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On the number of prime divisors
of the order of elliptic curves modulo p

by

Jörn Steuding (Madrid) and Annegret Weng (Mainz)

1. Introduction and statement of results. Let E be an elliptic curve
defined over Q. Throughout this paper p denotes a prime number and Fp is
the finite prime field with p elements. Let Np count the number of points
on the curve E(Fp), i.e. the curve E := E modulo p. Koblitz [6] conjectured
that

#{p ≤ N : Np is prime} ∼ CE
N

(logN)2 ,

where CE is a positive computable constant depending on E. The motivation
for this question comes from applications of elliptic curves in cryptography;
see [5], [9]. In cryptosystems based on the discrete logarithm problem we
are interested in elliptic curves having a group order which is as prime as
possible.

By Selberg’s parity phenomenon (see [1]) we know that sieve methods
alone cannot detect primes, but almost prime numbers, i.e. numbers with
few prime divisors only. Let Ω(n) and ν(n) count the number of prime
divisors of an integer n with and without multiplicities, respectively. As-
suming the Generalized Riemann Hypothesis (GRH), i.e. the non-vanishing
of all Dedekind zeta-functions ζK(s) of number fields K for Re s > 1/2,
V. K. Murty and Miri [10] proved that if E does not have complex multipli-
cation (CM ) and has a trivial torsion group over Q, then

Ω(Np) ≤ 16 for more than � N

(logN)2 primes p ≤ N ;

their method relies on Selberg’s sieve identity (see [1]). We shall use the
linear sieve with logarithmic weights. Introducing weights into the sifting
process increases the power of sieve methods in various results. However,
the use of weight functions leads without knowledge on the distribution of
squarefull numbers in the sifted sequence only to results about the number
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of prime divisors without multiplicities. In almost all examples of interesting
sequences in sieve theory the set of squarefull numbers is sufficiently thin
such that the squarefull numbers give no significant contribution. Unfortu-
nately, for the sequence of the Np nothing is known in that direction.

Moreover, we use refinements of the explicit version of Chebotarev’s
theorem due to Serre and to M. R. Murty, V. K. Murty and Saradha to
prove

Theorem 1. Let E be an elliptic curve over Q such that the finitely
many elliptic curves E′, Q-isogenous to E, have trivial Q-torsion group.
Assume GRH. Then:

(i) If E does not have CM , then

#{p ≤ N : ν(Np) ≤ 5} ≥ C1
N

(logN)2 ,(1)

where C1 is a positive computable constant depending on E; the in-
equality for ν(Np) can be replaced by Ω(Np) ≤ 8.

(ii) If E has CM by an order O in an imaginary quadratic field and χ
is the corresponding quadratic character , then

(2) #{p ≤ N : χ(p) = 1, Ω(Np) ≤ 3} ≥ C2
N

(logN)2 ,

where C2 is a positive computable constant depending on E.

As far as we know, Theorem 1 gives the best theoretical result. In prac-
tice there seem to be enough curves with the property that Np is prime
sufficiently often [6].

Note that M. R. Murty and V. K. Murty [11] proved under assumption
of the truth of GRH the Turán–Kubilius type inequality∑

p≤x
(ν(Np)− log log p)2 � π(x) log log x,

which implies that the mean-value of the number of prime divisors of Np is
log log p.

2. The explicit version of Chebotarev’s density theorem. The
proof of the theorem relies beneath the sieve-theoretical part mainly on the
distribution of prime numbers and the distribution of the orders Np, which is
ruled by Chebotarev’s density theorem. Assuming GRH, we have the prime
number theorem

π(x) = Lix+O(x1/2 log x), where Lix :=
x�

2

du

log u
,

and π(x) counts the number of primes p ≤ x. Furthermore, let K be a
number field of degree nK over Q and L be a finite Galois extension of K
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with discriminant dL. For each prime ideal P in L write DP and IP for
the decomposition and inertia group at P, respectively. Let σP ∈ DP/IP
be the Frobenius element at P. If P above p is unramified in L/K, then
IP is trivial and the conjugacy class of σP is given by the Artin symbol
σp :=

[L/K
p

]
. Now let G be the Galois group of L over K and let C be a

subset of G, closed under conjugation, and write πC(x) for the number of
prime ideals p of K, unramified in L, for which

[L/K
p

]
⊆ C and NK/Qp ≤ x.

Then, assuming GRH, Chebotarev’s density theorem, in the effective form
proved by Lagarias and Odlyzko [7], states

πC(x) =
#C
#G

πK(x) +O

(
#C
#G

x1/2(log dL + nL log x)
)
,(3)

where πK(x) counts the number of prime ideals in K of norm ≤ x, dL is
the absolute value of the discriminant of L, and nL = [L : Q]; note that the
implied constant is absolute.

