$\Omega_{ \pm}$-results of the error term in the mean square formula of the Riemann zeta-function in the critical strip

by
Yuk-Kam Lau (Nancy) and Kai-Man Tsang (Hong Kong)

1. Introduction. Let $\zeta(s)$ be the Riemann zeta-function. In 1922, Littlewood [11] established the following mean square formula for $\zeta(s)$ on the critical line:

$$
\int_{0}^{T}|\zeta(1 / 2+i u)|^{2} d u=T \log (T /(2 \pi))+(2 \gamma-1) T+E(T) \quad(T \geq 2)
$$

with $E(T) \ll T^{3 / 4+\varepsilon}$. Here γ is the Euler constant. The upper bound for $E(T)$ is now improved but it is still quite far away from the conjectured upper bound $E(T) \ll T^{1 / 4+\varepsilon}$. This is believed to be a difficult problem. Nevertheless, research on $E(T)$ is still active and a lot of papers (for example, [1], [3]-[7], [11], [15], [18]) are devoted to problems concerning various properties of $E(T)$. For $T \geq 2$ and $1 / 2<\sigma<1$, an analogue of the above mean square formula on the line $\operatorname{Re} s=\sigma$ exists, viz.,

$$
\int_{0}^{T}|\zeta(\sigma+i u)|^{2} d u=\zeta(2 \sigma) T+(2 \pi)^{2 \sigma-1} \frac{\zeta(2-2 \sigma)}{2-2 \sigma} T^{2-2 \sigma}+E_{\sigma}(T)
$$

Studies on $E_{\sigma}(T)$, parallel to that of $E(T)$, have been carried out by various authors (see, for instance, [8], [12], [13]). Excellent surveys are given in [10] and [14].

In this paper, we shall investigate $\Omega_{ \pm}$-results of $E_{\sigma}(T)$ for $1 / 2<\sigma \leq 3 / 4$. For the case $1 / 2<\sigma<3 / 4$, Matsumoto and Meurman [12] have proved that

$$
E_{\sigma}(T)=\Omega_{+}\left(T^{3 / 4-\sigma}(\log T)^{\sigma-1 / 4}\right)
$$

while Ivic and Matsumoto [8] have showed that

$$
E_{\sigma}(T)=\Omega_{-}\left(T^{3 / 4-\sigma} \exp \left(C(\log \log T)^{\sigma-1 / 4}(\log \log \log T)^{\sigma-5 / 4}\right)\right)
$$

for some positive constant C. Here the Ω_{-}result is weaker than the Ω_{+-}

[^0]result. Our purpose here is to bring the Ω_{-}-result up to the same strength as the Ω_{+}-result and, furthermore, to extend the validity of these $\Omega_{ \pm}$-results to the case $\sigma=3 / 4$. We shall use two different approaches to these two cases. The case $1 / 2<\sigma<3 / 4$ will be treated by a method based on ideas of Szegő [17] and Hafner [2]. For the other case ($\sigma=3 / 4$), we shall use the idea in Tsang [19]. This method enables us to tell more about the location of these large values.

2. Main results

Theorem 1. For $1 / 2<\sigma<3 / 4$,

$$
E_{\sigma}(t)=\Omega_{ \pm}\left(t^{3 / 4-\sigma}(\log t)^{\sigma-1 / 4}\right)
$$

REmARK. Unlike $E(t), E_{\sigma}(t)$ (for $1 / 2<\sigma \leq 3 / 4$) can attain large values of the same magnitude in both the positive and negative directions.

Theorem 2. For all sufficiently large L and T, we have

$$
\sup _{t \in[T, T+L \sqrt{T}]} \pm E_{3 / 4}(t) \gg \sqrt{\log L}
$$

where the implied constant is absolute.
Corollary. $E_{3 / 4}(t)$ must have a sign change in every interval $[T$, $T+C \sqrt{T}]$ where $C>0$ is a suitable constant.
3. Some preparations. Throughout this paper, T is a sufficiently large number, $1 / 2<\sigma \leq 3 / 4$ and $\sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$ for each natural number n.

Lemma 3.1. Suppose $1 / 2<\sigma<3 / 4$. There exist two positive constants K_{1} and K_{2}, depending only on σ, such that
(1) for any $x \geq 1$,

$$
\sum_{n \leq x} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \leq K_{1} x^{\sigma-1 / 4}
$$

(2) for any $V>1$ and for all sufficiently large $x \geq x_{0}(V)$,

$$
\sum_{V x<n \leq x^{3}} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n / x} \leq K_{2}(V x)^{\sigma-1 / 4} e^{-2 \pi^{2} V}
$$

This follows from the estimate $\sum_{n \leq x} \sigma_{1-2 \sigma}(n) \ll_{\sigma} x$ and integration by parts for Stieltjes integrals.

Lemma 3.2. For all sufficiently large k, let $0<x=o\left(k^{1 / 3}\right)$ and β be any real number. Then

$$
\begin{aligned}
\frac{1}{\Gamma(k+1)} \int_{0}^{\infty} e^{-u^{2}} u^{2 k+1} \cos (4 & \pi \sqrt{x} u+\beta \pi) d u \\
& =\frac{1}{2} e^{-2 \pi^{2} x} \cos (4 \pi \sqrt{k x}+\beta \pi)+O\left(k^{-1 / 2}\right)
\end{aligned}
$$

where the implied constant in the O-term is absolute.
Proof. By putting $u=\sqrt{k w}$ and using

$$
\Gamma(k+1)=\sqrt{2 \pi} k^{k+1 / 2} e^{-k}\left(1+O\left(k^{-1}\right)\right)
$$

we have

$$
\begin{align*}
& \frac{1}{\Gamma(k+1)} \int_{0}^{\infty} e^{-u^{2}} u^{2 k+1} \cos (4 \pi \sqrt{x} u+\beta \pi) d u \tag{3.1}\\
& \quad=\operatorname{Re} \frac{k^{1 / 2}}{2 \sqrt{2 \pi}} e^{i \beta \pi} \int_{0}^{\infty} w^{k} e^{k(1-w)+4 \pi i \sqrt{k x w}} d w\left(1+O\left(k^{-1}\right)\right)
\end{align*}
$$

