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1. Introduction. Let ζ(s) be the Riemann zeta-function. In 1922, Lit-
tlewood [11] established the following mean square formula for ζ(s) on the
critical line:

T�

0

|ζ(1/2 + iu)|2 du = T log(T/(2π)) + (2γ − 1)T +E(T ) (T ≥ 2)

with E(T ) � T 3/4+ε. Here γ is the Euler constant. The upper bound for
E(T ) is now improved but it is still quite far away from the conjectured
upper bound E(T ) � T 1/4+ε. This is believed to be a difficult problem.
Nevertheless, research on E(T ) is still active and a lot of papers (for exam-
ple, [1], [3]–[7], [11], [15], [18]) are devoted to problems concerning various
properties of E(T ). For T ≥ 2 and 1/2 < σ < 1, an analogue of the above
mean square formula on the line Re s = σ exists, viz.,

T�

0

|ζ(σ + iu)|2 du = ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)
2− 2σ

T 2−2σ +Eσ(T ).

Studies on Eσ(T ), parallel to that of E(T ), have been carried out by various
authors (see, for instance, [8], [12], [13]). Excellent surveys are given in [10]
and [14].

In this paper, we shall investigateΩ±-results of Eσ(T ) for 1/2 < σ ≤ 3/4.
For the case 1/2 < σ < 3/4, Matsumoto and Meurman [12] have proved that

Eσ(T ) = Ω+(T 3/4−σ(log T )σ−1/4),

while Ivić and Matsumoto [8] have showed that

Eσ(T ) = Ω−(T 3/4−σ exp(C(log log T )σ−1/4(log log log T )σ−5/4))

for some positive constant C. Here the Ω−-result is weaker than the Ω+-
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result. Our purpose here is to bring the Ω−-result up to the same strength as
the Ω+-result and, furthermore, to extend the validity of these Ω±-results
to the case σ = 3/4. We shall use two different approaches to these two
cases. The case 1/2 < σ < 3/4 will be treated by a method based on ideas
of Szegő [17] and Hafner [2]. For the other case (σ = 3/4), we shall use the
idea in Tsang [19]. This method enables us to tell more about the location
of these large values.

2. Main results

Theorem 1. For 1/2 < σ < 3/4,

Eσ(t) = Ω±(t3/4−σ(log t)σ−1/4).

Remark. Unlike E(t), Eσ(t) (for 1/2 < σ ≤ 3/4) can attain large values
of the same magnitude in both the positive and negative directions.

Theorem 2. For all sufficiently large L and T , we have

sup
t∈[T,T+L

√
T ]
±E3/4(t)�

√
logL

where the implied constant is absolute.

Corollary. E3/4(t) must have a sign change in every interval [T,
T + C

√
T ] where C > 0 is a suitable constant.

3. Some preparations. Throughout this paper, T is a sufficiently large
number, 1/2 < σ ≤ 3/4 and σα(n) =

∑
d|n d

α for each natural number n.

Lemma 3.1. Suppose 1/2 < σ < 3/4. There exist two positive constants
K1 and K2, depending only on σ, such that

(1) for any x ≥ 1,
∑

n≤x

σ1−2σ(n)
n5/4−σ ≤ K1x

σ−1/4,

(2) for any V > 1 and for all sufficiently large x ≥ x0(V ),
∑

V x<n≤x3

σ1−2σ(n)
n5/4−σ e−2π2n/x ≤ K2(V x)σ−1/4e−2π2V .

This follows from the estimate
∑
n≤x σ1−2σ(n)�σ x and integration by

parts for Stieltjes integrals.

Lemma 3.2. For all sufficiently large k, let 0 < x = o(k1/3) and β be
any real number. Then
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1
Γ (k + 1)

∞�

0

e−u
2
u2k+1 cos(4π

√
xu+ βπ) du

= 1
2e
−2π2x cos(4π

√
kx+ βπ) +O(k−1/2)

where the implied constant in the O-term is absolute.

