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Units and norm residue symbol
by

BRUNO ANGLES (Caen)

Let p be an odd prime number, p > 5. Let ¢, be a primitive pth root of
unity and consider the following equation:

(x) a,b€Z, ab+#0, ged(a,b) =1, (a — b(p)Z[¢,] = IP, T ideal of Z[().

Then one can show that the ABC' conjecture implies that the above equation
has a finite number of solutions, and, if p is large enough, (%) has only the
trivial solutions, i.e. a=1,b=—1,and a = -1, b= 1.

When studying the first case of (x) (i.e. ab(a +b) #Z 0 (modp)), G. Ter-
janian was led to conjecture that the Kummer system of congruences has
only the trivial solutions (see [8] and Section 5). In this paper we prove that
Eichler’s Theorem applies to Terjanian’s conjecture (Corollary 5.5). More
precisely, we prove that if i(p) < \/p — 2 then Terjanian’s conjecture is true
for the prime p, where i(p) is the index of irregularity of p.

Let F be a real subfield of Q((,) and let Er be the group of units of F'.
Our aim is to study the Kummer subgroup of Ep:

Ef"™ ={c € Fp:3a€Z, e =a (modp)}.

We show that there exists a duality between Er/EX"™ and the orthogonal of
Ep for the norm residue symbol (see Theorem 4.4). A natural problem arises:
do we have an equivalence in Kummer’s Lemma (see Section 3)? We show
that this question is connected to a class number congruence obtained by
T. Metsinkyl4 (see [4] and Section 6). In particular, we are led to investigate
the orthogonal of the group of units of Q((,) for the norm residue symbol
and, thus, this leads us to Terjanian’s conjecture.

Finally, we would like to mention the following question which we call the
“weak Kummer—Vandiver conjecture”: let E be the group of units of Q((,)
and let C be the group of cyclotomic units of Q(¢,); do we have E+ = C+
(see Section 4)?
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1. Notations. Let p be an odd prime number. Let Z, be the ring of
p-adic integers, Q,, the field of p-adic numbers, and C,, a completion of an
algebraic closure of @Q,. All the finite extensions of Q, considered in this
paper are contained in C,.

Let L/Q, be a finite extension. We set:

e O, — the integral closure of Z, in L,
e p; — the maximal ideal of O,
e v;, — the normalized discrete valuation on L associated with py,,

e Uy, — the group of units of Op and for n > 1, Ué") =1+p7.
Let L/Q, be a finite extension and let L’/ L be a finite abelian extension.
We denote the local Artin map associated with L’/L by (-,L'/L).

Let ¢, be a fixed primitive pth root of unity in C,. We set A\, = (, — 1
and K = Qp((p). For o, € K*, we define the norm residue symbol («, 3)

as follows:
(o, 3) = (ﬁ’va)/K)m’

where v € C,, is such that 7* = .
Let G = Gal(K/Q,). For a € Z \ pZ we define o, to be the element of
G such that 0,(¢y) = (. Recall that we have an isomorphism of groups

(Z/pZ)* — G, a+— o4. Let G be the set of group homomorphisms between
G and Z;. The Teichmdiller character w is the element w € G such that

w(og) = a (modp).

Recall that G is a cyclic group and that w is a generator of G.
We view Q as contained in Q,. Let F//Q be a finite extension, F' C C,.
We set

o = FQ,,

e Op — the ring of integers of F,

e Fr — the group of units of Op,

e pr=ppNO0F,

e hr — the class number of F.

If A is a commutative unitary ring, we denote the set of invertible ele-

ments of A by A*. Let n > 1 be an integer. We denote the group of nth
roots of unity in C,, by ft,.

2. Some results from Lubin—Tate theory. First, we recall some
basic facts from Lubin-Tate theory (see [3], Chapter 8). We consider the
following two elements in Z,[[X]]:

T(X)=(14+X)?-1 and L(X)=X"+pX.
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Then T and L are Lubin—Tate polynomials. Thus there exist two formal
groups Fr = Gy, and Fp, in Z,[[X, Y]] such that

ToFr=FroT and LokFp=FolL.