To evaluate the integral, we split it into three parts,

$$
\begin{equation*}
\int_{0}^{\infty}=\int_{0}^{1-p}+\int_{1-p}^{1+p}+\int_{1+p}^{\infty}=I_{1}+I_{2}+I_{3} \tag{3.2}
\end{equation*}
$$

say, where $p=2 k^{-5 / 12}$. Using the trivial bound and replacing w by $(1-p) w / k$, we obtain

$$
\begin{align*}
I_{1} & \ll \int_{0}^{1-p} w^{k} e^{k(1-w)} d w \ll k^{-(k+1)} e^{k}\left((1-p) e^{p}\right)^{k} \int_{0}^{k} w^{k} e^{-w} d w \tag{3.3}\\
& \ll k^{-1 / 2}\left((1-p) e^{p}\right)^{k} \ll k^{-1}
\end{align*}
$$

Here we have used $\int_{0}^{k} w^{k} e^{-w} d w<\Gamma(k+1)$ and the estimate

$$
\left((1-p) e^{p}\right)^{k}=e^{k(p+\log (1-p))} \ll e^{-k p^{2} / 4}
$$

Similarly, by replacing w by $(1+p) w / k$, we have

$$
\begin{equation*}
I_{3} \ll k^{-(k+1)} e^{k}\left((1+p) e^{-p}\right)^{k} \int_{k}^{\infty} w^{k} e^{-w} d w \ll k^{-1 / 2} e^{-k p^{2} / 4} \ll k^{-1} \tag{3.4}
\end{equation*}
$$

The second integral is evaluated as follows. We expand the integrand around $w=1$ and then apply the formula

$$
\int_{-\infty}^{\infty} \exp \left(A t-B t^{2}\right) d t=\sqrt{\pi / B} \exp \left(A^{2} /(4 B)\right)
$$

for $\operatorname{Re} B>0$. Then

$$
\begin{equation*}
I_{2}=e^{4 \pi i \sqrt{k x}} \int_{-p}^{p} e^{-(k+\pi i \sqrt{k x}) v^{2} / 2-2 \pi i \sqrt{k x} v}\left(1+O\left(k|v|^{3}\right)\right) d v \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
= & e^{4 \pi i \sqrt{k x}} \int_{-\infty}^{\infty} e^{-(k+\pi i \sqrt{k x}) v^{2} / 2-2 \pi i \sqrt{k x} v} d v \\
& +O\left(\int_{p}^{\infty} e^{-k v^{2} / 2} d v+k \int_{-p}^{p}|v|^{3} e^{-k v^{2} / 2} d v\right) \\
= & e^{4 \pi i \sqrt{k x}}\left(\frac{2 \pi}{k+\pi i \sqrt{k x}}\right)^{1 / 2} \exp \left(-\frac{2 \pi^{2} k x}{k+\pi i \sqrt{k x}}\right)+O\left(k^{-1}\right) \\
= & \sqrt{2 \pi} k^{-1 / 2} e^{-2 \pi^{2} x+4 \pi i \sqrt{k x}}+O\left(k^{-1}\right),
\end{aligned}
$$

as $x=o\left(k^{1 / 3}\right)$. Our result follows from (3.1)-(3.5).
Lemma 3.3. Let a be any real number and $1 / 2<\sigma<3 / 4$. As $\xi \rightarrow 0+$,

$$
\begin{aligned}
& \sum_{n \leq \xi^{-3}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi} \cos (4 \pi a \sqrt{\xi n}-\pi / 4) \\
&= 2^{1-2 \sigma} \pi^{1 / 2-2 \sigma} \zeta(2 \sigma) \xi^{1 / 4-\sigma} \int_{0}^{\infty} e^{-2 w^{2}} w^{2 \sigma-3 / 2} \cos (4 a w-\pi / 4) d w \\
&+O\left(\xi^{\sigma-3 / 4}+|a| \xi^{1 / 4+\varepsilon}\right)
\end{aligned}
$$

Proof. First we quote the following result of [9]. Define

$$
\begin{aligned}
& \Delta_{1-2 \sigma}(v, 1 / 2) \\
& \quad=\sum_{n \leq v}(-1)^{n} \sigma_{1-2 \sigma}(n)-\frac{\zeta(2 \sigma)}{2^{2 \sigma}} v-2^{2 \sigma-2} \frac{\zeta(2-2 \sigma)}{2-2 \sigma} v^{2-2 \sigma}+E_{1-2 \sigma}(0,1 / 2),
\end{aligned}
$$

where $E_{1-2 \sigma}(0,1 / 2)$ is independent of v. We have

$$
\begin{equation*}
\Delta_{1-2 \sigma}(v, 1 / 2) \ll_{\varepsilon} v^{1 /(1+4 \sigma)+\varepsilon} \tag{3.6}
\end{equation*}
$$

Then we express the sum in the lemma in terms of integrals as

$$
\begin{align*}
& \sum_{n \leq \xi^{-3}}(\cdots) \tag{3.7}\\
&= \int_{1^{-}}^{\xi^{-3}} v^{\sigma-5 / 4} e^{-2 \pi^{2} \xi v} \cos (4 \pi a \sqrt{\xi v}-\pi / 4) \\
& \times\left(2^{-2 \sigma} \zeta(2 \sigma)+2^{2 \sigma-2} \zeta(2-2 \sigma) v^{1-2 \sigma}\right) d v \\
&+\int_{1^{-}}^{\xi^{-3}} v^{\sigma-5 / 4} e^{-2 \pi^{2} \xi v} \cos (4 \pi a \sqrt{\xi v}-\pi / 4) d \Delta_{1-2 \sigma}(v, 1 / 2)
\end{align*}
$$

After integrating by parts, the second integral in (3.7) is

$$
\begin{aligned}
& \ll 1+\int_{1^{-}}^{\xi^{-3}} e^{-2 \pi^{2} \xi v}\left|\Delta_{1-2 \sigma}(v, 1 / 2)\right|\left(v^{\sigma-9 / 4}+|a| \sqrt{\xi} v^{\sigma-7 / 4}+\xi v^{\sigma-5 / 4}\right) d v \\
& \ll 1+|a| \xi^{1 / 4+\varepsilon}
\end{aligned}
$$

by (3.6). The contribution due to $v^{1-2 \sigma}$ in the first integral of (3.7) is

$$
\ll \int_{1^{-}}^{\xi^{-3}} v^{-1 / 4-\sigma} e^{-2 \pi^{2} \xi v} d v=O\left(\xi^{\sigma-3 / 4}\right) .
$$