Proof. By putting u =
√
kw and using

Γ (k + 1) =
√

2π kk+1/2e−k(1 +O(k−1)),

we have

(3.1)
1

Γ (k + 1)

∞�

0

e−u
2
u2k+1 cos(4π

√
xu+ βπ) du

= Re
k1/2

2
√

2π
eiβπ

∞�

0

wkek(1−w)+4πi
√
kxw dw (1 +O(k−1)).

To evaluate the integral, we split it into three parts,

(3.2)
∞�

0

=
1−p�

0

+
1+p�

1−p
+
∞�

1+p

= I1 + I2 + I3,

say, where p = 2k−5/12. Using the trivial bound and replacing w by
(1− p)w/k, we obtain

I1 �
1−p�

0

wkek(1−w) dw � k−(k+1)ek((1− p)ep)k
k�

0

wke−w dw(3.3)

� k−1/2((1− p)ep)k � k−1.

Here we have used � k0 wke−w dw < Γ (k + 1) and the estimate

((1− p)ep)k = ek(p+log(1−p)) � e−kp
2/4.

Similarly, by replacing w by (1 + p)w/k, we have

(3.4) I3 � k−(k+1)ek((1 + p)e−p)k
∞�

k

wke−w dw � k−1/2e−kp
2/4 � k−1.

The second integral is evaluated as follows. We expand the integrand
around w = 1 and then apply the formula

∞�

−∞
exp(At−Bt2) dt =

√
π/B exp(A2/(4B))

for ReB > 0. Then

(3.5) I2 = e4πi
√
kx

p�

−p
e−(k+πi

√
kx) v2/2−2πi

√
kxv(1 +O(k|v|3)) dv
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= e4πi
√
kx
∞�

−∞
e−(k+πi

√
kx)v2/2−2πi

√
kxv dv

+O
(∞�

p

e−kv
2/2 dv + k

p�

−p
|v|3e−kv2/2 dv

)

= e4πi
√
kx

(
2π

k + πi
√
kx

)1/2

exp
(
− 2π2kx

k + πi
√
kx

)
+O(k−1)

=
√

2π k−1/2e−2π2x+4πi
√
kx +O(k−1),

as x = o(k1/3). Our result follows from (3.1)–(3.5).

Lemma 3.3. Let a be any real number and 1/2 < σ < 3/4. As ξ → 0+,

∑

n≤ξ−3

(−1)n
σ1−2σ(n)
n5/4−σ e−2π2nξ cos(4πa

√
ξn− π/4)

= 21−2σπ1/2−2σζ(2σ)ξ1/4−σ
∞�

0

e−2w2
w2σ−3/2 cos(4aw − π/4) dw

+O(ξσ−3/4 + |a|ξ1/4+ε).

Proof. First we quote the following result of [9]. Define

∆1−2σ(v, 1/2)

=
∑

n≤v
(−1)nσ1−2σ(n)− ζ(2σ)

22σ v − 22σ−2 ζ(2− 2σ)
2− 2σ

v2−2σ + E1−2σ(0, 1/2),

where E1−2σ(0, 1/2) is independent of v. We have

(3.6) ∆1−2σ(v, 1/2)�ε v
1/(1+4σ)+ε.

Then we express the sum in the lemma in terms of integrals as

(3.7)
∑

n≤ξ−3

(· · ·)

=
ξ−3�

1−

vσ−5/4e−2π2ξv cos(4πa
√
ξv − π/4)

× (2−2σζ(2σ) + 22σ−2ζ(2− 2σ)v1−2σ) dv

+
ξ−3�

1−

vσ−5/4e−2π2ξv cos(4πa
√
ξv − π/4) d∆1−2σ(v, 1/2).
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After integrating by parts, the second integral in (3.7) is

� 1 +
ξ−3�

1−

e−2π2ξv|∆1−2σ(v, 1/2)|(vσ−9/4 + |a|
√
ξ vσ−7/4 + ξvσ−5/4) dv

� 1 + |a|ξ1/4+ε,

by (3.6). The contribution due to v1−2σ in the first integral of (3.7) is

�
ξ−3�

1−

v−1/4−σe−2π2ξv dv = O(ξσ−3/4).

