative part of N be $N^- = \{c \in N \mid c^{\tau} = c^{-1}\}$. Let $I_n^{(p)}$ be the subgroup of I_n such that $I_n^{(p)}/P_n \cong A_n$. Since p is odd, we find that

$$0 \to P_n^- \to (I_n^{(p)})^- \to A_n^- \to 0$$

is an exact sequence.

Moreover, we put

$$P'_n = \{ (\alpha) \in P_n \mid \alpha \alpha^\tau = \varepsilon \varepsilon^\tau \text{ with some } \varepsilon \in E_n \},\$$

which is a subgroup of P_n^- .

LEMMA 1. For any non-negative integer n,

(i) P_n^-/P_n' has exponent 2,

(ii) the following sequence is exact:

$$0 \to E_n^- \to (M_n^\times)^- \to P_n' \to 0.$$

Proof. For any $(\alpha) \in P_n^-$, we see that $\alpha \alpha^{\tau} = \varepsilon$ with some $\varepsilon \in E_n^+$, where E_n^+ is the unit group of M_n^+ . Then (i) follows.

(ii) We only show the surjectivity of the mapping $(M_n^{\times})^- \to P'_n$, since the remainder is clear. For any $(\alpha) \in P'_n$, we have $\alpha \alpha^{\tau} = \varepsilon \varepsilon^{\tau}$ with some $\varepsilon \in E_n$. Then the fact that $(\alpha) = (\varepsilon^{-1}\alpha)$ and $\varepsilon^{-1}\alpha \in M_n^-$ gives the surjectivity.

LEMMA 2. For any $m \ge n \ge 0$,

(i)
$$H^1(\Gamma_{m,n}, (M_m^{\times})^-) = 0,$$

(ii) $H^1(\Gamma_{m,n}, E_m^-) \cong (P'_m)^{\Gamma_{m,n}} / P'_n$.

Proof. (i) We denote by $N_{m,n}$ the norm from M_m to M_n and fix a generator γ of $\operatorname{Gal}(M_m/M_n)$. For any element α of $(M_m^{\times})^-$ which satisfies $N_{m,n}(\alpha) = 1$, there exists an element β of M_m^{\times} such that $\alpha = \beta/\beta^{\gamma}$ by Hilbert's Theorem 90. It is sufficient to show that β can be taken from $(M_m^{\times})^-$.

Because $\alpha \in (M_m^{\times})^-$, we see that $x := \beta \beta^{\tau}$ is in $(N_{M_m/M_m^+}(M_m^{\times})) \cap (M_n^+)^{\times}$. Therefore x^2 is in $N_{M_n/M_n^+}(M_n^{\times})$. On the other hand, $x^{p^{m-n}} = N_{m,n}(\beta)N_{m,n}(\beta)^{\tau}$ is also in $N_{M_n/M_n^+}(M_n^{\times})$. Since p is prime to 2, we have $x \in N_{M_n/M_n^+}(M_n^{\times})$. Let $x = yy^{\tau}$ with some $y \in M_n^{\times}$. Then

$$\alpha = \beta/\beta^{\gamma} = \beta y^{-1}/(\beta y^{-1})^{\gamma}$$

with $\beta y^{-1} \in (M_m^{\times})^-$. This completes the proof of (i).

(ii) Taking the cohomology groups of the exact sequence of Lemma 1(ii), we have the exact sequence

$$0 \to E_n^- \to (M_n^{\times})^- \to (P_m')^{\Gamma_{m,n}} \to H^1(\Gamma_{m,n}, E_m^-) \to H^1(\Gamma_{m,n}, (M_m^{\times})^-) = 0.$$

From this (ii) follows.

Taking the *p*-part of the cohomology of the exact sequence

$$0 \to C_m \to E_m^- \to E_m^-/C_m \to 0,$$

by Lemma 2(ii) we obtain

(1)
$$(P'_m)^{\Gamma_{m,n}}/P'_n \cong \widehat{H}^{-1}(\Gamma_{m,n}, E_m^-) \cong \widehat{H}^{-1}(\Gamma_{m,n}, B_m).$$

PROPOSITION 1. Assume that no prime of M^+ above p splits in M. Then

$$(P_m^-)^{\Gamma_{m,n}}/P_n^- \cong \ker(j_{m,n})$$

for all $m > n \ge 0$. Here $j_{m,n} : A_n^- \to A_m^-$ is the lift map of the ideal class groups.