By the change of variable $\pi \sqrt{\xi v}=w$, we see that

$$
\begin{aligned}
& \int_{1^{-}}^{\xi^{-3}} v^{\sigma-5 / 4} e^{-2 \pi^{2} \xi v} \cos (4 \pi a \sqrt{\xi v}-\pi / 4) d v \\
& =2 \pi^{1 / 2-2 \sigma} \xi^{1 / 4-\sigma}\left\{\int_{0}^{\infty} w^{2 \sigma-3 / 2} e^{-2 w^{2}} \cos (4 a w-\pi / 4) d w\right. \\
& \left.\quad+O\left(\left(\int_{0}^{\pi \sqrt{\xi}}+\int_{\pi \xi^{-1}}^{\infty}\right) e^{-2 w^{2}} w^{2 \sigma-3 / 2} d w\right)\right\}
\end{aligned}
$$

The last O-term is $O\left(\xi^{\sigma-1 / 4}\right)$ as $\xi \rightarrow 0+$. Our result whence follows.
Lemma 3.4. Let h be a real-valued integrable function defined on an interval I. If

$$
|I|^{-1}\left|\int_{I} h^{3}\right| \leq \theta\left(|I|^{-1} \int_{I} h^{2}\right)^{3 / 2}
$$

for some $\theta<1$, then

$$
\sup _{I}(\pm h) \geq\left(\frac{1-\theta}{2}\right)^{1 / 3}\left(|I|^{-1} \int_{I} h^{2}\right)^{1 / 2}
$$

This is $[19$, Lemma 1].
4. A convolution of $E_{\sigma}(t)$. The aim of this process is to shorten the series representation for $E_{\sigma}(t)$ by convolving $E_{\sigma}(t)$ with the kernel

$$
K(u)=2 B\left(\frac{\sin 2 \pi B u}{2 \pi B u}\right)^{2}
$$

where $B>0$ is large. It is easy to see that

$$
\begin{equation*}
K(u)=\frac{1}{2 \pi} \int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right) e^{-i u y} d y \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} K(u) e^{i y u} d u=\max \left(0,1-\frac{|y|}{4 \pi B}\right) \\
& \int_{|u|>L} K(u) e^{i y u} d u=-2 \frac{\sin (y L)}{y} K(L)+O\left(y^{-2} B L^{-1}\right)
\end{aligned}
$$

Suppose that $B \ll L^{1 / 4} \ll T^{1 / 16}$. To simplify the argument, we assume that $B L$ is an integer (by slightly varying the value of B) so that $K(\pm L)=0$. Hence

$$
\int_{u \mid>L} K(u) e^{i u y} d u=O\left(y^{-2} B L^{-1}\right) .
$$

Suppose $\sqrt{T /(2 \pi)}+L \leq t \leq \sqrt{T / \pi}-L$ and $1 / 2<\sigma \leq 3 / 4$. Proofs of both Theorems 1 and 2 are based on the following useful formula:

$$
\begin{align*}
& t^{2 \sigma-3 / 2} \int_{-L}^{L} E_{\sigma}\left(2 \pi(t+u)^{2}\right) K(u) d u \tag{4.2}\\
& \quad=\sqrt{2} \sum_{n \leq B^{2}}(-1)^{n}\left(1-\frac{\sqrt{n}}{B}\right) \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \cos (4 \pi \sqrt{n} t-\pi / 4)+O(1)
\end{align*}
$$

To prove this, we consider separately the cases $1 / 2<\sigma<3 / 4$ and $\sigma=3 / 4$, according to the available formulas for E_{σ}.

CASE (i): $1 / 2<\sigma<3 / 4$. We use the following Atkinson-type formula for $E_{\sigma}(t)$ which is given in [12]. Let

$$
\begin{aligned}
& g(x, n)=x \log \frac{x}{2 \pi n}-x+\frac{\pi}{4} \\
& f(x, n)=2 x \operatorname{arsinh} \sqrt{\frac{\pi n}{2 x}}+\left(\pi^{2} n^{2}+2 \pi n x\right)^{1 / 2}-\frac{\pi}{4} \\
& e(x, n)=\left(1+\frac{\pi n}{2 x}\right)^{-1 / 4}\left(\frac{\pi n}{2 x}\right)^{1 / 2}\left(\operatorname{arsinh} \sqrt{\frac{\pi n}{2 x}}\right)^{-1}
\end{aligned}
$$

where $\operatorname{arsinh}(x)=\log \left(x+\sqrt{x^{2}+1}\right)$. Define

$$
\begin{align*}
& \Sigma_{1, \sigma}(x)=\sqrt{2}\left(\frac{x}{2 \pi}\right)^{3 / 4-\sigma} \sum_{n \leq T}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e(x, n) \cos f(x, n) \\
& \Sigma_{2, \sigma}(x)=2\left(\frac{x}{2 \pi}\right)^{1 / 2-\sigma} \sum_{n \leq B(x, \sqrt{T})} \frac{\sigma_{1-2 \sigma}(n)}{n^{1-\sigma}}\left(\log \frac{x}{2 \pi n}\right)^{-1} \cos g(x, n) \tag{4.3}
\end{align*}
$$

where

$$
B(x, X)=\frac{x}{2 \pi}+\frac{X^{2}}{2}-X\left(\frac{x}{2 \pi}+\frac{X^{2}}{4}\right)^{1 / 2} \quad\left(=\left\{\sqrt{\frac{x}{2 \pi}+\left(\frac{X}{2}\right)^{2}}-\frac{X}{2}\right\}^{2}\right)
$$

By [12, Theorem 1], we have, for t in our given range and $|u| \leq L$,

$$
\begin{equation*}
E_{\sigma}\left(2 \pi(t+u)^{2}\right)=\Sigma_{1, \sigma}\left(2 \pi(t+u)^{2}\right)-\Sigma_{2, \sigma}\left(2 \pi(t+u)^{2}\right)+O(\log T) \tag{4.4}
\end{equation*}
$$

REmarks. The following straightforward estimates are easy to obtain. Denoting by $\partial_{u}=\partial / \partial u$ and $\partial_{u}^{2}=\partial^{2} / \partial u^{2}$ the partial differential operators of the first and second order, we have
(1) $e\left(2 \pi(t+u)^{2}, n\right)=1+O\left(n t^{-2}\right)$ and $\partial_{u} e\left(2 \pi(t+u)^{2}, n\right) \ll n t^{-3}$;
(2) for $n \ll t^{2}$,

$$
\begin{aligned}
f\left(2 \pi(t+u)^{2}, n\right) & =4 \pi \sqrt{n}(t+u)-\pi / 4+O\left(n^{3 / 2} t^{-1}\right), \\
\partial_{u} f\left(2 \pi(t+u)^{2}, n\right) & =8 \pi(t+u) \operatorname{arsinh} \frac{\sqrt{n}}{2(t+u)} \asymp \sqrt{n}
\end{aligned}
$$

and

$$
\partial_{u}^{2} f\left(2 \pi(t+u)^{2}, n\right) \ll n^{3 / 2} t^{-3}
$$

(3) we have

$$
\begin{aligned}
& \partial_{u} g\left(2 \pi(t+u)^{2}, n\right)=4 \pi(t+u) \log \left((t+u)^{2} / n\right), \\
& \partial_{u}^{2} g\left(2 \pi(t+u)^{2}, n\right)=4 \pi \log \left((t+u)^{2} / n\right)+8 \pi
\end{aligned}
$$