By the change of variable π
√
ξv = w, we see that

ξ−3�

1−

vσ−5/4e−2π2ξv cos(4πa
√
ξv − π/4) dv

= 2π1/2−2σξ1/4−σ
{∞�

0

w2σ−3/2e−2w2
cos(4aw − π/4) dw

+O
(( π√ξ�

0

+
∞�

πξ−1

)
e−2w2

w2σ−3/2 dw
)}
.

The last O-term is O(ξσ−1/4) as ξ → 0+. Our result whence follows.

Lemma 3.4. Let h be a real-valued integrable function defined on an in-
terval I. If

|I|−1
∣∣∣

�

I

h3
∣∣∣ ≤ θ

(
|I|−1

�

I

h2
)3/2

for some θ < 1, then

sup
I

(±h) ≥
(

1− θ
2

)1/3(
|I|−1

�

I

h2
)1/2

.

This is [19, Lemma 1].

4. A convolution of Eσ(t). The aim of this process is to shorten the
series representation for Eσ(t) by convolving Eσ(t) with the kernel

K(u) = 2B
(

sin 2πBu
2πBu

)2

where B > 0 is large. It is easy to see that

K(u) =
1

2π

4πB�

−4πB

(
1− |y|

4πB

)
e−iuy dy,(4.1)
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∞�

−∞
K(u)eiyu du = max

(
0, 1− |y|

4πB

)
,

�

|u|>L
K(u)eiyu du = −2

sin(yL)
y

K(L) +O(y−2BL−1).

Suppose that B � L1/4 � T 1/16. To simplify the argument, we assume
that BL is an integer (by slightly varying the value of B) so that K(±L) = 0.
Hence �

|u|>L
K(u)eiuy du = O(y−2BL−1).

Suppose
√
T/(2π) +L ≤ t ≤

√
T/π−L and 1/2 < σ ≤ 3/4. Proofs of both

Theorems 1 and 2 are based on the following useful formula:

(4.2) t2σ−3/2
L�

−L
Eσ(2π(t+ u)2)K(u) du

=
√

2
∑

n≤B2

(−1)n
(

1−
√
n

B

)
σ1−2σ(n)
n5/4−σ cos(4π

√
n t− π/4) +O(1).

To prove this, we consider separately the cases 1/2 < σ < 3/4 and
σ = 3/4, according to the available formulas for Eσ.

Case (i): 1/2 < σ < 3/4. We use the following Atkinson-type formula
for Eσ(t) which is given in [12]. Let

g(x, n) = x log
x

2πn
− x+

π

4
,

f(x, n) = 2x arsinh

√
πn

2x
+ (π2n2 + 2πnx)1/2 − π

4
,

e(x, n) =
(

1 +
πn

2x

)−1/4(
πn

2x

)1/2(
arsinh

√
πn

2x

)−1

,

where arsinh(x) = log(x+
√
x2 + 1). Define

Σ1,σ(x) =
√

2
(
x

2π

)3/4−σ∑

n≤T
(−1)n

σ1−2σ(n)
n5/4−σ e(x, n) cos f(x, n),

(4.3)

Σ2,σ(x) = 2
(
x

2π

)1/2−σ ∑

n≤B(x,
√
T )

σ1−2σ(n)
n1−σ

(
log

x

2πn

)−1

cos g(x, n),

where

B(x,X) =
x

2π
+
X2

2
−X

(
x

2π
+
X2

4

)1/2 (
=
{√

x

2π
+
(
X

2

)2

− X
2

}2)
.
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By [12, Theorem 1], we have, for t in our given range and |u| ≤ L,

(4.4) Eσ(2π(t+ u)2) = Σ1,σ(2π(t+ u)2)−Σ2,σ(2π(t+ u)2) +O(logT ).