We have two ring homomorphisms: Z, — Endz, G, a — [a]r = (1+X)*—1
and Z, — Endz, Fp, a — [a]r. Note that

o Va € Zy, [a]r = [a]r = aX (mod deg?2),
e (X, Y)=(1+X)1+4Y)-1, FL(X,Y) =X +Y (moddegp),
o Va € Zy, [a]r = aX (moddegp), Ve € pp_1, [e]r =X.

We set
Logz(X) = lim — [p"] € Qy[[X]],

n>1pnt
R
Logp (X) = lim T [p"]1 € Qp[[X]]
Note that
XTL
Log,(X) = Z(—l)”“7 and Log;(X)= X (moddegp).

n>1
We denote the inverses of Log, and Log; by Exp; and Exp; respectively.
We set f,(X) = ExppoLog; and g,(X) = Expy oLogy. Then f, and
gp are elements of Z,[[X]] and we have:

o f,(X)=gp(X) =X (moddeg2),

e Va € Zy, fpolalr =[a]ro fpand g, o [a]lr = [a]L © gp,

[ prFL:FTofp andngFT:FLng,

L4 fpogp:gpofp:X~

Let v, be the p-adic valuation on C, such that v,(p) = 1. Set D =
{a € C, : vp(a) > 0}. Then T induces a new structure of Z,-module
for D and we denote this Zj,-module by Dr; the same holds for L and
we denote D equipped with the structure of Z,-module induced by L by
Dy,. We have an isomorphism of Z,-modules Dy — Dy, a — gp(a). Set
Ap ={a € C, : [plr(a) =0} and Ay, = {a € C,, : [p]r(«) = 0}. Then Ap
is a Zp-submodule of Dr and Ay is a Zp-submodule of Dy. Note that g,
induces an isomorphism of the Z,-modules A7 and Ar. We have \, € Ar.
We set

AL = gp(Ap)-

Note that A2~ = —p and K = Q,()\,) = Q,(Ar).

LEMMA 2.1. We have
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H(X) = 37 2 (mod X7Z,[[X]))

n=1

Proof. This comes from the fact that Exp,(X) = Log;(X) =

(mod degp). m

COROLLARY 2.2.
p—1

)\n
(i) AL = Z(—l)”“;” (mod pi);
n=1
(i) Ap= > ﬁ (mod ph.).
n=1 :

LEMMA 2.3. Let 0 € G.
(i) o(Ap) = [w(o)lr(Ap);
(ii) o(AL) = w(o)AL.
Proof. The first assertion is obvious. We have
oc(Ar) = a(gp(Ap)) = gp(a(Ap)).
Thus o(Ar) = gp([w(o)]r(Ap)) = [w(0)]L(gp(Ap)) = w(o)AL. =
Let k be an integer, 1 < k <p— 1. We set

p—1

e =) (i) rw ),
i=1
where, fori=1,...,p—1,
T ) ==Y w(o)'a(N) € pi-
ceG
Note that 1 = (1 —p)A,.

PROPOSITION 2.4. Let k be an integer, 1 <k <p—1.

(i) me = fp(A}) (modpl);
(i) A7 = gp(m) (mod pk);
(iii) Vo € G, o(1+m) = (14 n)*@" (mod p?.).

Proof. Let o € G. We have

Thus A
T(w™") = z_'L (mod pk).
Therefore we have (i) and (ii). Now, let 0 € G. Then



Units and norm residue symbol 37

o (1) = fo(w(0)*A}) = [w(@) M (f(]) = (1 +m)*" =1 (mod ).
Thus we have (iii). =

Now, we recall the definition of the Kummer homomorphisms (see 3],
Chapter 7). Let u € Ug and write u = h(Ap) for some h(X) € Zy[[X]].
Then h/(Az)/u is well defined modulo p2 2 and we can write

W) &=
L) ngk IAE=L (mod ph- %),

where ¢y (u) is in Z, modulo pr for k=1,...,p— 2. The map ¢y is called
the Kummer homomorphism of degree k.
We have the following basic properties:

e v, : Ux — T, is a surjective group homomorphism and p,_1U I((k -

ker gy

o Vo € G,V’U, € UK7 @k(a(u» = w(a)kgpk(u) (mOdp)7

o Yue Uy Va € Zy, on(u®) = apy(u) (modp);

-1

® mlgkgpﬂ ker ¢p, = '“pflUl(? g

We calculate the values of these homomorphisms for some remarkable
elements.