(4) $B(x, X)$ is an increasing function in x. Moreover,

$$
B\left(2 \pi(t+u)^{2}, \sqrt{T}\right)<0.064447 T \quad \text { and } \quad B\left(2 \pi(t+u)^{2}, \sqrt{T} / 2\right)<0.135 T
$$

for t and u in the given range. Also, $y=B\left(2 \pi(t+u)^{2}, \sqrt{T}\right)$ is equivalent to $t+u=\sqrt{y+\sqrt{y T}}$.

In view of (4.4), in order to prove (4.2) we first evaluate

$$
\int_{-L}^{L} \Sigma_{2, \sigma}\left(2 \pi(t+u)^{2}\right) K(u) d u
$$

We split the sum for $\Sigma_{2, \sigma}$ in (4.3) into parts with $n \leq B\left(2 \pi(t-L)^{2}, \sqrt{T}\right)$, and n lying between $B\left(2 \pi(t-L)^{2}, \sqrt{T}\right)$ and $B\left(2 \pi(t+L)^{2}, \sqrt{T}\right)$. Both subsums involve the following integral. Let $F=\max (-L, \sqrt{n+\sqrt{n T}}-t)$. Applying the inversion formula (4.1), we have

$$
\begin{aligned}
\int_{F}^{L}(t+u)^{1-2 \sigma} & \left(\log \frac{(t+u)^{2}}{n}\right)^{-1} \cos \left(g\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \\
= & \operatorname{Re} \frac{1}{2 \pi} \int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right) \\
& \times \int_{F}^{L}(t+u)^{1-2 \sigma}\left(\log \frac{(t+u)^{2}}{n}\right)^{-1} e^{i\left(g\left(2 \pi(t+u)^{2}, n\right)-u y\right)} d u d y
\end{aligned}
$$

$$
\begin{aligned}
= & \operatorname{Re} \frac{1}{2 \pi i} \int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right)(t+u)^{1-2 \sigma}\left(\log \frac{(t+u)^{2}}{n}\right)^{-1} \\
& \times\left.\left(4 \pi(t+u) \log \frac{(t+u)^{2}}{n}-y\right)^{-1} e^{i\left(g\left(2 \pi(t+u)^{2}, n\right)-u y\right)}\right|_{u=F} ^{u=L} d y \\
& -\operatorname{Re} \frac{1}{2 \pi i} \int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right) \int_{F}^{L} e^{i\left(g\left(2 \pi(t+u)^{2}, n\right)-u y\right)} \\
& \times \frac{d}{d u}\left((t+u)^{1-2 \sigma}\left(\log \frac{(t+u)^{2}}{n}\right)^{-1}\left(4 \pi(t+u) \log \frac{(t+u)^{2}}{n}-y\right)^{-1}\right) d u d y .
\end{aligned}
$$

Since $(t+u)^{2} \geq 0.159 T$ and $n<0.06445 T$, for $|y| \leq 4 \pi B$ we have

$$
\frac{d}{d u}\left((t+u)^{1-2 \sigma}\left(\log \frac{(t+u)^{2}}{n}\right)^{-1}\left(4 \pi(t+u) \log \frac{(t+u)^{2}}{n}-y\right)^{-1}\right) \ll t^{-1-2 \sigma}
$$

Together with the estimates in our remarks, this integral is equal to

$$
\begin{aligned}
O\left(t^{-2 \sigma}\right) \operatorname{Re} \frac{1}{2 \pi i} & \left.\int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right)\left(1+O\left(|y| t^{-1}\right)\right) e^{-i u y}\right|_{u=F} ^{u=L} d y+O\left(B L t^{-1-2 \sigma}\right) \\
& \ll \begin{cases}K(L) t^{-2 \sigma}+B L t^{-1-2 \sigma} & \text { if } F=-L \\
B t^{-2 \sigma} & \text { otherwise },\end{cases} \\
& = \begin{cases}B L t^{-1-2 \sigma} & \text { if } F=-L, \\
B t^{-2 \sigma} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence, by (4.3) and according to the splitting,

$$
\begin{align*}
& \int_{-L}^{L} \Sigma_{2, \sigma}\left(2 \pi(t+u)^{2}\right) K(u) d u \tag{4.5}\\
& \quad \ll\left\{B L t^{-1-2 \sigma} \sum_{n \ll T}+B t^{-2 \sigma} \sum_{n}^{*}\right\} \sigma_{1-2 \sigma}(n) n^{\sigma-1} \ll 1
\end{align*}
$$

where the sum \sum_{n}^{*} is over $B\left(2 \pi(t-L)^{2}, \sqrt{T}\right) \leq n \leq B\left(2 \pi(t+L)^{2}, \sqrt{T}\right)$. (Note that in this range, $n \asymp t^{2}$ and the number of n 's is $\asymp t L$.)

We now split $\Sigma_{1, \sigma}\left(2 \pi(t+u)^{2}\right)$ into $\sum_{n \ll B^{4}}+\sum_{B^{4} \ll n \leq T}$. The second sum is handled by a similar argument as follows. Note that, for $|y| \leq 4 \pi B$,

$$
\begin{aligned}
\frac{d}{d u}\left((t + u) ^ { 3 / 2 - 2 \sigma } e (2 \pi (t + u) ^ { 2 } , n) \left(\frac{\partial}{\partial u} f\left(2 \pi(t+u)^{2}, n\right)\right.\right. & \left.-y)^{-1}\right) \\
& \ll n^{-1 / 2} t^{1 / 2-2 \sigma}
\end{aligned}
$$