The explicit version of Chebotarev’s density theorem can be further im-
proved in particular cases as pointed out by Serre in [14]. Let ϕ be a class
function on G and set

πϕ(x) =
∑

Np≤x
p unramified inL/K

ϕ(σp).

If ϕ is equal to the characteristic function δC of a conjugacy class C, we
have πϕ(x) = πC(x). We further define

π̃ϕ(x) =
∑

Npm≤x

1
m
ϕ(σmp ),

where we have to explain the meaning of ϕ(σmp ) for the ramified primes. For
a prime ideal p which ramifies in L/K, define

ϕ(σmp ) =
1

#IP

∑
ϕ(g)

where IP is the inertia group at a prime P ∈ L, P | p, and the sum is taken
over all g ∈ DP whose image in DP/IP maps to σmp .

The functions πϕ(x) and π̃ϕ(x) are closely related:

πϕ(x) = π̃ϕ(x) +O

(
sup
g∈G
|ϕ(g)|

(
1

#G
log dL + nKx

1/2
))

,(4)

where the O-constant is absolute. Suppose that ϕH is a class function on a
subgroup H ⊆ G and ϕ is a class function on G with ϕ = IndGHϕH . Then
π̃ϕ(x) = π̃ϕH (x).
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Now given a conjugacy class C and a subgroup H of G with C ∩H 6= ∅,
let CH be the conjugacy class of C ∩H in H. We set

mCH =
#C

#CH
· #H

#G
and ϕH,C(x) =

{
mCH for x ∈ C,
0 otherwise.

We then have
ϕC = IndGHϕH,C .

On the other hand, ϕH is the mCH th multiple of the indicator function
of CH on H. Hence,

π̃ϕC (x) = π̃ϕH,C (x) = mCH π̃ϕCH (x).

If the error term in (4) is negligible we may replace πC by mCHπCH .
Moreover, we shall use the following theorem due to M. R. Murty, V. K.

Murty and N. Saradha [13]. Define

M(L/K) = [L : K]d1/nK
K

∏

p∈P (L/K)

p,

where P (L/K) is the set of primes in K which ramify in L. Then

Lemma 2. Assume GRH. Let D be a non-empty union of conjugacy
classes in G.

(i) If Artin’s conjecture is true for the irreducible characters of G, then

πD(x) =
#D
#G

Lix+O((#D)1/2x1/2nK log(xM(L/K))).

(ii) Let H be a normal subgroup of G such that Artin’s conjecture is true
for the irreducible characters of G/H, and HD ⊆ D. Then

πD(x) =
#D
#G

Lix+O

((
#D
#H

)1/2

x1/2nK log(xM(L/K))
)
.

3. Applying Chebotarev’s theorem to elliptic curves. Let E be a
fixed elliptic curve over Q with conductor NE and ` be a prime number. The
Galois group G` of the Galois extension Q(E[`])/Q obtained by adjoining
all `-torsion points E[`] defined over the algebraic closure Q acts on the 2-
dimensional F`-vector space E[`]. Let p 6= ` be a prime for which E has good
reduction. Then p is unramified in the extensionQ(E[`])/Q. The group order
of the elliptic curve modulo p is divisible by ` if and only if the Frobenius σP

of every P | p corresponds to an element σ ∈ G` fixing at least a subspace
of dimension one of E[`].

Serre [15] proved that if E does not have CM, then G` ' Gl(2,F`) and
G`2 ' Gl(2,Z/`2Z) for all but finitely many `. Let L′ be the finite set of
exceptional primes with G` 6' Gl(2,F`).
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Suppose G` = Gl(2,F`). Then we have

πE(x, `) = #{p ≤ x : p - ` ·NE , Np ≡ 0 mod `}
= #{p ≤ x : p - ` ·NE , σP has eigenvalue one for all P | p} = πD(x),

where D is the set of conjugacy classes of matrices in G with at least one
eigenvalue equal to one. We now want to apply the explicit Chebotarev
theorem to compute πD(x). For that we use an argument similar to the one
used in [13, Section 4]. Firstly, we consider the Borel subgroup B of upper
triangular matrices in G`. Let M be the field fixed by B with

dM = [M : Q] = [G : B] = `+O(1).

Denote by DB the set of conjugacy classes of matrices in B with at least
one eigenvalue equal to one.