Remarks. The following straightforward estimates are easy to obtain.
Denoting by ∂u = ∂/∂u and ∂2

u = ∂2/∂u2 the partial differential operators
of the first and second order, we have

(1) e(2π(t+ u)2, n) = 1 +O(nt−2) and ∂ue(2π(t+ u)2, n)� nt−3;
(2) for n� t2,

f(2π(t+ u)2, n) = 4π
√
n(t+ u)− π/4 +O(n3/2t−1),

∂uf(2π(t+ u)2, n) = 8π(t+ u) arsinh
√
n

2(t+ u)
� √n

and
∂2
uf(2π(t+ u)2, n)� n3/2t−3;

(3) we have

∂ug(2π(t+ u)2, n) = 4π(t+ u) log((t+ u)2/n),

∂2
ug(2π(t+ u)2, n) = 4π log((t+ u)2/n) + 8π;

(4) B(x,X) is an increasing function in x. Moreover,

B(2π(t+ u)2,
√
T ) < 0.064447T and B(2π(t+ u)2,

√
T/2) < 0.135T

for t and u in the given range. Also, y = B(2π(t+ u)2,
√
T ) is equivalent to

t+ u =
√
y +
√
yT .

In view of (4.4), in order to prove (4.2) we first evaluate
L�

−L
Σ2,σ(2π(t+ u)2)K(u) du.

We split the sum for Σ2,σ in (4.3) into parts with n ≤ B(2π(t−L)2,
√
T ), and

n lying between B(2π(t− L)2,
√
T ) and B(2π(t+ L)2,

√
T ). Both subsums

involve the following integral. Let F = max(−L,
√
n+
√
nT − t). Applying

the inversion formula (4.1), we have
L�

F

(t+ u)1−2σ
(

log
(t+ u)2

n

)−1

cos(g(2π(t+ u)2, n))K(u) du

= Re
1

2π

4πB�

−4πB

(
1− |y|

4πB

)

×
L�

F

(t+ u)1−2σ
(

log
(t+ u)2

n

)−1

ei(g(2π(t+u)2,n)−uy) du dy
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= Re
1

2πi

4πB�

−4πB

(
1− |y|

4πB

)
(t+ u)1−2σ

(
log

(t+ u)2

n

)−1

×
(

4π(t+ u) log
(t+ u)2

n
− y
)−1

ei(g(2π(t+u)2,n)−uy)

∣∣∣∣
u=L

u=F
dy

− Re
1

2πi

4πB�

−4πB

(
1− |y|

4πB

) L�

F

ei(g(2π(t+u)2,n)−uy)

× d

du

(
(t+u)1−2σ

(
log

(t+u)2

n

)−1(
4π(t+u) log

(t+u)2

n
− y
)−1)

du dy.

Since (t+ u)2 ≥ 0.159T and n < 0.06445T , for |y| ≤ 4πB we have

d

du

(
(t+u)1−2σ

(
log

(t+ u)2

n

)−1(
4π(t+u) log

(t+ u)2

n
−y
)−1)

� t−1−2σ.

Together with the estimates in our remarks, this integral is equal to

O(t−2σ) Re
1

2πi

4πB�

−4πB

(
1− |y|

4πB

)
(1+O(|y|t−1))e−iuy

∣∣∣∣
u=L

u=F
dy+O(BLt−1−2σ)

�
{
K(L)t−2σ +BLt−1−2σ if F = −L,
Bt−2σ otherwise,

=
{
BLt−1−2σ if F = −L,
Bt−2σ otherwise.