Hence, by (4.1) and integration by parts,

$$
\begin{equation*}
\int_{-L}^{L}(t+u)^{3 / 2-2 \sigma} e\left(2 \pi(t+u)^{2}, n\right) \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \tag{4.6}
\end{equation*}
$$

$$
=\operatorname{Re} \frac{1}{2 \pi i} \int_{-4 \pi B}^{4 \pi B}\left(1-\frac{|y|}{4 \pi B}\right)(t+u)^{3 / 2-2 \sigma} e\left(2 \pi(t+u)^{2}, n\right)
$$

$$
\times\left.\left(\frac{\partial}{\partial u} f\left(2 \pi(t+u)^{2}, n\right)\right)^{-1}\left(1+O\left(|y| n^{-1 / 2}\right)\right) e^{i\left(f\left(2 \pi(t+u)^{2}, n\right)-u y\right)}\right|_{u=-L} ^{u=L} d y
$$

$$
+O\left(B L n^{-1 / 2} t^{1 / 2-2 \sigma}\right)
$$

$$
\ll B^{2} n^{-1} t^{3 / 2-2 \sigma}+B L n^{-1 / 2} t^{1 / 2-2 \sigma}
$$

In the last step, we have used the fact that $K(\pm L)=0$. Thus, the contribution of the sum over the range $B^{4} \ll n \leq T$ is

$$
\begin{align*}
\int_{-L}^{L} \sqrt{2}(t+u)^{3 / 2-2 \sigma} & \sum_{B^{4} \ll n \leq T}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e\left(2 \pi(t+u)^{2}, n\right) \tag{4.7}\\
& \times \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \ll t^{3 / 2-2 \sigma}
\end{align*}
$$

For $n \ll B^{4}$, we deduce from (4.3) together with Remarks (1) and (2) that

$$
\begin{align*}
& \quad \int_{-L}^{L} \sqrt{2}(t+u)^{3 / 2-2 \sigma} \sum_{n \ll B^{4}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e\left(2 \pi(t+u)^{2}, n\right) \tag{4.8}\\
& =\sqrt{2} t^{3 / 2-2 \sigma} \sum_{n \ll B^{4}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \int_{-L}^{L} \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \\
& \quad+O\left(t^{1 / 2-2 \sigma} \sum_{n \ll B^{4}} n^{1 / 4+\sigma} \sigma_{1-2 \sigma}(n)\right) \\
& = \\
& \quad \sqrt{2} t^{3 / 2-2 \sigma} \sum_{n \leq B^{2}}(-1)^{n}\left(1-\frac{\sqrt{n}}{B}\right) \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \cos (4 \pi \sqrt{n} t-\pi / 4) \\
& \quad+O\left(t^{3 / 2-2 \sigma}\right) .
\end{align*}
$$

Since $\log T \ll t^{3 / 2-2 \sigma}$, in view of (4.3)-(4.8), the proof of (4.2) for $1 / 2<$ $\sigma<3 / 4$ is complete.

CASE (ii): $\sigma=3 / 4$. The proof of (4.2) in this case is quite similar, but instead of (4.4) (which is not sharp enough for our purpose), we use the
following result. Define

$$
\begin{align*}
& \Sigma_{1}(x)=\sqrt{2} \sum_{n \leq T}(-1)^{n} \frac{\sigma_{-1 / 2}(n)}{\sqrt{n}} w_{1}(n) e(x, n) \cos f(x, n) \\
& \Sigma_{2}(x)=2\left(\frac{x}{2 \pi}\right)^{-1 / 4} \sum_{n} \frac{\sigma_{-1 / 2}(n)}{n^{1 / 4}} w_{2}(x, n)\left(\log \frac{x}{2 \pi n}\right)^{-1} \cos g(x, n) \tag{4.9}
\end{align*}
$$

where

$$
\begin{aligned}
w_{1}(n) & = \begin{cases}1 & \text { if } n \leq T / 4 \\
2(1-\sqrt{n / T}) & \text { if } T / 4<n \leq T\end{cases} \\
w_{2}(x, n) & = \begin{cases}1 & \text { if } n \leq B(x, \sqrt{T}) \\
x /(\pi \sqrt{n T})-2 \sqrt{n / T}-1 & \text { if } B(x, \sqrt{T}) \leq n<B(x, \sqrt{T} / 2), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $[12,(7.1)]$ gives

$$
E_{3 / 4}\left(2 \pi(t+u)^{2}\right)=\Sigma_{1}\left(2 \pi(t+u)^{2}\right)-\Sigma_{2}\left(2 \pi(t+u)^{2}\right)+O(1)
$$

Recall that $|u| \leq L$ and $\sqrt{T /(2 \pi)} \leq t+u \leq \sqrt{T / \pi}$. Plainly $w_{2}\left(2 \pi(t+u)^{2}, n\right)$ is a continuous function in u, and, apart from the two turning points,

$$
\begin{aligned}
& \frac{\partial}{\partial u} w_{2}\left(2 \pi(t+u)^{2}, n\right) \\
& \quad= \begin{cases}4(t+u) / \sqrt{n T} & \text { if } \sqrt{n+\sqrt{n T} / 2}-t<u<\sqrt{n+\sqrt{n T}}-t \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence, for $|y| \leq 4 \pi B$,

$$
\begin{aligned}
\frac{d}{d u}\left((t+u)^{-1 / 2} w_{2}\right. & \left(2 \pi(t+u)^{2}, n\right)\left(\log \frac{(t+u)^{2}}{n}\right)^{-1} \\
& \left.\times\left(4 \pi(t+u) \log \frac{(t+u)^{2}}{n}-y\right)^{-1}\right) \ll n^{-1 / 2} t^{-3 / 2}
\end{aligned}
$$

Thus, similarly to the proof of (4.5), we have

$$
\begin{aligned}
\int_{-L}^{L}(t+u)^{-1 / 2} w_{2}\left(2 \pi(t+u)^{2}, n\right)\left(\log \frac{(t+u)^{2}}{n}\right)^{-1} & \cos \left(g\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \\
& \ll B L n^{-1 / 2} t^{-3 / 2}+B^{2} t^{-5 / 2}
\end{aligned}
$$

Hence, from (4.9),

$$
\begin{equation*}
\int_{-L}^{L} \Sigma_{2}\left(2 \pi(t+u)^{2}\right) K(u) d u \ll 1 \tag{4.10}
\end{equation*}
$$

Next, we estimate the integral

$$
\int_{-L}^{L} e\left(2 \pi(t+u)^{2}, n\right) \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u
$$

Using the first order approximations for $e\left(2 \pi(t+u)^{2}, n\right)$ and $f\left(2 \pi(t+u)^{2}, n\right)$ in Remarks (1) and (2), we find that

$$
\begin{aligned}
& \int_{-L}^{L} e\left(2 \pi(t+u)^{2}, n\right) \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) d u \\
& \quad=\max (0,1-\sqrt{n} / B) \cos (4 \pi \sqrt{n} t-\pi / 4)+O\left(B L^{-1} n^{-1}+n^{3 / 2} t^{-1}\right)
\end{aligned}
$$