PROPOSITION 2.5.

(i) %Ol(Cp) =1 and for k > 2, pr((p) = 0;
(Ap/AL) = (=1)k By /k!, where By, is the kth Bernoulli number;

(ii) ¢
(iii) letaeG or(a(Np)/Ap) = (=1)F(w(o)* — 1) By /K!;
(iv) pr(1+m) =0 if k #i and (1 +nx) = k;
(v) letaeZ,a#1 (modp), p1(a—(p) = —1/(a— 1) and for k > 2,
(_kal
er(a—Cp) = ka(a),

where My(X) =1 Vb1 X1 s the kth Mirimanoff polynomial.

Proof. (i) Write h(X) = S>P_2 X" /n!. Then ¢, = h(\z) (mod p%.). Thus
©r(Cp) = pr(h(AL)). But

(ii) Put h(X) = f,(X)/X. Then )\p/)\L = h(AL). One can show that
W(X) _
hX)

B1+1+Z ZEXF1 (mod degp — 2).
k>2 ’

The result follows.
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(iii) Let o € G. We have

w(57) = lo(5r)) ra(F57) = o a5

(iv) Set h(X) = f,(X*)+1. We have 1+n; = h(A\1) (mod p%. ). Therefore
@i(1+nk) = @i(h(AL)). But

W (X) k1
=kX -2

hX) k (mod deg p — 2),

and the result follows.
(v) We have

a—(y=a—1-)\p (modp%).

Therefore 1
prla—G)=pila—1-A1) = —.

If a = 0 (mod p), then for k > 2, we have ¢i(a — () = 0. Now, we suppose
that a #Z 0 (mod p). We have

D* Log(a — Exp(X)) x—o0 = (k — )!¢r(a — &) (modp).
But, by [5], Chapter VIII,
(1

D¥ Log(a — Exp(X))x—o = 7

My, (a) (modp).
The result follows. m

We recall some basic facts about F,[G]-modules. For x € é, we write

:—Zx ~! (modp).

oeG
We have
o el =ey;
o e ey = 0if x # Y
o1 = eré €y
e Vo € G, ge, = x(0)ey.
Let A be an F,[G]-module. For 1 <i <p —1, we set

A(i)=e,iA={ac A:VYo € G, o(a) =w(o)a}.

We have
p—1
A =P A)
i=1
We set
Uk
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It is clear that U is a finite F,,[G]-module and that, for 1 <i < p —1, U(7)
is an F,-vector space of dimension 1. More precisely, let v € U; then e,iu
generates U(7) if and only if

o pi(u)#0if 1 <i<p-—2;
e Ng/q,(u) #1 (modp?) for i =p — 1.

In particular, for 1 < k <p—1, 1+n, € U(k) and 1+ generates U(k).
PROPOSITION 2.6. Let w € Ug. Then

Ng g, (u) =1

)=l k21
Log,(u) = > AL D per(wAL (mod i),
k=2

where Log,, is the usual p-adic logarithm on C7.

Proof. Note that we can suppose u € U[({l). We have Logp(u) € px and,

ifueU I(f ), Log,(u) € ph.. Therefore, Log,, induces a group homomorphism
between U and py/ph.. Note that, for k > 2,

Log, (1+ ) = gp(n) = Af (mod pg)
and
Log, (14 m) = Log,((p) = 0 (mod pk).

Let u € U1(<2)- We have

u= H 14 )™ (mod U,

where ay, € F),. Thus

p—1 p— 2
Log,, (u Zak)\k = Z kgok A +a, 1 A2 (mod p?).
k=2 k=2
But
ewr—1U = (1+m,-1)""' = Ng/q, (u)~" (mod U[(?))‘
Thus
—Log,(Nk/q,(u)) = —a,_1p (mod p).
But

Log,(Nk/q, (1)) = Nk, (u) — 1 (mod p?).