Hence, by (4.3) and according to the splitting,

(4.5)
L�

−L
Σ2,σ(2π(t+ u)2)K(u) du

�
{
BLt−1−2σ

∑

n�T
+Bt−2σ

∑

n

∗}
σ1−2σ(n)nσ−1 � 1,

where the sum
∑∗
n is over B(2π(t − L)2,

√
T ) ≤ n ≤ B(2π(t + L)2,

√
T ).

(Note that in this range, n � t2 and the number of n’s is � tL.)
We now split Σ1,σ(2π(t + u)2) into

∑
n�B4 +

∑
B4�n≤T . The second

sum is handled by a similar argument as follows. Note that, for |y| ≤ 4πB,

d

du

(
(t+ u)3/2−2σe(2π(t+ u)2, n)

(
∂

∂u
f(2π(t+ u)2, n)− y

)−1)

� n−1/2t1/2−2σ .
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Hence, by (4.1) and integration by parts,

(4.6)
L�

−L
(t+ u)3/2−2σe(2π(t+ u)2, n) cos(f(2π(t+ u)2, n))K(u) du

= Re
1

2πi

4πB�

−4πB

(
1− |y|

4πB

)
(t+ u)3/2−2σe(2π(t+ u)2, n)

×
(
∂

∂u
f(2π(t+ u)2, n)

)−1

(1 +O(|y|n−1/2))ei(f(2π(t+u)2,n)−uy)

∣∣∣∣
u=L

u=−L
dy

+O(BLn−1/2t1/2−2σ)

� B2n−1t3/2−2σ +BLn−1/2t1/2−2σ .

In the last step, we have used the fact that K(±L) = 0. Thus, the contri-
bution of the sum over the range B4 � n ≤ T is

(4.7)
L�

−L

√
2(t+ u)3/2−2σ

∑

B4�n≤T
(−1)n

σ1−2σ(n)
n5/4−σ e(2π(t+ u)2, n)

× cos(f(2π(t+ u)2, n))K(u) du� t3/2−2σ .

For n� B4, we deduce from (4.3) together with Remarks (1) and (2) that

(4.8)
L�

−L

√
2(t+ u)3/2−2σ

∑

n�B4

(−1)n
σ1−2σ(n)
n5/4−σ e(2π(t+ u)2, n)

× cos(f(2π(t+ u)2, n))K(u) du

=
√

2 t3/2−2σ
∑

n�B4

(−1)n
σ1−2σ(n)
n5/4−σ

L�

−L
cos(4π

√
n(t+ u)− π/4)K(u) du

+O
(
t1/2−2σ

∑

n�B4

n1/4+σσ1−2σ(n)
)

=
√

2 t3/2−2σ
∑

n≤B2

(−1)n
(

1−
√
n

B

)
σ1−2σ(n)
n5/4−σ cos(4π

√
n t− π/4)

+O(t3/2−2σ).

Since log T � t3/2−2σ , in view of (4.3)–(4.8), the proof of (4.2) for 1/2 <
σ < 3/4 is complete.

Case (ii): σ = 3/4. The proof of (4.2) in this case is quite similar, but
instead of (4.4) (which is not sharp enough for our purpose), we use the
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following result. Define

Σ1(x) =
√

2
∑

n≤T
(−1)n

σ−1/2(n)√
n

w1(n)e(x, n) cos f(x, n),

(4.9)

Σ2(x) = 2
(
x

2π

)−1/4∑

n

σ−1/2(n)
n1/4

w2(x, n)
(

log
x

2πn

)−1

cos g(x, n),

where

w1(n) =
{

1 if n ≤ T/4,
2(1−

√
n/T ) if T/4 < n ≤ T ,

w2(x, n) =

{
1 if n ≤ B(x,

√
T ),

x/(π
√
nT )− 2

√
n/T − 1 if B(x,

√
T ) ≤ n < B(x,

√
T/2),

0 otherwise.

Then [12, (7.1)] gives

E3/4(2π(t+ u)2) = Σ1(2π(t+ u)2)−Σ2(2π(t+ u)2) +O(1).