This is good when n is small, say $n \leq B^{4}$. For $n \geq B^{4}$, we follow the argument that leads to (4.6) and prove

$$
\begin{aligned}
\int_{-L}^{L} e\left(2 \pi(t+u)^{2}, n\right) \cos \left(f\left(2 \pi(t+u)^{2}, n\right)\right) K(u) & d u \\
& \ll B^{2} n^{-1}+B L \sqrt{n} t^{-3}
\end{aligned}
$$

Using these two estimates and in view of (4.9), we have

$$
\begin{aligned}
& \int_{-L}^{L} \Sigma_{1}\left(2 \pi(t+u)^{2}\right) K(u) d u \\
& \quad=\sqrt{2} \sum_{n \leq B^{2}}(-1)^{n} \frac{\sigma_{-1 / 2}(n)}{\sqrt{n}}\left(1-\frac{\sqrt{n}}{B}\right) \cos (4 \pi \sqrt{n} t-\pi / 4)+O(1)
\end{aligned}
$$

Together with (4.10), this completes the proof of (4.2) for $\sigma=3 / 4$.
5. Proof of Theorem 1. Equation (4.2) is proved under the assumption $B \ll L^{1 / 4} \ll T^{1 / 16}$. Letting $B=T^{1 / 6000}$ and $L=T^{1 / 1000}$, we may make use of (4.2) for a wide range of values of T (the value of T in (4.2)). In particular, for $T^{1 / 12} \leq t \leq T^{1 / 2}$, we have

$$
\begin{equation*}
t^{2 \sigma-3 / 2} \int_{-L}^{L} E_{\sigma}\left(2 \pi(t+u)^{2}\right) K(u) d u=\sqrt{2} S(t)+O(1) \tag{5.1}
\end{equation*}
$$

where

$$
S(t)=\sum_{n \leq B^{2}}(-1)^{n}\left(1-\frac{\sqrt{n}}{B}\right) \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \cos (4 \pi \sqrt{n} t-\pi / 4)
$$

Let k satisfy $T^{1 / 5} \leq k \leq T^{2 / 5}$. Let c be any positive constant and $\xi=$ $c(\log T)^{-1}$. Lemma 3.2 yields

$$
\begin{array}{rl}
\frac{1}{\Gamma(k+1)} \int_{0}^{\infty} e^{-u^{2}} u^{2 k+1} & S(u \sqrt{\xi}) d u \\
= & \frac{1}{2} \sum_{n \leq B^{2}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}}\left(1-\frac{\sqrt{n}}{B}\right) \\
& \times\left\{e^{-2 \pi^{2} n \xi} \cos (4 \pi \sqrt{k n \xi}-\pi / 4)+O\left(k^{-1 / 2}\right)\right\}
\end{array}
$$

Note that, estimated crudely (by an argument similar to that in Lemma 3.1), we have

$$
\begin{gathered}
k^{-1 / 2} \sum_{n \leq B^{2}} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \ll T^{-1 / 10+1 / 6000} \ll 1 \\
\sum_{\xi^{-3}<n \leq B^{2}} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi} \ll 1
\end{gathered}
$$

and

$$
\sum_{n \leq \xi^{-3}} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} \cdot \frac{\sqrt{n}}{B} \ll 1
$$

Hence

$$
\begin{align*}
& \frac{1}{\Gamma(k+1)} \int_{0}^{\infty} e^{-u^{2}} u^{2 k+1} S(u \sqrt{\xi}) d u \tag{5.2}\\
& \quad=\frac{1}{2} \sum_{n \leq \xi^{-3}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi} \cos (4 \pi \sqrt{k n \xi}-\pi / 4)+O(1)
\end{align*}
$$

Define

$$
g(a)=\int_{0}^{\infty} e^{-w^{2}} w^{2 \sigma-3 / 2} \cos (4 a w-\pi / 4) d w
$$

It is known that (see [16]) when $\sigma>1 / 2$, there exist real numbers a_{+}and a_{-}such that $g\left(a_{+}\right)>0$ and $g\left(a_{-}\right)<0$. We choose two large constants U and V such that

$$
\begin{align*}
& \left(U^{-1} K_{1}+e^{-2 \pi^{2} V} K_{2}\right) V^{\sigma-1 / 4} \tag{5.3}\\
& \quad<2^{-3 \sigma} \pi^{1 / 2-2 \sigma} \zeta(2 \sigma) \min \left(g\left(a_{+}\right),\left|g\left(a_{-}\right)\right|\right)
\end{align*}
$$

where K_{1} and K_{2} are those that appeared in Lemma 3.1.
Let $R=\left[V \xi^{-1}\right]$. By Dirichlet's theorem on simultaneous approximations, there exists l such that

$$
T^{1 / 10} \leq l \leq\left(1+(4 \pi U)^{R}\right) T^{1 / 10} \quad \text { and } \quad\|l \sqrt{n}\|<(4 \pi U)^{-1} \quad \text { for } 1 \leq n \leq R
$$

Set now the constant $c=12 \mathrm{~V} \log (4 \pi U)$ in the definition of ξ and put
$k_{ \pm}=\left(\sqrt{2} a_{ \pm}+l \xi^{-1 / 2}\right)^{2}$. Then from the range of l, we see that $T^{1 / 5}<$ $k_{ \pm}<T^{2 / 5}$. Since

$$
2^{\sigma-1 / 4} \int_{0}^{\infty} e^{-2 w^{2}} w^{2 \sigma-3 / 2} \cos (4 \sqrt{2} a w-\pi / 4) d w=g(a)
$$

by Lemma 3.3,

$$
\begin{align*}
& \mid 2^{5 / 4-3 \sigma} \pi^{1 / 2-2 \sigma} \zeta(2 \sigma) g\left(a_{ \pm}\right) \xi^{1 / 4-\sigma} \tag{5.4}\\
& \left.-\sum_{n \leq \xi^{-3}}(-1)^{n} \frac{\sigma_{1-2 \sigma(n)}}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi} \cos \left(4 \pi \sqrt{k_{ \pm} n \xi}-\pi / 4\right) \right\rvert\, \\
& \leq \left\lvert\, \sum_{n \leq \xi^{-3}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi}\right. \\
& \times\left(\cos \left(4 \pi \sqrt{2} a_{ \pm} \sqrt{\xi n}-\pi / 4\right)-\cos \left(4 \pi \sqrt{k_{ \pm} n \xi}-\pi / 4\right)\right) \mid+O\left(\xi^{\sigma-3 / 4}\right)
\end{align*}
$$