Therefore we get our result for u € Uy, 52

Now, if u € U&), there exists an integer a; such that u(1+mn;)* € Uy
But

(2)

Log, (u(1 +m)*) = Log,(u) (modpk),
Nk /q, (u(L+mnm)*) = Nk, (u) (modpQ).
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For k > 2,
or(u(l+m)*") = or(u).
The proposition follows. =

We recall the definition of the local Kummer symbol relative to L (see [3],
Chapter 8). Let z € px and let a € K*. Let t € C,, be such that [p|.(t) = z.
We set

(2,00 = Fr((o, K(1)/K)(t), —t) € AL

This symbol is connected to the norm residue symbol as follows: let u € U I((l )
and let a € K*; then

(u,0) =1 = fp({gp(u—1),q)r).
Furthermore, we have the following explicit reciprocity law for (-,-):

THEOREM 2.7. Let z € pr and let uw € Ug. Write z = ZZ 1 @A
(mod p%), where a; € Fp,. Then

R > aieplu)| ()

Proof. See [3], Chapter 9. m

3. Kummer subgroups of units. Recall that ¢/ = UK/(,up,lUI(f)).
Set

V=Q()NUg, VK™ =vVnu_ U v=y/ykm

Then we have an isomorphism of the F,[G]-modules V and U.
Let B be a subgroup of V. We define the Kummer subgroup of B to be

BRwm = pavEe = gy, UL,

Note that
B¥"m cla€ B:3a€Z, a=a (modph)}.

Let F be areal subfield of Q(¢,). The group of cyclotomic units of F is the

subgroup of Er generated by —1 and Ngc,)+,r((p (! 7'1)/2((“ -1)/(¢ — 1)),
for 2 < a < (p —1)/2; we denote this group by Cycp. Recall that

(EF : CyCF) = hF
In this section, our aim is to study the F,[G]-module Cycp /Cycp
particular, Theorem 3.2 will generalize a result of Vostokov (see [9], Theo—
rem 1) and we will obtain Kummer’s Lemma (see [10], Theorem 5.36) as a
corollary.
Now, let F' be a real subfield of Q((,) and set | = [F' : Q]. We suppose
that [ > 2.

Kum In
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LEMMA 3.1. We have
Ef'™ ={a € Ep:3a € Z, a=a (modp)} = Er N (K*)7,
Ep™ = {a € Ep : Log,(a) = 0 (mod pf)}.
Proof. By [10], page 80,
{a € Erp:3a€Z, a=a (modp)} = Ep N (K*)P.

As already noticed, EE"™ is a subgroup of this latter group. Now, let o € Ep
be such that a = a (mod p) for some integer a. Then there exists € € p,—1

such that ae € Ul(f_l). But Ng/q,(ae) = 1. Therefore ae € Uf(f). Thus
a € ERum,

Now, recall that (Ug)? = ,u,p_lUI(fH). Thus
EX"m c {a € Ep: Log,(a) =0 (mod p)}.

Let a be in the right side group. Then, by Proposition 2.6, px(a) = 0
for k = 1,...,p — 2. Therefore a € ,up_lU](f_l). But Ng/q,(a) = 1, thus
o€ up,lU[(f), ie. € BRI, o

We define the indez of regularity of F' to be

r(Fy=Hi:1<i<l-1, Bitp—1)1 # 0 (modp)}|.
The index of irreqularity of F' is then
iW(F)=1—-1-r(F).

We call F' regular if i(F') = 0. Note that, in this case, p does not divide hp
(see [10], Theorem 5.24).

If F=Q(¢,)", then i(F) = i(p), the index of irregularity of p.
THEOREM 3.2. Let F' be a real subfield of Q((p) with [F: Q] =1> 2.
(i) If i=p—1orif i#0 (mod(p—1)/I), then
Cycp

—(i) = 0.
Cychy

(ii) Forj=1,...,01—1,
Cycp (j(p_l)

CyC%um l

(iii) We have

> =0 & Bjp-1), =0 (modp).

Cycp
P Cycgum

dimp =r(F).
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Proof. We view Cycp /Cyci™ as an F,[G]-submodule of U. Since

Nk, (Er) = {1}, we have
Cycp
-1)=0.
Cyckum (p—1)
Now, suppose that there exists € € Ep such that ¢;(e) # 0. Then
i e7 D) =GNy () 70,
But Gal(K/F) = G!, thus
1 i
@i(Ng p(€) = 7( > wlo) l)%‘(ﬁ)-

celG
Thus il =0 (modp — 1) and we get (i).
By Proposition 2.5, for k > 2, we have
7a(Ap) ) _ k k By,
o (Z22) = (1)l - D

Therefore we get (ii) and (iii). m

We recover Kummer’s Lemma:
COROLLARY 3.3. Suppose that F is reqular. Then EX"™ = (Ep)P.