Recall that |u| ≤ L and
√
T/(2π) ≤ t+u ≤

√
T/π. Plainly w2(2π(t+u)2, n)

is a continuous function in u, and, apart from the two turning points,

∂

∂u
w2(2π(t+ u)2, n)

=
{

4(t+ u)/
√
nT if

√
n+
√
nT/2− t < u <

√
n+
√
nT − t,

0 otherwise.

Hence, for |y| ≤ 4πB,

d

du

(
(t+ u)−1/2w2(2π(t+ u)2, n)

(
log

(t+ u)2

n

)−1

×
(

4π(t+ u) log
(t+ u)2

n
− y
)−1)

� n−1/2t−3/2.

Thus, similarly to the proof of (4.5), we have

L�

−L
(t+u)−1/2w2(2π(t+u)2, n)

(
log

(t+ u)2

n

)−1

cos(g(2π(t+u)2, n))K(u) du

� BLn−1/2t−3/2 +B2t−5/2.

Hence, from (4.9),

(4.10)
L�

−L
Σ2(2π(t+ u)2)K(u) du� 1.
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Next, we estimate the integral

L�

−L
e(2π(t+ u)2, n) cos(f(2π(t+ u)2, n))K(u) du.

Using the first order approximations for e(2π(t+u)2, n) and f(2π(t+u)2, n)
in Remarks (1) and (2), we find that

L�

−L
e(2π(t+ u)2, n) cos(f(2π(t+ u)2, n))K(u) du

= max(0, 1−√n/B) cos(4π
√
n t− π/4) +O(BL−1n−1 + n3/2t−1).

This is good when n is small, say n ≤ B4. For n ≥ B4, we follow the
argument that leads to (4.6) and prove

L�

−L
e(2π(t+ u)2, n) cos(f(2π(t+ u)2, n))K(u) du

� B2n−1 +BL
√
n t−3.

Using these two estimates and in view of (4.9), we have

L�

−L
Σ1(2π(t+ u)2)K(u) du

=
√

2
∑

n≤B2

(−1)n
σ−1/2(n)√

n

(
1−
√
n

B

)
cos(4π

√
n t− π/4) +O(1).

Together with (4.10), this completes the proof of (4.2) for σ = 3/4.

5. Proof of Theorem 1. Equation (4.2) is proved under the assump-
tion B � L1/4 � T 1/16. Letting B = T 1/6000 and L = T 1/1000, we may
make use of (4.2) for a wide range of values of T (the value of T in (4.2)).
In particular, for T 1/12 ≤ t ≤ T 1/2, we have

(5.1) t2σ−3/2
L�

−L
Eσ(2π(t+ u)2)K(u) du =

√
2S(t) +O(1)

where

S(t) =
∑

n≤B2

(−1)n
(

1−
√
n

B

)
σ1−2σ(n)
n5/4−σ cos(4π

√
n t− π/4).

Let k satisfy T 1/5 ≤ k ≤ T 2/5. Let c be any positive constant and ξ =
c(log T )−1. Lemma 3.2 yields
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1
Γ (k + 1)

∞�

0

e−u
2
u2k+1S(u

√
ξ) du

=
1
2

∑

n≤B2

(−1)n
σ1−2σ(n)
n5/4−σ

(
1−
√
n

B

)

× {e−2π2nξ cos(4π
√
knξ − π/4) +O(k−1/2)}.

Note that, estimated crudely (by an argument similar to that in Lem-
ma 3.1), we have

k−1/2
∑

n≤B2

σ1−2σ(n)
n5/4−σ � T−1/10+1/6000 � 1,

∑

ξ−3<n≤B2

σ1−2σ(n)
n5/4−σ e−2π2nξ � 1,

and
∑

n≤ξ−3

σ1−2σ(n)
n5/4−σ ·

√
n

B
� 1.