The subgroup U of unipotent matrices inB is normal andB/U is abelian.
Hence, Artin’s conjecture holds. Since UDB ⊆ DB we may apply the second
assertion of Lemma 2. This leads to

πDB(x) =
#DB

#B
Lix+O(`3/2x1/2 log(`NEx)).

For a single conjugacy class C in D the intersection C∩B is non-empty and
we have

π̃ϕ(x)− πϕ(x)� `x1/2 + ` log(`NEx)

for both ϕ = ϕB,D and ϕ = δD (with the notation introduced in Section 2).
Using the explicit version of Chebotarev’s theorem as explained in Section 2,
we may replace πD by mDHπDH to get

πD(x) = mDHπDH (x) +O(`x1/2 + ` log(`NE))

=
1
δ(`)

Lix+O(`3/2x1/2 log(`NEx)),

where

δ(`) :=
#G
#D

.

Note that for ` 6∈ L′ we have

δ(`) =
(`− 1)(`2 − 1)

`2 − 2
.

The function δ is multiplicative. Hence

πE(x, d) = #{p ≤ x : p - d ·NE , Np ≡ 0 mod d}(5)

=
1
δ(d)

Lix+O(d3/2x1/2 log(dNEx))

for squarefree d.
Later we will also be interested in the number of squarefull Np, i.e. in the

number πE(x, `2). In this case we need to consider the group Gl(2,Z/`2Z).
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Following the same reasoning as above we get

πE(x, `2) = #{p ≤ x : p - ` ·NE , Np ≡ 0 mod `2}(6)

=
#D′

# Gl(2,Z/`2Z)
Lix+O(`3x1/2 log(`NEx))

where D′ is the set of conjugacy classes of those matrices in Gl(2,Z/`2Z)
which either have an eigenvalue one or are the identity on E[`]. By a simple
counting argument,

#D′

# Gl(2,Z/`2Z)
=

1
`2

+O

(
1
`3

)
.

If E has CM by an order O in some imaginary quadratic field, we distin-
guish two classes of primes: supersingular primes (which are inert or ramified
in O, i.e., χ(p) = 0,−1) and ordinary primes (which split in O, χ(p) = 1);
see [8]. Note that we automatically have class number one: h(O) = 1, since
E is defined over Q.

For the supersingular primes, Np is given by a linear polynomial in p,
namely p+ 1. Such problems have already been considered in the literature
and it can be shown that ν(p+ 1) ≤ 4 for infinitely many p (see [2]).

We concentrate on the more interesting case where p splits. Let π(x, 1)
be the number of primes p ≤ x with χ(p) = 1 and let

πE(x, 1, d) = #{p ≤ x : χ(p) = 1, Np ≡ 0 mod d}.
For a curve with CM we have G` ' (O/`O)∗ for all but finitely many `; see
[17]. As above, the set L′ contains the exceptional primes. For these primes,
G` is a subgroup of (O/`O)∗. The fact that the Galois group G` is smaller in
the CM case leads to better error terms and hence to slightly better results.
Setting

δ(`) =





`2 − 1 if ` is inert,

(`− 1)2

2`− 3
if ` splits,

`− 1 if ` is ramified,

(7)

and applying the first assertion of Lemma 2 under assumption of GRH, we
get

πE(x, 1, d) =
1

2δ(d)
Lix+O(d1/2x1/2 log(dx))(8)

for squarefree d (since Artin’s conjecture is known to be true for abelian G).
Next we consider the numbers Np that are divisible by a square of a

prime `. For all but finitely many primes ` that split in O we have

Gal(Q(E[`2])/Q) ' (O/`2O)∗ ' (Z/`2Z)∗ × (Z/`2Z)∗.
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Let P1, P2 be a Z/`2Z-basis for the `2-division points on E(Q). In this special
case the field extensions Q(Pi)/Q are Galois with Galois group GPi isomor-
phic to (Z/`2Z)∗. Now an elliptic curve over Fp with χ(p) = 1 has group
order divisible by `2 if one of the following three cases occurs: the Frobenius
of p in GP1 is the identity, the Frobenius of p in GP2 is the identity or is the
Frobenius of p in G`. In all three cases we obtain under assumption of GRH

πE(x, `2) =
#D′

#G`2
Lix+O(x1/2 log(`x))(9)

where D′ is the set of conjugacy classes of elements in G`2 which either
acts trivially on the `-torsion points or fixes an `2-torsion point. Again, by
a simple counting argument, we have

#D′

#G`2
=

1
`2

+O

(
1
`3

)
.