Proof. In this case, we have

C
dimp, ——F — ] 1.
Cycp
But Cycp NEX™ = Cycy™™, thus
di -1
1NF, E};‘(um —
Note that (Er)P C EX"™ and
di To—-1.
imp, (Br)?

Therefore we get the desired result. =

A natural problem arises: do we have an equivalence in Kummer’s Lem-
ma? It is not difficult to show that if p does not divide hp, then EX"™ =
(Er)P implies that F is regular. In fact, we have

PROPOSITION 3.4. Let F be a real subfield of Q((p). Suppose that
paxCUIY) does not divide hg. Then EX'™ = (Eg)P implies i(F) = 0.
Proof. If EX'™ = (ER)P, then
Er
? Cycp EXum

Since hg = (Ep : Cycp), p*) divides hp. m
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4. The orthogonal of local units. Recall that
_ Q(Cp) NUk
Q(gp) N Np—lU}(?)

is an I, [G]-module which is isomorphic to U = UK/(,up,lUéf)). Let a €

Q&) N up,lU[(f). Then for every f € Q((p) N Uk, we have (8,a) = 1.
Therefore, if B is a subgroup of V, we set

Bt ={acV:V¥be B, (ba)= (a,b) = 1}.
Via our isomorphism ¢ : V — U, we have an isomorphism
Bt ={aclU:Vbe B, (a,¢(b)) =1}.

Note that, if B is an F,[G]-submodule of V, the above isomorphism is an
isomorphism of [F,[G]-modules.

Now, px can be viewed as a Zp,-submodule of (D) (see Section 2).
Since [p|r(pr) C pY and, for all a € Zy, [a]r(ph) C pY, it follows that
(pr)r/(p%) L is an Fy-vector space. Furthermore, since F1(X,Y) =X +Y
(mod degp) and [a]r, = aX (moddegp) for all a € Z,, (px)r/(p% )L is the
same as the usual F)-vector space p i /p} . Therefore we have an isomorphism
of Fp,[G]-modules ¢ : U — pr /phe, u— gp(u — 1). But recall that

VueUY, Vae K*,  f,({gy(u—1),a)) = (u,a) — L.

We deduce from the above discussion that B is isomorphic to the [F,,-vector
space

{z € p /0 : (2, B)r = 0}.

THEOREM 4.1. Let B be an Fy[G]-submodule of V. Then, for 1 <i <

p—1, we have
dimg, B (i) + dimg, B(p — i) = 1.

Proof. First note that Bt is an F,[G]-submodule of V. Now, we iden-
tify BL and {z € px/p} : (2, B)r = 0} which is an F,[G]-submodule of
pi/ph. Note that px/ph is an Fp-vector space of dimension p — 1 with
{AL,.. ., Xe71} as a base over F,,.

For simplification, we set e; = e, fori = 1,...,p—1. Let j be an integer,
1 <35 <p-—1. We have:

e e\, =0if j #1,

o) =\ if j =i,

Therefore "

K /. i
K
This implies that ‘
Bt(i)#0 < )\ e Bt
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Now,let 2<j<p—1,1<7<p-—1.Let b € B. By Theorem 2.7, we
have

(M, ei)r = [p—j(ed)]L(AL).

But ¢, ;(e;b) =0if p—j # i and ¢,_;(e;b) = ¢;(b) if i = p — j. Now, note
that ‘ ‘
N, € Bt & Vi, 1<i<p-—1, (\},B(i) =0.

Furthermore
weB, (b= | et
p L
Thus A\;, € B+ < B(p — 1) = 0. The theorem follows. m
COROLLARY 4.2. Let B be an F,[G]-submodule of V. Then
dimp, Bt + dimp, B=p—1.
COROLLARY 4.3. Let B be an F,[G]-submodule of V. Then
(BH)* =B.
Proof. Note that B~ is an F,[G]-submodule of V. Thus, by Corollary 4.2,
dimg, (B*)* + dimp, B* =p — 1.
But B C (B*)*, and by Corollary 4.2,
dimg, B + dimg, B+ =p — 1.