In the last series, the subsum $\sum_{R<n \leq \xi^{-3}}$, by Lemma 3.1(2), contributes no more than $K_{2} V^{\sigma-1 / 4} e^{-2 \pi^{2} V} \xi^{1 / 4-\sigma}$. For $n \leq R$, we note that

$$
\left|\cos \left(4 \pi \sqrt{2} a_{ \pm} \sqrt{\xi n}-\pi / 4\right)-\cos \left(4 \pi \sqrt{k_{ \pm} n \xi}-\pi / 4\right)\right| \leq U^{-1}
$$

Hence, by Lemma 3.1(1),

$$
\left|\sum_{n \leq R} \cdots\right| \leq U^{-1} K_{1}\left(V \xi^{-1}\right)^{\sigma-1 / 4}
$$

Combining all these, we see that the right hand side of (5.4) is

$$
\begin{aligned}
& \leq\left(U^{-1} K_{1}+e^{-2 \pi^{2} V} K_{2}\right) V^{\sigma-1 / 4} \xi^{1 / 4-\sigma}+O\left(\xi^{\sigma-3 / 4}\right) \\
& <\frac{1}{2} \cdot 2^{5 / 4-3 \sigma} \pi^{1 / 2-2 \sigma} \zeta(2 \sigma) \min \left(g\left(a_{+}\right),\left|g\left(a_{-}\right)\right|\right) \xi^{1 / 4-\sigma},
\end{aligned}
$$

by our choice of U and V in (5.3). In other words,

$$
\pm \sum_{n \leq \xi^{-3}}(-1)^{n} \frac{\sigma_{1-2 \sigma}(n)}{n^{5 / 4-\sigma}} e^{-2 \pi^{2} n \xi} \cos \left(4 \pi \sqrt{k_{ \pm} n \xi}-\pi / 4\right) \gg \xi^{1 / 4-\sigma}
$$

Hence, by (5.2),

$$
\pm \frac{1}{\Gamma\left(k_{ \pm}+1\right)} \int_{0}^{\infty} e^{-u^{2}} u^{2 k_{ \pm}+1} S(u \sqrt{\xi}) d u \gg(\log T)^{\sigma-1 / 4}
$$

Since $S(u \sqrt{\xi}) \ll B^{2 \sigma-1 / 2} \leq B$,

$$
\frac{1}{\Gamma\left(k_{ \pm}+1\right)}\left(\int_{0}^{T^{1 / 11}}+\int_{T^{1 / 3}}^{\infty}\right) e^{-u^{2}} u^{2 k_{ \pm}+1} S(u \sqrt{\xi}) d u \ll e^{-T^{1 / 5}}
$$

We can, therefore, conclude that $\sup _{t \in\left[T^{1 / 12}, T^{1 / 3}\right]} \pm S(t) \gg(\log T)^{\sigma-1 / 4}$. Then from (5.1), there exist $t_{ \pm} \in\left[T^{1 / 12}, T^{1 / 3}\right]$ such that

$$
\pm t_{ \pm}^{2 \sigma-3 / 2} \int_{-L}^{L} E_{\sigma}\left(2 \pi\left(t_{ \pm}+u\right)^{2}\right) K(u) d u \gg\left(\log t_{ \pm}\right)^{\sigma-1 / 4}
$$

As $L=o\left(t_{ \pm}^{1 / 2}\right)$ and $T \rightarrow \infty$, this completes the proof of Theorem 1.
6. Proof of Theorem 2. In this section, we take $B=\left[L^{7 / 6}\right] / L \approx L^{1 / 6}$ so that $B L$ is an integer and $1 \ll L \leq T^{1 / 4}$. For $\sqrt{T /(2 \pi)}+L \leq t \leq$ $\sqrt{T / \pi}-L$, we proved in (4.2) that

$$
\begin{equation*}
\int_{-L}^{L} E_{3 / 4}\left(2 \pi(t+u)^{2}\right) K(u) d u=H(t)+O(1) \tag{6.1}
\end{equation*}
$$

where

$$
\begin{aligned}
H(t) & =\sum_{n \leq B^{2}} a_{n} n^{-1 / 2} \cos (4 \pi \sqrt{n} t-\pi / 4) \\
a_{n} & =(-1)^{n} \sqrt{2}\left(1-\sqrt{n} B^{-1}\right) \sigma_{-1 / 2}(n)
\end{aligned}
$$

We shall prove below that, for any interval I inside $[\sqrt{T /(2 \pi)}+L, \sqrt{T / \pi}-L]$ of length L,

$$
\begin{align*}
& |I|^{-1} \int_{I} H(t)^{2} d t \gg \log L \tag{6.2}\\
& |I|^{-1} \int_{I} H(t)^{3} d t \ll 1 \tag{6.3}
\end{align*}
$$

Then by Lemma 3.4, when L is sufficiently large,

$$
\sup _{t \in I} \pm H(t) \gg \sqrt{\log L}
$$

Taking I to be the interval $[\sqrt{T /(2 \pi)}+L, \sqrt{T /(2 \pi)}+2 L]$, we infer from (6.1) that

$$
\sup _{t \in I} \pm H(t)+O(1) \leq \sup _{y} \pm E_{3 / 4}(y) \int_{-L}^{L} K(u) d u \leq \sup _{y} \pm E_{3 / 4}(y)
$$

where $y=2 \pi(t+u)^{2}$ lies in $[T, T+72 L \sqrt{T}]$. This is our Theorem 2, except for the condition $L \leq T^{1 / 4}$. However, if $T^{1 / 4}<L \leq T^{1 / 2}$, then certainly

$$
\sup _{t \in[T, T+L \sqrt{T}]} \geq \sup _{t \in\left[T, T+T^{3 / 4}\right]} \gg \sqrt{\log T^{1 / 4}} \geq \sqrt{\frac{1}{2} \log L}
$$

When $L>T^{1 / 2}$ we have, by our above result for $L=\sqrt{T}$,

$$
\sup _{t \in[T, T+L \sqrt{T}]} \geq \sup _{t \in[(T+L \sqrt{T}) / 2, T+L \sqrt{T}]} \gg \sqrt{\frac{1}{2} \log \left(\frac{T+L \sqrt{T}}{2}\right)} \asymp \sqrt{\log L} .
$$

