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1. Introduction. Since the 1960’s, relationships between algebraic K-
theory and number theory have been intensely studied. For number fields F
and their rings of integers OF , the K-groups K0(OF ),K1(OF ),K2(OF ), . . .
were a main focus of attention. From [7] we have

K0(OF ) ∼= Z× C(F )

where C(F ) is the ideal class group of F , and

K1(OF ) ∼= O∗F ,
the group of units of OF .

What can we say in general about K2(OF )? Garland and Quillen in
[3] and [10] showed that K2(OF ) is finite. A conjecture of Birch and Tate
connects the order of K2(OF ) and the value of the zeta function of F at −1
when F is a totally real field. For abelian number fields, this conjecture has
been confirmed. For totally real fields, it has been confirmed up to powers
of 2 (see [13]). In [11] a 2-rank formula for K2(OF ) was given by Tate. Some
results on the 4-rank of K2(OF ) were given in [8], [9], and [12]. To gain
further insight into the 4-rank of K2(OF ), we consider the following specific
families of fields.

In this paper we deal with the 4-rank of the Milnor K-group K2(O)
for the quadratic number fields Q(

√
pl), Q(

√
2pl), Q(

√−pl), Q(
√−2pl) for

primes p ≡ 7 mod 8, l ≡ 1 mod 8 with
(
l
p

)
= 1. In [1], the authors show

that for the fields E = Q(
√
pl), Q(

√
2pl) and F = Q(

√−pl), Q(
√−2pl),

4-rank K2(OE) = 1 or 2,

4-rank K2(OF ) = 0 or 1.

Each of the possible values of 4-ranks is then characterized by check-
ing which ones of the quadratic forms X2 + 32Y 2, X2 + 2pY 2, 2X2 + pY 2
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represent a certain power of l over Z. This approach makes numerical com-
putations accessible. We should note that this approach involves quadratic
symbols and determining the matrix rank over F2 of 3 × 3 matrices with
Hilbert symbols as entries (see [4]). Fix a prime p ≡ 7 mod 8 and consider
the set

Ω =
{
l rational prime : l ≡ 1 mod 8 and

(
l

p

)
=
(
p

l

)
= 1
}
.

Let

υ = 4-rank K2(OQ(
√
pl)),

µ = 4-rank K2(OQ(
√

2pl)),

σ = 4-rank K2(OQ(
√−pl)),

τ = 4-rank K2(OQ(
√−2pl)),

and also consider the sets

Ω1 = {l ∈ Ω : υ = 1},
Ω2 = {l ∈ Ω : υ = 2},
Ω3 = {l ∈ Ω : µ = 1},
Ω4 = {l ∈ Ω : µ = 2},
Λ1 = {l ∈ Ω : σ = 0},
Λ2 = {l ∈ Ω : σ = 1},
Λ3 = {l ∈ Ω : τ = 0},
Λ4 = {l ∈ Ω : τ = 1}.

We have computed the following (see Table 1 in Appendix): For p = 7,
there are 9730 primes l in Ω with l ≤ 106. Among them, there are 4866
primes (50.01%) in Ω1 and Ω3 and 4864 primes (49.99%) in Ω2 and Ω4.
Also, there are 4878 primes (50.13%) in Λ1 and Λ3 and 4852 primes in Λ2

and Λ4. The goal of this paper is to prove the following theorem.

Theorem 1.1. For the fields Q(
√
pl) and Q(

√
2pl), 4-rank 1 and 2 each

appear with natural density 1/2 in Ω. For the fields Q(
√−pl) and Q(

√−2pl),
4-rank 0 and 1 each appear with natural density 1/2 in Ω.

Now consider the tuple of 4-ranks (υ, µ, σ, τ). By Corollary 5.6 in [1],
there are eight possible tuples of 4-ranks. For p = 7, among the 9730 primes
l ∈ Ω with l ≤ 106, the eight possible tuples are realized by 1215, 1213, 1228,
1210, 1210, 1228, 1225, 1201 primes l respectively (see Table 2 in Appendix).
And, in fact:

Theorem 1.2. Each of the eight possible tuples of 4-ranks appear with
natural density 1/8 in Ω.
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2. Preliminaries. LetD be a Galois extension ofQ, andG=Gal(D/Q).
Let Z(G) be the center of G and DZ(G) the fixed field of Z(G). Let p be a
rational prime which is unramified in D and β a prime of D containing p. Let(D/Q

p

)
denote the Artin symbol of p and {g} the conjugacy class containing

one element g ∈ G.