Thus B = (B1)+. =

Now, let F' be a real subfield of Q((,) with [F': Q] =1 > 2. If we apply
Theorems 3.2 and 4.1, we get

THEOREM 4.4. (i) Let i be an integer, 1 <i < p—1. Then
Cycp
P CYCIF(um
Thus Cycr # 0 if and only if i 21 (mod(p—1)/1), i =p—1, ori =1
(mod (p —1)/1) and By_; =0 (modp). In particular,
dimp, Cycyp =p—1—r(F).
(ii) Let i be an integer, 1 <i <p—1. Then

Cycr . Er :
=di ——(p — 7).
()= din, )

Let I be the Stickelberger ideal (see [10], Chapter 6) and let Z be its
image in F,,[G]. Let F = Q({,)". Then, by Theorem 4.4 and [10], Section 6.3,

dimp, Cycr(i) 4 dimg

(p—i)=1
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there exists a surjective morphism of I, [G]-modules

Fp[Gr . CYC#
1- Ei: '

Since dimg, F,,[G]~/Z~ =i(p), this morphism is an isomorphism if and only
if EXwm = (Fp)P.

5. Mirimanoff’s polynomials. In his attempt to prove the first case
of Fermat’s Last Theorem, D. Mirimanoff introduced the polynomials

p—1
My (X) = Ziklei € F,[X], k& >1 an integer.
i=1

Note that (X — 1)M;(X) = X? — X. Let I' = X J%. Then, for k > 1,
we have
T*My = My,
From this relation, we deduce immediately that, for 2 < k < p — 1, we have
Mp(X) = X(X —1)P7FPy(X),
where Py, (X) € F,[X] is of degree k — 2 and P;(0) # 0 (modp), Py(1) # 0

(mod p).
Note that, if k is odd, 3 < k < p — 2, we have (see [5], Chapter 8):

Mi(X) = (-1)PX(X + 1)(X = )P Li(=X),

where Ly (X) € Fp[X] is of degree k — 3. The first polynomials L;(X) are:
Ls(X) =1,
Ls(X) = X? - 10X +1,
L7(X) = X*—56X3+246X? — 56X + 1,

Lo(X) = X% —246X° +4047X* — 11572X3 + 4047X? — 246X + 1.

In this section, we will relate the study of the non-trivial zeros in F} of
the polynomials My (X), k odd, to the orthogonal of cyclotomic units.

Note that the number of k even, 2 < k < p — 3, such that -1 € F} is a
root of My (X) is connected to i(p):

LEMMA 5.1. (i) Let k be an even integer, 2 < k <p— 3. Then
B
My (—1) = 2(2F — 1)?’“ (mod p).

(i) Mp_1(-1) = % (modp).

Proof. (i) is a consequence of Proposition 2.5; for (ii) see [5], Chapter 8. m
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Recall that we identify V and U. Set

€q = Z eyi €F,[G] and e_ = Z eyi € F,[G].
1=0 (mod 2) =1 (mod 2)
Then eje_ = 0,3 =¢e4,e2 =¢e_, 1 =€y +e_, 0164 = €4 and
016 =—c_. Weset V' =¢,Vand V- =¢c_V. Then
vi= @ Vvu), v = € V.
=0 (mod 2) =1 (mod 2)
Furthermore

dimp, V' = dimp, V™ = (p —1)/2.

Note also that
Q(gp)Jr NUk

V= .
Q(Cp)+ N :“p—lUI(?)

Let € € pp—1. We set

Then g, € V™. In this section, we suppose that p > 5.

LEMMA 5.2. V™ is generated as F,[G]-module by the p., € € pp—1 \
{1,-1}.

Proof. Let € € p,—1, € # 1. Then, by Proposition 2.5, we have ¢1 (o)
# 0. Thus

V7 (1) =Fpey 0.
Let k be an odd integer, 3 < k < p — 2. By Proposition 2.5, we have
V7 (k) =Fperoe & pr(oe) #0 < My(e) #0 (modp).