Proof. For any principal ideal (α) in $(P_m^-)^{\Gamma_{m,n}}$, we have (α) = $\mathfrak{A} \in I_n^-$ by assumption because all ramified primes in M_m/M_n are above p. Then

$$(P_m^-)^{\Gamma_{m,n}}/P_n^- \cong (I_n^- \cap P_m^-)/P_n^- \cong \ker(j_{m,n}). \bullet$$

We now finish the proof of our main theorem. Since $|A_n^-|$ is bounded with respect to n, $|B_n|$ is also bounded by Theorem 1. Therefore there exists a positive integer n_0 such that $A_m^- \cong A_n^-$ (by the norm map) and $B_n \cong B_m$ (by natural injection) for all $m > n \ge n_0$. Then for any $n \ge n_0$, taking a sufficiently large m, we have

$$\hat{H}^{-1}(\Gamma_{m,n}, B_m) \cong B_m \cong B_n \text{ and } \ker(j_{m,n}) = A_n^-.$$

Then by (1) and Proposition 1, it is sufficient to show that $(P'_m)^{\Gamma_{m,n}}/P'_n$ is isomorphic to $(P_m^-)^{\Gamma_{m,n}}/P_n^-$. We note that both groups are *p*-groups with the same order. Therefore the isomorphism easily follows by Lemma 1(i). This completes the proof of the main theorem.

REMARK. We can show the main theorem replacing $X_{\mathfrak{f}}(c, G)$ by another invariant $Y_{\mathfrak{f}}(c, G)$ introduced in [7], by using Arakawa's original class number formula. In this case, assumption (D) is not necessary.

4. Examples. Since the field M considered in the preceding sections is not totally real, the assumption that $|A_n^-|$ is bounded with respect to nmay seem strong. In fact, if p splits completely in M, then $|A_n|$ is always unbounded and in the case of the CM-field, if p divides the "minus part" of the ideal class group, then the "minus part" in the cyclotomic \mathbb{Z}_p -extension is unbounded (cf. [3]). Thus there is the problem to find "non-trivial" examples which satisfy the assumptions of the main theorem. The author has found some such examples. Let $F = \mathbb{Q}(\sqrt{6})$, $M = F(\sqrt{6+20\sqrt{6}})$ and p = 3. Then p does not split in M. Since M is a quadratic extension over F, assumptions (P) and (D) are satisfied. By using KASH, we see that the class number of M is 6 and that of M_1 is 24. Then by Theorem 1 of [2], $|A_n| = |A_n^-|$ is bounded. By the same method, we find that the case of $F = \mathbb{Q}(\sqrt{2})$ and $M = F(\sqrt{5+13\sqrt{2}})$ also satisfies the assumptions of the main theorem for p = 3.

References

- T. Arakawa, On the Stark-Shintani conjecture and certain relative class numbers, Adv. Stud. Pure Math. 7 (1985), 1–6.
- T. Fukuda, Remarks on Z_p-extensions on number fields, Proc. Japan Acad. Ser. A 70 (1994), 264–266.
- [3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 93 (1976), 263-284.
- J. Nakagawa, On the Stark-Shintani conjecture and cyclotomic Z_p-extensions of class fields over real quadratic fields, J. Math. Soc. Japan 36 (1984), 577–588.
- [5] —, On the Stark-Shintani conjecture and cyclotomic Z_p-extensions of class fields over real quadratic fields II, Tôhoku Math. J. 36 (1984), 439–452.
- [6] M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field, J. Number Theory 64 (1997), 211–222.
- [7] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan 30 (1978), 139–167.

Department of Mathematics School of Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan E-mail: tsitoh@mn.waseda.ac.jp

> Received on 14.9.2000 and in revised form on 25.6.2001

(3881)