Hence

(5.2)
1

Γ (k + 1)

∞�

0

e−u
2
u2k+1S(u

√
ξ) du

=
1
2

∑

n≤ξ−3

(−1)n
σ1−2σ(n)
n5/4−σ e−2π2nξ cos(4π

√
knξ − π/4) +O(1).

Define

g(a) =
∞�

0

e−w
2
w2σ−3/2 cos(4aw − π/4) dw.

It is known that (see [16]) when σ > 1/2, there exist real numbers a+ and
a− such that g(a+) > 0 and g(a−) < 0. We choose two large constants U
and V such that

(5.3) (U−1K1 + e−2π2VK2)V σ−1/4

< 2−3σπ1/2−2σζ(2σ) min(g(a+), |g(a−)|),
where K1 and K2 are those that appeared in Lemma 3.1.

LetR = [V ξ−1]. By Dirichlet’s theorem on simultaneous approximations,
there exists l such that

T 1/10 ≤ l ≤ (1 + (4πU)R)T 1/10 and ‖l√n‖ < (4πU)−1 for 1 ≤ n ≤ R.
Set now the constant c = 12V log(4πU) in the definition of ξ and put
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k± = (
√

2 a± + lξ−1/2)2. Then from the range of l, we see that T 1/5 <
k± < T 2/5. Since

2σ−1/4
∞�

0

e−2w2
w2σ−3/2 cos(4

√
2 aw − π/4) dw = g(a),

by Lemma 3.3,

(5.4)
∣∣∣∣25/4−3σπ1/2−2σζ(2σ)g(a±)ξ1/4−σ

−
∑

n≤ξ−3

(−1)n
σ1−2σ(n)
n5/4−σ e−2π2nξ cos(4π

√
k±nξ − π/4)

∣∣∣∣

≤
∣∣∣∣
∑

n≤ξ−3

(−1)n
σ1−2σ(n)
n5/4−σ e−2π2nξ

× (cos(4π
√

2 a±
√
ξn− π/4)− cos(4π

√
k±nξ − π/4))

∣∣∣∣+O(ξσ−3/4).

In the last series, the subsum
∑
R<n≤ξ−3 , by Lemma 3.1(2), contributes no

more than K2V
σ−1/4e−2π2V ξ1/4−σ . For n ≤ R, we note that

|cos(4π
√

2 a±
√
ξn− π/4)− cos(4π

√
k±nξ − π/4)| ≤ U−1.

Hence, by Lemma 3.1(1),
∣∣∣
∑

n≤R
· · ·
∣∣∣ ≤ U−1K1(V ξ−1)σ−1/4.

Combining all these, we see that the right hand side of (5.4) is

≤ (U−1K1 + e−2π2VK2)V σ−1/4ξ1/4−σ +O(ξσ−3/4)

< 1
2 · 25/4−3σπ1/2−2σζ(2σ) min(g(a+), |g(a−)|)ξ1/4−σ,

by our choice of U and V in (5.3). In other words,

±
∑

n≤ξ−3

(−1)n
σ1−2σ(n)
n5/4−σ e−2π2nξ cos(4π

√
k±nξ − π/4)� ξ1/4−σ.

Hence, by (5.2),

± 1
Γ (k± + 1)

∞�

0

e−u
2
u2k±+1S(u

√
ξ) du� (log T )σ−1/4.

Since S(u
√
ξ)� B2σ−1/2 ≤ B,

1
Γ (k± + 1)

( T 1/11�

0

+
∞�

T 1/3

)
e−u

2
u2k±+1S(u

√
ξ) du� e−T

1/5
.
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We can, therefore, conclude that supt∈[T 1/12,T 1/3]±S(t) � (log T )σ−1/4.

Then from (5.1), there exist t± ∈ [T 1/12, T 1/3] such that

±t2σ−3/2
±

L�

−L
Eσ(2π(t± + u)2)K(u) du� (log t±)σ−1/4.

As L = o(t1/2± ) and T →∞, this completes the proof of Theorem 1.