But there exists € € p,—1\ {1, —1} such that Mjy(e) # 0 (mod p). The lemma
follows. m

LEMMA 5.3. Let F' be a real subfield of Q((p) with [F: Q] =1 > 2.
Then o, € Cyc# if and only if for j=1,...,1—1,

Bjp—1)/1Mp—j(p-1)/1(€) = 0 (mod p).
Proof. By the proof of Proposition 2.6, we have

p—2

1
gp(0c=1) = D Tor(e)AL (modpl).
k=1

Thus, by Theorem 2.7, Proposition 2.5 and Theorem 3.2, if
Bj(pfl)/lMpfi(pfl)/l(f) =0 (modp) for j = 1, cee ,l - 1,

then o, € Cyc#.
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Conversely, assume that o. € Cycy. Let B be the F,[G]-submodule of
V~ generated by g.. By Theorem 4.1, we have

C
dims, B(i) + dimg, —F—(p—1) < 1.
Cycp

It remains to apply Proposition 2.5 and Theorem 3.2. m

G. Terjanian has conjectured (see [8]) that for every odd prime number,
0. € Cycg = e=1ore=—1, where F = Q((,)*. By Lemma 5.3, Ter-
janian’s conjecture is equivalent to the statement that the Kummer system
of congruences

ByjM, _2; =0 (modp), 1<j<(p—3)/2,

has only the trivial solutions, i.e. 0,1 and —1. L. Skula has proved (see [7])
that if Terjanian’s conjecture is false for a prime p then i(p) > [{/p/2].

THEOREM 5.4. Let x,y € Z be such that vy(x? — y?) Z 0 (mod p). Let
B be the F,[G]-submodule of V generated by x + y(,. Then

dime B™ > \/ﬁ— 1.

Proof. Suppose that dimg, B~ < /p — 1. Set r = [/p] — 1. Note that
¢p € B™. Consider the set of all products

T
G [T +ue)",
i=1
where 0 < b; < p for i = 0,...,r. The number of such products is p"*! >
|B~|. Therefore, two of them must agree in their B~ -components, so we

may divide and obtain
.

[+ y¢)™ = ¢y (modp),

i=1
where —p < a; < p and some a; are non-zero (because a non-trivial power
of ¢, is not congruent to a real number modulo p), 6 € Q({,)* and v > 0.
Thus, we get

LG agys =%
for some v > 0. But, by the proof of Eichler’s Theorem (see [10], Theo-
rem 6.23), this implies that zy(z? — »?) = 0 (modp), a contradiction. m

COROLLARY 5.5. Let p > 5 be a prime number. If Terjanian’s conjecture
is false for the prime p, then:

(i) 27! =1 (mod p?);
(ii) Bp—3 =0 (modp);
(i) i(p) > v — 2
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Proof. Let C' be the group of cyclotomic units of Q(¢,) and let F' =
Q(¢p)*. Then € — ¢, is orthogonal to C for the norm residue symbol if
and only if g, € Cycy (see [2]). Therefore (i) and (i) are a consequence of
[8], Enoncé 8. Now, (iii) is a consequence of Theorem 5.4, Lemma 5.3 and
Proposition 2.5. =

Note that the ABC conjecture implies that Terjanian’s conjecture is
true for infinitely many primes p (see [6]). It would be interesting to find
analogues of Terjanian’s conjecture for real subfields of Q((,) (see [1]).

6. p-adic regulators and Kummer subgroups of units. Let F' be
a real subfield of Q((,) with [F': Q] =1, 1 > 2. We set Gp = Gal(F/Q,)
and y = w® /!, Then

Gr =(x)

We denote the p-adic regulator of F' by R,(F') and the discriminant of F' by
d(F). Let ¢ € Ep; we denote by A. the subgroup of Er generated by —1
and o(¢), 0 € Gp. We say that ¢ is a Minkowski unit if A, is of finite index
in EF

PROPOSITION 6.1. Let € € Er be a Minkowski unit. Then

Ry (F [20-1) 121
IZZ((F)) i(l —1)! H Pr(p—1)/1(€) (mod p).
k=1

Proof. Let € be a Minkowski unit. Set
RP(AS) = det(Lng(UT(E)))U,TGGF\{l}’
Then R,(A.) # 0 and (see [10], Lemma 4.15)
Ry(42)
Rp(F)

(EF : AE)