This completes the proof of our Theorem 2.
It therefore remains to prove (6.2) and (6.3).
Consider first (6.2). By squaring out $H(t)$ and then integrating the double sum term by term, we find that

$$
\begin{aligned}
\int_{I} H(t)^{2} d t= & \frac{1}{2} \sum_{m, n \leq B^{2}} \frac{a_{n} a_{m}}{\sqrt{n m}} \int_{I} \cos (4 \pi(\sqrt{n}-\sqrt{m}) t) d t \\
& +\frac{1}{2} \sum_{m, n \leq B^{2}} \frac{a_{n} a_{m}}{\sqrt{n m}} \int_{I} \sin (4 \pi(\sqrt{n}+\sqrt{m}) t) d t
\end{aligned}
$$

The diagonal terms in the first sum (that is, those with $m=n$) contribute $\frac{1}{2}|I| \sum_{n \leq B^{2}} a_{n}^{2} n^{-1} \gg|I| \log B$, since $\sum_{n \leq x} \sigma_{-1 / 2}(n)^{2} n^{-1} \sim \log x$ (see [12, p. 374]). For $m \neq n$, by a crude estimate,

$$
\int_{I} \cos (4 \pi(\sqrt{n}-\sqrt{m}) t) d t \ll|\sqrt{n}-\sqrt{m}|^{-1} \ll \sqrt{n}+\sqrt{m}
$$

Hence the non-diagonal terms' contribution is $\ll B^{3}$. Since $|I|=L \geq B^{3}$, (6.2) follows readily.

For the third power moment of $H(t)$ in (6.3), we use similar argument. Multiplying out $H(t)^{3}$ and then integrating term by term, we see that the contribution of the non-diagonal terms is

$$
\ll \sum_{\substack{\sqrt{m}+\sqrt{n} \neq \sqrt{k} \\ m, n, k \leq B^{2}}}\left|a_{m} a_{n} a_{k}\right|(m n k)^{-1 / 2}|\sqrt{m}+\sqrt{n}-\sqrt{k}|^{-1} \ll B^{6}
$$

by observing that $|\sqrt{m}+\sqrt{n}-\sqrt{k}| \gg \max (m, n, k)^{-3 / 2}$ when $\sqrt{m}+\sqrt{n}-$ $\sqrt{k} \neq 0$, and $\sum_{n \leq B^{2}}\left|a_{n}\right| \ll B^{2}$.

When $\sqrt{m}+\sqrt{n}-\sqrt{k}=0$, we must have $m=s a^{2}, n=s b^{2}$ and $k=s(a+b)^{2}$, where s is square-free and a, b are natural numbers. Hence the sum of diagonal terms is equal to

$$
\begin{aligned}
\frac{3 \sqrt{2}}{8}|I| \sum_{\substack{m, n, k \leq B^{2} \\
\sqrt{m}+\sqrt{n}=\sqrt{k}}} & \frac{a_{m} a_{n} a_{k}}{\sqrt{m n k}} \\
& \ll|I| \sum_{s} s^{-3 / 2} \sum_{a, b}\left|a_{s a^{2}} a_{s b^{2}} a_{s(a+b)^{2}}\right|(a b(a+b))^{-1}
\end{aligned}
$$

Since $a_{n} \ll n^{\varepsilon}$, the sums over s, a, b are all convergent and therefore $\int_{I} H(t)^{3} d t \ll|I|$, as desired.

Acknowledgements. The authors are grateful to the referee for many valuable comments on the first version of this paper.

References

[1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353-376.
[2] J. L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory 15 (1982), 36-76.
[3] J. L. Hafner and A. Ivić, On the mean-square of the Riemann zeta-function on the critical line, ibid. 32 (1989), 151-191.
[4] D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika 25 (1978), 177-184.
[5] D. R. Heath-Brown and M. N. Huxley, Exponential sums with a difference, Proc. London Math. Soc. (3) 61 (1990), 227-250.
[6] D. R. Heath-Brown and K. Tsang, Sign changes of $E(T), \Delta(x)$ and $P(x)$, J. Number Theory 49 (1994), 73-83.
[7] A. Ivić, Lectures on Mean Values of the Riemann Zeta Function, Tata Inst. Fund. Res. Lectures on Math. 82, Springer, 1991.
[8] A. Ivić and K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip, Monatsh. Math. 121 (1996), 213-229.
[9] I. Kiuchi, On an exponential sum involving the arithmetical function $\sigma_{a}(n)$, Math. J. Okayama Univ. 29 (1987), 193-205.
[10] I. Kiuchi and K. Matsumoto, The resemblance of the behaviour of the remainder terms $E_{\sigma}(t), \Delta_{1-2 \sigma}(x)$ and $R(\sigma+i t)$, in: Sieve Methods, Exponential Sums, and their Applications in Number Theory, G. R. H. Greaves et al. (eds.), London Math. Soc. Lecture Note Ser. 237, Cambridge Univ. Press, 1997, 255-273.
[11] J. E. Littlewood, Researches in the theory of Riemann zeta-function, Proc. London Math. Soc. (2) 20 (1922), xxii-xxvii.
[12] K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip III, Acta Arith. 64 (1993), 357-382.
[13] -, 一, The mean square of the Riemann zeta-function in the critical strip II, ibid. 68 (1994), 369-382.
[14] K. Matsumoto, Recent developments in the mean square theory of the Riemann zeta and other zeta-functions, in: Number Theory, R. P. Bambah et al. (eds.), Birkhäuser, 2000, 241-286.
[15] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1987), 337-343.
[16] J. Steinig, On an integral connected with the average order of a class of arithmetical functions, J. Number Theory 4 (1972), 463-468.
[17] G. Szegő, Beiträge zur Theorie der Laguerreschen Polynome II. Zahlentheoretische Anwendungen, Math. Z. 25 (1926), 388-404.
[18] K. M. Tsang, Higher power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc. (3) 65 (1992), 65-84.
[19] -, Counting lattice points in the sphere, Bull. London Math. Soc. 32 (2000), 679688.

Institut Elie Cartan
Université Henri Poincaré Nancy 1
B.P. 239

54506 Vandœeuvre-lès-Nancy Cedex, France
E-mail: lau@iecn.u-nancy.fr
Department of Mathematics
The University of Hong Kong
Pokfulam Road
Hong Kong SAR, China
E-mail: kmtsang@maths.hku.hk

Received on 2.12.1999
and in revised form on 6.9.2000

[^0]: 2000 Mathematics Subject Classification: Primary 11M06.