Lemma 2.1.
(D/Q

p

)
= {g} for some g ∈ Z(G) if and only if p splits

completely in DZ(G).

Proof.
(D/Q

p

)
= {g} for some g ∈ Z(G) if and only if

(D/Q
β

)
= g if and

only if
(DZ(G)/Q

β

)
=
(D/Q

β

)∣∣
DZ(G) = g|DZ(G) = IdGal(DZ(G)/Q) if and only if p

splits completely in DZ(G).

Thus if we can show that rational primes split completely in the fixed
field of the center of a certain Galois group G, then we know the associated
Artin symbol is a conjugacy class containing one element. Hence we may
identify the Artin symbol with this element and consider the symbol to be
an automorphism which lies in Z(G). Thus determining the order of Z(G)
gives us the number of possible choices for the Artin symbol.

Let G1 and G2 be finite groups and A a finite abelian group. Suppose
r1 : G1 → A and r2 : G2 → A are two epimorphisms and G ⊂ G1 × G2 is
the set {(g1, g2) ∈ G1 × G2 : r1(g1) = r2(g2)}. Since A is abelian, there is
an epimorphism r : G1 ×G2 → A given by r(g1, g2) = r1(g1)r2(g2)−1. Thus
G = ker(r) ⊂ G1 ×G2. One can check that Z(G) = G ∩ Z(G1 ×G2).

Lemma 2.2. (i) If r2|Z(G2) is trivial , then Z(G) = ker(r1|Z(G1))×Z(G2).
(ii) Z(G) = Z(G1)× Z(G2)⇔ r1|Z(G1) and r2|Z(G2) are both trivial.

Proof. (i) Suppose (g1, g2) ∈ Z(G) ⊂ ker(r) where g1 ∈ Z(G1), g2 ∈
Z(G2). Thus 1 = r(g1, g2) = r1(g1)r2(g2)−1 and so r1(g1) = r2(g2). But
r2(g2) = 1, which yields r1(g1) = 1. Thus g1 ∈ ker(r1|Z(G1)). The other
inclusion is clear.

(ii) Take (g1, 1), (1, g2) ∈ Z(G1)×Z(G2) = Z(G) ⊂ ker(r) to obtain that
r1|Z(G1) and r2|Z(G2) are both trivial. The converse follows from part (i).

We will use the following definition throughout this paper.

Definition 2.3. For primes p ≡ 7 mod 8, l ≡ 1 mod 8 with
(
l
p

)
=(

p
l

)
= 1, K = Q(

√−2p), and h(K) the class number of K, we say:

• l satisfies 〈1, 32〉 if l = x2 + 32y2 for some x, y ∈ Z,
• l satisfies 〈2, p〉 if lh(K)/4 = 2n2 + pm2 for some n,m ∈ Z with m 6≡ 0

mod l,
• l satisfies 〈1, 2p〉 if lh(K)/4 = n2 + 2pm2 for some n,m ∈ Z with

m 6≡ 0 mod l.
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3. Three extensions. In this section, we consider three degree eight
field extensions of Q. The idea will be to study composites of these fields
and relate Artin symbols to 4-ranks. Rational primes which split completely
in a degree 64 extension of Q will relate to Artin symbols and thus 4-
ranks. Therefore calculating the density of these primes will answer density
questions involving 4-ranks.

3.1. First extension. ConsiderQ(
√

2) over Q. Let ε = 1+
√

2 ∈ (Z[
√

2])∗.
Then ε is a fundamental unit of Q(

√
2) which has norm −1. The degree 4

extension Q(
√

2,
√
ε) over Q has normal closure Q(

√
2,
√
ε,
√
−1). Set

N1 = Q(
√

2,
√
ε,
√
−1).

Note that N1 is the splitting field of the polynomial x4 − 2x2 − 1 and so
has degree 8 over Q. Therefore Gal(N1/Q) is the dihedral group of order 8.
Note that the automorphism induced by sending

√
ε to −√ε commutes with

every element of Gal(N1/Q). Thus Z(Gal(N1/Q)) = Gal(N1/Q(
√

2,
√
−1)).