6. Proof of Theorem 2. In this section, we take B = [L7/6]/L ≈ L1/6

so that BL is an integer and 1 � L ≤ T 1/4. For
√
T/(2π) + L ≤ t ≤√

T/π − L, we proved in (4.2) that

(6.1)
L�

−L
E3/4(2π(t+ u)2)K(u) du = H(t) +O(1),

where
H(t) =

∑

n≤B2

ann
−1/2 cos(4π

√
n t− π/4),

an = (−1)n
√

2(1−√nB−1)σ−1/2(n).

We shall prove below that, for any interval I inside [
√
T/(2π) +L,

√
T/π−L]

of length L,

|I|−1
�

I

H(t)2 dt� logL,(6.2)

|I|−1
�

I

H(t)3 dt� 1.(6.3)

Then by Lemma 3.4, when L is sufficiently large,

sup
t∈I
±H(t)�

√
logL.

Taking I to be the interval [
√
T/(2π) + L,

√
T/(2π) + 2L], we infer from

(6.1) that

sup
t∈I
±H(t) +O(1) ≤ sup

y
±E3/4(y)

L�

−L
K(u) du ≤ sup

y
±E3/4(y),

where y = 2π(t+ u)2 lies in [T, T + 72L
√
T ]. This is our Theorem 2, except

for the condition L ≤ T 1/4. However, if T 1/4 < L ≤ T 1/2, then certainly

sup
t∈[T,T+L

√
T ]
≥ sup
t∈[T,T+T 3/4]

�
√

log T 1/4 ≥
√

1
2

logL.
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When L > T 1/2 we have, by our above result for L =
√
T ,

sup
t∈[T,T+L

√
T ]

≥ sup
t∈[(T+L

√
T )/2,T+L

√
T ]

�
√

1
2

log
(
T + L

√
T

2

)
�
√

logL.

This completes the proof of our Theorem 2.

It therefore remains to prove (6.2) and (6.3).
Consider first (6.2). By squaring out H(t) and then integrating the dou-

ble sum term by term, we find that
�

I

H(t)2 dt =
1
2

∑

m,n≤B2

anam√
nm

�

I

cos(4π(
√
n−√m)t) dt

+
1
2

∑

m,n≤B2

anam√
nm

�

I

sin(4π(
√
n+
√
m)t) dt.

The diagonal terms in the first sum (that is, those withm = n) contribute
1
2 |I|

∑
n≤B2 a2

nn
−1 � |I| logB, since

∑
n≤x σ−1/2(n)2n−1 ∼ log x (see [12,

p. 374]). For m 6= n, by a crude estimate,
�

I

cos(4π(
√
n−√m)t) dt� |√n−√m|−1 � √n+

√
m.

Hence the non-diagonal terms’ contribution is � B3. Since |I| = L ≥ B3,
(6.2) follows readily.

For the third power moment of H(t) in (6.3), we use similar argument.
Multiplying out H(t)3 and then integrating term by term, we see that the
contribution of the non-diagonal terms is

�
∑

√
m+
√
n6=
√
k

m,n,k≤B2

|amanak|(mnk)−1/2|√m+
√
n−
√
k|−1 � B6,

by observing that |√m+
√
n−
√
k| � max(m,n, k)−3/2 when

√
m+

√
n−√

k 6= 0, and
∑
n≤B2 |an| � B2.

When
√
m +

√
n −

√
k = 0, we must have m = sa2, n = sb2 and

k = s(a + b)2, where s is square-free and a, b are natural numbers. Hence
the sum of diagonal terms is equal to

3
√

2
8
|I|

∑

m,n,k≤B2
√
m+
√
n=
√
k

amanak√
mnk

� |I|
∑

s

s−3/2
∑

a,b

|asa2asb2as(a+b)2 |(ab(a+ b))−1.
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Since an � nε, the sums over s, a, b are all convergent and therefore
� I H(t)3 dt� |I|, as desired.
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