(EFZAE)::E

But, from [10], Lemma 5.26,

By(A) = [T (3 x(0) 7 Log,(o()))
j=1 occeGp
Now, by Proposition 2.6,
—_ 1 (p—1)/
Log, (c(e)) = () i1y (NPT (mod pP).
gp( ()) lej(p_l)/lX( ) Pi(p 1)/l() L ( pK)

Thus, we have

_ 12 _
> (o)™ Logy(7(6)) = s er-na(@AL” ! (modpl).
ceGp
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Therefore, there exists ax € Zy, ar = @p(p—1)/1(€), such that

S x(o) ¥ Log,((e)) = AEZD/! (k(l— i u)

oceGp P 1)

where uy € p?(p_l)/l. We get

-1
—1)(— 12
4 = T ()
k=1 p

But y/d(F) = :l:)\(Lp_l)(l_l)/Q. Therefore

R,(F) j20-1) =1 1+(p—1)/1
(Ep: A.)—=2 =+ Prp—1)/1(€) (modp ).
d(F) (1—1)! kI;Il p

But, since R,(F')/+\/d(F) € Z,, this congruence holds modulo p. m

COROLLARY 6.2. Let € be a Minkowski unit, € € Er. Then

-1 -1
@) hr [ ore-1(e) = £(Er : Ac) [ Bup-1)1 (modp).
k=1 k=1

Proof. By [10], Theorem 5.24,

-1
2l_1hF RP( ) _ Lp(laxj)‘

VAFE)

Now

| o~

Lp(l,xj) = .Bj(p—l)/l (modp).

<

Therefore
L, Rp(F) _ I
-1 B
" ii(F) - (1—1)! HBj(pfl)/l (modp).
j=1
Let ¢ be a Minkowski unit. By Proposition 6.1, we have

2(1—1) =1
(Er: Ae) Rz((i)) = j;(ll 5 H @j(p*l)/l(g) (mod p).

The corollary follows. m

Let €1,...,;_1 be a system of fundamental units of F'. We set

1 2
Rp = (det <,4g04 _ i > ) mod p).
F jlp—1)/1 i 1)/1( ) 1<i,j<i—1 ( )

Note that Rr modulo p is independent of the choice of €1, ...,e,-1 (see [4]).
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LEMMA 6.3. Rr # 0 (modp) if and only if EX"™ = (Ep)P.

Proof. Tt is clear that if Rp 2 0 (modp) then EX"™ = (Ep)P.
Conversely, assume that EX" = (E)P. Let € be a generator of the
cyclic Fp[Gr]-module EF/EE‘”“. Set

1 2
B= <det <,790‘ _ (0(5))) ) (mod p).
jlp—1)/1 R 1<j<l—1,0€Gr\{1}

The rank of this latter matrix is equal to the rank of
(X(U)j)lsjgz—LaeGF\h}-
Therefore B # 0 (mod p). By Proposition 2.6 and [4], page 113,
B=(Ep:A.)?Rr (modp).
Therefore Rp # 0 (modp). m
If we apply Proposition 2.6, by the proof of [4], Theorem 1A, we get
THEOREM 6.4. Let g be a primitive root modulo p. We have
412 Ry

2 1-1
_ (pfl)(z’fl)k/l 2 y(p iyt
= 7(1_1>!2(det(g J1<ik<i—1) ]1_[1 p—1) /D1 (modp).

THEOREM 6.5.

ER" — (Ep)?  if and only if BpF) # 0 (modp).

VAa(F)
Proof. Let €1,...,6;_1 be a system of fundamental units of F. Set 3; =
Log,(e;) fori = 1,...,1 =1 and $ = 1 (recall that [ = [F' : Q]). We have

F=Q,\P™h Thus

-1
05 = Pz,
§=0

Therefore, for i = 1,...,1, we can write

-1 4
_ Z aij)\JL(p_l)/l,
§=0
where a;; € Z,. But
det(a(ﬁi))ae(}al(ﬁ/@p),i:l,..‘,l = IR, (F).

Furthermore |
det(o(f;)) = det(aij)det(g()\i(pfl)/l)).



Units and norm residue symbol 51

But, fori=1,...,1 — 1, we have

l
aij = _EWj(pfl)/lagi) (mod p)

for j=1,...,1—1 and a;0 = 0 (mod p). Therefore

det(a;;)? = Rp (modp).

The theorem follows. m

[10]
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