Observe that only the prime 2 ramifies in Q(
√

2), Q(
√
−1), Q(

√
ε),

and so only the prime 2 ramifies in the compositum N1 over Q. Now as
l ∈ Ω is unramified in N1 over Q, the Artin symbol

(N1/Q
β

)
is defined for

primes β of ON1 containing l. Let
(N1/Q

l

)
denote the conjugacy class of(N1/Q

β

)
in Gal(N1/Q). The primes l ∈ Ω split completely in Q(

√
2,
√
−1)

and N
Z(Gal(N1/Q))
1 = Q(

√
2,
√
−1). Thus by Lemma 2.1, we have

(N1/Q
l

)
=

{g} ⊂ Z(Gal(N1/Q)). As Z(Gal(N1/Q)) has order 2, there are two possible
choices for

(N1/Q
l

)
. Combining this statement with Addendum 3.7 from [1],

we have

Remark 3.1.(
N1/Q
l

)
= {id} ⇔ l splits completely in N1

⇔ l satisfies 〈1, 32〉.
3.2. Second and third extension. Consider the fixed prime p ≡ 7 mod 8.

Note p splits completely in L = Q(
√

2) over Q and so

pOL = BB′

for some primes B 6= B′ in L. The field L has narrow class number h+(L) =
1 as h(L) = 1 and NL/Q(ε) = −1 where ε = 1 +

√
2 is a fundamental unit

of Q(
√

2) (see [5]). From [1], we have

Lemma 3.2. The prime B which occurs in the decomposition of pOL has
a generator π = a+ b

√
2 ∈ OL, unique up to a sign and to multiplication by

the square of a unit in O∗L for which NL/Q(π) = a2 − 2b2 = −p.
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Since NL/Q(π) = −p, the degree 4 extension Q(
√

2,
√
π) over Q has

normal closure Q(
√

2,
√
π,
√−p). Set

N2 = Q(
√

2,
√
π,
√−p).

Then N2 is Galois over Q and [N2 : Q] = 8. Such an extension N2 exists
since the 2-Sylow subgroup of the ideal class group of Q(

√−2p) is cyclic
of order divisible by 4 (see [2]). Thus the Hilbert class field of Q(

√−2p)
contains a unique unramified cyclic degree 4 extension over Q(

√−2p). By
Lemma 2.3 in [1], N2 is the unique unramified cyclic degree 4 extension over
Q(
√−2p). Also compare [6]. Similar to arguments in Section 3.1, Gal(N2/Q)

is the dihedral group of order 8. Note that the automorphism induced by
sending

√
π to −√π commutes with every element of Gal(N2/Q). Thus

Z(Gal(N2/Q)) = Gal(N2/Q(
√

2,
√−p)).

Proposition 3.3. If l ∈ Ω, then l is unramified in N2 over Q.

Proof. Since p ≡ 7 mod 8, the discriminant of Q(
√−2p) is −8p. For

l ∈ Ω, we have
(−2p

l

)
= 1 and so l is unramified in Q(

√−2p). By Lemma 2.3
in [1], we conclude that l is unramified in N2 over Q.

As l ∈ Ω is unramified in N2 over Q, the Artin symbol
(N2/Q

β

)
is defined

for primes β of ON2 containing l. Let
(N2/Q

l

)
denote the conjugacy class of(N2/Q

β

)
in Gal(N2/Q). The primes l ∈ Ω split completely in Q(

√
2,
√−p)

and N
Z(Gal(N2/Q))
2 = Q(

√
2,
√−p). By Lemma 2.1, we see that

(N2/Q
l

)
=

{h} ⊂ Z(Gal(N2/Q)) for some h ∈ Z(Gal(N2/Q)). As Z(Gal(N2/Q)) has
order 2, there are two possible choices for

(N2/Q
l

)
. Combining this statement

and Lemmas 3.3 and 3.4 from [1], we have

Remark 3.4.(
N2/Q
l

)
= {id} ⇔ l splits completely in N2

⇔ l satisfies 〈1, 2p〉.
(
N2/Q
l

)
6= {id} ⇔ l does not split completely in N2

⇔ l satisfies 〈2, p〉.
Finally, for l ∈ Ω, l splits completely in Q(ζ16) ⇔ l ≡ 1 mod 16. This

yields

Remark 3.5.(
Q(ζ16)/Q

l

)
= {id} ⇔ l splits completely in Q(ζ16)

⇔ l ≡ 1 mod 16.
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4. The composite and two theorems. In this section we consider
the composite field N1N2Q(ζ16). Set

L = N1N2Q(ζ16).

Note that [L : Q] = 64. As N1, N2, and Q(ζ16) are normal extensions of Q,
L is a normal extension of Q.

For l ∈ Ω, l is unramified in L as it is unramified in N1, N2, and Q(ζ16).
The Artin symbol

(L/Q
β

)
is now defined for some prime β of OL containing l.