4. Sifting the group orders. Below, let `j denote prime numbers. We
follow the notation of [2].

First, assume that E does not have CM. We have δ(`) = ` + O(1) for
all but finitely many primes `. Since E ′tors(Q) is trivial for all Q-isogenous
curves, the set of primes p with Np 6≡ 0 mod ` has positive density for all `
(see [4]). Hence, there exists a constant µ > 1 such that δ(`) ≥ µ for all `.
Setting ω(`) = `/δ(`), we see that

0 ≤ ω(`)
`
≤ 1
µ
< 1.

This shows that axiom Ω1 of [2] holds. Furthermore,
∑

w≤`<z

ω(`) log `
`

=
∑

w≤`<z

log `
`

+O(1) = log
z

w
+O(1)

by Mertens’ theorem (see [3]), and hence, axiom Ω2(1, L) of [2] is satisfied.
Now let X = π(N). In view of (5), under assumption of GRH,

Rd := πE(N, d)− 1
δ(d)

LiN � d3/2N1/2 log(dN).

Note that
3ν(d) = 2ν(d)log 3/log 2 ≤ τ(d)log 3/log 2,

where τ(d) is the divisor function (i.e., the number of positive divisors of d).
Since τ(d)� dε (see [3]), we obtain

∑

d<Xα

µ(d)23ν(d)|Rd| � N1/2+ε
∑

d<Xα

d3/2+ε � N1/2+5α/2+ε,

which is o(X/logX) for α < 1/5. Thus, for each of these values axiom
R(1, α) of [2] is satisfied.
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Later we shall prove the inequality

#{p ≤ N : ν(Np) ≤ r} ≥ W(u, v, λ)(10)

with the sifting function

W(u, v, λ) :=
∑

p≤N
(Np,P (X1/v))=1

{
1− λ

∑

X1/v≤`1<X1/u

`1|Np

(
1− u log `1

logX

)}
,(11)

where P (z) :=
∏
`<z ` and u, v, λ are certain positive constants, depending

on r and α, which will be specified soon. We are interested in the minimal
value for r such that the sifting function can be bounded below by a quantity
as in (1).

Define

W (z) =
∏

`<z

(
1− ω(`)

`

)
=
∏

`<z

(
1− 1

δ(`)

)
.

Then, by Theorem 9.1 and Lemma 9.1 of [2],

W(u, v, λ) ≥ XW (X1/v){f(u, v, λ, α) +O((logX)−1/14)}
for

1
α
< u < v,

2
α
≤ v ≤ 4

α
, 0 < λ� 1,(12)

where

f(u, v, λ, α) :=
2eγ

αv

(
log(αv − 1)− λαu log

v

u
+ λ(αu− 1) log

αv − 1
αu− 1

)
,

and where γ = 0.577 . . . is the Euler–Mascheroni constant. A simple com-
putation shows

W (z) =
∏

`∈L′, `<z
c`

∏

6̀∈L′, `<z

(
1− 1

`

)(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
,

where

c` =
δ(`)− 1
δ(`)

· (`− 1)2(`+ 1)
`3 − 2`2 − `+ 3

.

Note that Mertens’ theorem gives
∏

`<z

(
1− 1

`

)
=

e−γ

log z
+O(1).

This leads to the main term of the theorem up to a factor depending on
u, v and λ if f(u, v, λ, α) > 0. It remains to prove inequality (10) and to
determine r with some positive f(u, v, λ, α).

In (10), p is counted with weight 1 if and only if Np has no prime divisors
< X1/u, i.e.

Ω(Np) ≤ [u],(13)
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where [u] denotes the largest integer≤ u. Now suppose that p gives a positive
contribution

1− λ
∑

X1/v≤`1<X1/u

`1|Np

(
1− u log `1

logX

)

in (11), but less than 1. Clearly, Np may have prime divisors `2 ≥ X1/u, but
for each of these

1− u log `2
logX

≤ 1− u logX1/u

logX
= 0.

Hence, Np is counted with weight at most

1− λ
(
ν(Np)− u

logNp

logX

)
.

Now assume that ν(Np) = r + 1 for which

1− λ
(
r + 1− u logNp

logX

)
≤ 0,

that is,

r ≥ u logNp

logX
+

1
λ
− 1.

In view of the Hasse bound (see [16])

|Np − p− 1| ≤ 2
√
p,

for p� N we obtain

r ≥ u+
1
λ
− 1.

Then putting

r = max{[u− 1 + 1/λ], [u]}(14)

covers condition (13). It remains to find suitable parameters u, v, λ for which
condition (11) is satisfied and which give a positive value for f(u, v, λ, α). We
are not interested in the best possible constants in (1) and (2). For instance,

f(5.1, 20, 0.53, 1/5.05) = 0.34522 . . . ,

which yields r = [5.98679 . . .] = 5. This proves (1).
If we want to replace ν(Np) by Ω(Np), we have to set aside those primes

p counted in (11) for which Np is divisible by a square of a prime `1 satisfying
X1/v ≤ `1 < X1/u. Using (6) we get
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#{p ≤ N : `21 |Np with X1/v ≤ `1 < X1/u}
=

∑

X1/v≤`1<X1/u

#{p ≤ N : `21 |Np}

� N

logN

∑

X1/v≤`1<X1/u

1
`21

+X1/2+ε
∑

X1/v≤`1<X1/u

`31 = o

(
N

(logN)2

)

provided that 8 < u. Since f(8.1, 32, 0.53, 1/8.05) = 0.33867 . . . we get here
r = [8.98679 . . .] = 8 in (14), which proves the Ω-result in the non-CM case
under assumption of GRH.

Now assume that E has CM. The proof runs analogously to the non-CM
case. We only point out the differences. If the discriminant of the imaginary
quadratic order is 6≡ 5 mod 8, it can easily be checked that the curve always
has non-trivial 2-torsion points. Since E ′tors(Q) is trivial for all Q-isogenous
curves, the discriminant of the endomorphism ring has to be ≡ 5 mod 8, and
by (7) we have

0 ≤ ω(`)
`
≤ 1
µ
< 1

for all primes. This shows that axiom Ω1 of [2] holds; the verification of the
axiom Ω2(1, L) of [2] follows as in the non-CM case. Put X = 1

2 LiN . By (3)
we have

#{p ≤ N : χ(p) = 1} −X � N1/2 logN.

Using (8) we get for d squarefree

Rd = πE(N, 1, d)− 1
2δ(d)

LiN � d1/2N1/2 log(dN),

and therefore
∑

d<Xα

µ(d)23ν(d)|Rd| = o

(
X

logX

)

for α < 1/3. For the correction term we get

∏

`∈L′, `<X1/v

c`
∏

`<X1/v

χ(`)=0

(
1− 1

(`− 1)2

) ∏

`<X1/v

χ(`)6=0

(
1− χ(`)

`2 − `− 1
(`− χ(`))(`− 1)2

)
.

For the numbers Np that are divisible by a square of a prime `1, satisfying
X1/v ≤ `1 < X1/u, in view of (9) we get

#{p ≤ N : `21 |Np with X1/v ≤ `1 < X1/u}

� N

logN

∑

X1/v≤`1<X1/u

1
`21

+X1/2+ε
∑

X1/v≤`1<X1/u

1,
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which is o(X/logX) provided that 2 < u. Hence, there is no influence of
squarefull Np on our result. A short computation shows that f(3.1, 12, 0.53,
1/3.05) = 0.35532 . . . , which yields r = [3.98679 . . .] = 3 in (14). This
proves (2).

Note that in Koblitz’s conjecture, CE =
∏

(1−1/δ(`))(1− 1/`)−1, which
is, in the notation of our proof, equal to limz→∞W (z)

∏
(1− 1/`)−1.

5. Concluding remarks. It seems out of reach to replace the assump-
tion of GRH in the use of Chebotarev’s density theorem by a suitable
Bombieri–Vinogradov theorem as it was done in Chen’s celebrated approach
towards the Goldbach conjecture (see [2]). The known results in that di-
rection due to M. R. Murty and V. K. Murty [12] are not uniform in a
sufficiently large range.

The ideas in this paper can be generalized in several directions. First,
one can also consider elliptic curves with complex multiplication by an order
O with class number h(O) > 1. Here, the elliptic curve can be defined over
the ring class field of the order. Next we can consider principally polarized
abelian varieties of dimension d > 1. If the principally polarized abelian
variety A has endomorphism ring equal to Z and dimension d where d = 2,
6 or odd, the Galois group Gal(Q(A[`])/Q) is isomorphic to the general
symplectic group GSp(2d, `) for all but finitely many `.

For the following three non-CM curves we know that Gal(Q(E[`])/Q) '
Gl(2,Z/`Z) for all ` (cf. [15], [6]):

y2 + y = x3 − x, y2 + y = x3 + x2, y2 + xy + y = x3 − x2.

The smallest primes p with Ω(Np) > 8 are equal to 487, resp. 523, resp.
1289. The smallest primes with ν(Np) > 5 are given by 53377, resp. 43721,
resp. 92357.
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References

[1] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18
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Hautes Études Sci. Publ. Math. 54 (1981), 123–201.

[15] —, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.
Math. 15 (1972), 259–331.

[16] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
[17] —, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York, 1994.

Departamento de Matemáticas
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