Let
(L/Q

l

)
denote the conjugacy class of

(L/Q
β

)
in Gal(L/Q). Letting M =

Q(
√

2,
√
−1,
√−p) ⊂ L, we prove

Lemma 4.1. Z(Gal(L/Q)) = Gal(L/M) is elementary abelian of or-
der 8.

Proof. For σ ∈ Gal(L/M), σ can only change the sign of
√
ε,
√
π, and√

ζ8 as ε ∈M . Since L = M(
√
ε,
√
π,
√
ζ8), Gal(L/M) is elementary abelian

of order 8. Now consider the restrictions r1 : G1 → Gal(Q(
√

2)/Q) and
r2 : G2 → Gal(Q(

√
2)/Q) where G1 = Gal(N1/Q) and G2 = Gal(N2/Q).

Clearly r1|Z(G1) and r1|Z(G2) are both trivial. Then by Lemma 2.2(ii),
Z(G) is elementary abelian of order 4 where G = Gal(N1N2/Q). Now
consider the restrictions R1 : Gal(Q(ζ16)/Q) → Gal(Q(ζ8)/Q) and R2 :
G → Gal(Q(ζ8)/Q). Note that ker(R1) is cyclic of order 2 and Z(G) =
Gal(M/Q). Thus R2|Z(G) is trivial and so by the above and Lemma 2.2(i),
Z(Gal(L/Q)) ∼= Z/2Z×Z(G) = Z/2Z×Z/2Z×Z/2Z. Thus Z(Gal(L/Q)) =
Gal(L/M).

Now for l ∈ Ω, l splits completely in Q(
√
−1) and Q(

√
2,
√−p) and

so splits completely in the composite field M = Q(
√

2,
√
−1,
√−p). From

Lemma 4.1, LZ(Gal(L/Q)) = Q(
√

2,
√
−1,
√−p). So by Lemma 2.1, we have

(
L/Q
l

)
= {k} ⊂ Z(Gal(L/Q)) for some k ∈ Gal(L/Q).

As Z(Gal(L/Q)) has order 8, there are eight possible choices for
(L/Q

l

)
.

Using Remarks 3.1, 3.4, and 3.5, we now make the following one-to-one
correspondences.

Remark 4.2. (i)
(L/Q

l

)
= {id} ⇔ l splits completely in L⇔

{
l splits completely in N1,

N2, and Q(ζ16)

}
⇔





l satisfies 〈1, 32〉
l satisfies 〈1, 2p〉
l ≡ 1 mod 16




.

(ii)
(L/Q

l

)
6= {id} ⇔ l does not split completely in L. Now there are
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seven cases:

(1)
{
l splits completely in N1,
but does not in N2 or Q(ζ16)

}
⇔





l satisfies 〈1, 32〉
l satisfies 〈2, p〉
l ≡ 9 mod 16




,

(2)
{
l splits completely in N1

and N2, but does not in Q(ζ16)

}
⇔





l satisfies 〈1, 32〉
l satisfies 〈1, 2p〉
l ≡ 9 mod 16




,

(3)





l splits completely in
N2, but does not in N1

or Q(ζ16)




⇔





l does not satisfy 〈1, 32〉
l satisfies 〈1, 2p〉
l ≡ 9 mod 16




,

(4)





l splits completely in
N2 and Q(ζ16),
but does not in N1




⇔





l does not satisfy 〈1, 32〉
l satisfies 〈1, 2p〉
l ≡ 1 mod 16




,

(5)
{
l splits completely in N1

and Q(ζ16), but does not in N2

}
⇔





l satisfies 〈1, 32〉
l satisfies 〈2, p〉
l ≡ 1 mod 16




,

(6)





l splits completely in
Q(ζ16), but does not in N1

or N2




⇔





l does not satisfy 〈1, 32〉
l satisfies 〈2, p〉
l ≡ 1 mod 16




,

(7)
{
l does not split completely
in N1, N2, or Q(ζ16)

}
⇔





l does not satisfy 〈1, 32〉
l satisfies 〈2, p〉
l ≡ 9 mod 16




.

Now using Theorems 5.2–5.5 from [1], we relate each Artin symbol
(L/Q

l

)

to each of the eight possible tuples of 4-ranks.

Remark 4.3. From Remark 4.2, case (i) occurs if and only if we have
(2, 2, 1, 1). For case (ii),

• (1) occurs if and only if we have (1, 2, 0, 1),
• (2) occurs if and only if we have (2, 1, 1, 0),
• (3) occurs if and only if we have (2, 1, 0, 1),
• (4) occurs if and only if we have (2, 2, 0, 0),
• (5) occurs if and only if we have (1, 1, 0, 0),
• (6) occurs if and only if we have (1, 1, 1, 1),
• (7) occurs if and only if we have (1, 2, 1, 0).
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We can now prove Theorem 1.2.

Proof. Consider the set X =
{
l prime : l is unramified in L and

(L/Q
l

)

= {k} ⊂ Z(Gal(L/Q))
}

for some k ∈ Gal(L/Q). By the Chebotarev Density
Theorem, the set X has natural density 1/64 in the set of all primes. Recall

Ω =
{
l rational prime : l ≡ 1 mod 8 and

(
l

p

)
=
(
p

l

)
= 1
}

for some fixed prime p ≡ 7 mod 8. By Dirichlet’s Theorem on primes in
arithmetic progressions, Ω has natural density 1/8 in the set of all primes.
Thus X has natural density 1/8 in Ω. By Remarks 4.2 and 4.3, each of
the eight choices for

(L/Q
l

)
is in one-to-one correspondence with each of the

possible tuples of 4-ranks. Thus each of the eight possible tuples of 4-ranks
appear with natural density 1/8 in Ω.

Now we can prove Theorem 1.1.

Proof. We see from Remark 4.3 that:

• 4-rank K2(OQ(
√
pl)) = 1 in cases (ii)(1), (5), (6), (7),

• 4-rank K2(OQ(
√

2pl)) = 2 in cases (i) and (ii)(1), (4), (7),
• 4-rank K2(OQ(

√−pl)) = 0 in cases (ii)(1), (3), (4), (5),
• 4-rank K2(OQ(

√−2pl)) = 1 in cases (i) and (ii)(1), (3), (6).

As each of the 4-rank tuples occur with natural density 1/8, for the fields
Q(
√
pl) and Q(

√
2pl), we have 4-rank 1 and 2 each appear with natural

density 4 · 1
8 = 1

2 in Ω. For the fields Q(
√−pl) and Q(

√−2pl), 4-rank 0 and
1 each appear with natural density 4 · 1

8 = 1
2 in Ω.

Appendix. The following tables motivated possible density results of
4-ranks of tame kernels. We consider primes l ∈ Ω with l ≤ N for a fixed
prime p ≡ 7 mod 8 and positive integer N . For Table 1, we consider the sets
Ω1, . . . , Ω4 and Λ1, . . . , Λ4 as in the introduction. For Table 2, we consider
the sets

I1 = {l ∈ Ω : 4-rank tuple is (1, 1, 0, 0)},
I2 = {l ∈ Ω : 4-rank tuple is (1, 1, 1, 1)},
I3 = {l ∈ Ω : 4-rank tuple is (2, 1, 1, 0)},
I4 = {l ∈ Ω : 4-rank tuple is (2, 1, 0, 1)},
I5 = {l ∈ Ω : 4-rank tuple is (1, 2, 1, 0)},
I6 = {l ∈ Ω : 4-rank tuple is (1, 2, 0, 1)},
I7 = {l ∈ Ω : 4-rank tuple is (2, 2, 0, 0)},
I8 = {l ∈ Ω : 4-rank tuple is (2, 2, 1, 1)}.
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Table 1

Primes p = 7 p = 23 p = 31

Cardinality N = 1000000 % N = 1000000 % N = 1000000 %

|Ω| 9730 9742 9754
|Ω1| 4866 50.01 4905 50.35 4916 50.40
|Ω2| 4864 49.99 4837 49.65 4838 49.60
|Ω3| 4866 50.01 4911 50.41 4851 49.73
|Ω4| 4864 49.99 4831 49.59 4903 50.27
|Λ1| 4878 50.13 4912 50.42 4930 50.54
|Λ2| 4852 49.87 4830 49.58 4824 49.46
|Λ3| 4878 50.13 4876 50.05 4943 50.68
|Λ4| 4852 49.87 4866 49.95 4811 49.32

Table 2

Primes p = 7 p = 23 p = 31

Cardinality N = 1000000 % N = 1000000 % N = 1000000 %

|Ω| 9730 9742 9754
|I1| 1215 12.49 1246 12.79 1246 12.77
|I2| 1213 12.46 1229 12.62 1203 12.33
|I3| 1228 12.62 1211 12.43 1214 12.45
|I4| 1210 12.44 1225 12.57 1188 12.18
|I5| 1210 12.44 1204 12.36 1227 12.58
|I6| 1228 12.62 1226 12.58 1240 12.71
|I7| 1225 12.59 1215 12.47 1256 12.88
|I8| 1201 12.34 1186 12.17 1180 12.10
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