
ACTA ARITHMETICA

152.4 (2012)

Points on quadratic twists of X0(N)

by

Ekin Ozman (Austin, TX)

1. Introduction. Let N = p1 · · · pr be a positive, square-free integer.
The modular curve Y0(N) is a moduli space of tuples (E,C), where E is an
elliptic curve and C is a cyclic subgroup of order N in E[N ]. Equivalently,
any point of Y0(N) corresponds to (E, φ) where φ is a cyclic N -isogeny of E.
A projective smooth curve X0(N) is obtained by adding 2r cusps to Y0(N).
Note that all the cusps are Q-rational.

The Atkin–Lehner involution wN of Y0(N) sends (E,C) to the pair
(E/C,E[N ]/C). Equivalently, in terms of isogenies, wN : (E, φ) 7→ (E′, φ̂)
where φ : E → E′ and φ̂ is the dual isogeny. The action of the rational map
wN extends to X0(N) and freely permutes the cusps.

A celebrated theorem of Mazur [17] and its extensions by Kenku and
Momose give much more information about the rational points of X0(N).

Theorem (Mazur, [17]). For all N > 163, X0(N)(Q) consists of only
cusps.

This result was proved by Mazur for prime levels of N and generalized
to square-free integers by Kenku and Momose.

Let d be a square-free integer, K := Q(
√
d), σ be the generator of

Gal(K/Q), and N a square-free integer. The twist Xd(N) of X0(N) is con-
structed by Galois descent from X0(N)/K (for a general reference to this
process see [29, p. 102]). It is a smooth proper curve over Q, isomorphic
to X0(N) over K but not over Q. The action of σ is ‘twisted’ on Xd(N),
meaning that Q-rational points of Xd(N) are naturally identified with the
K-rational points of X0(N) that are fixed by σ ◦ wN . We are interested in
such points. However, the existence of rational points in this case is not
immediate, as it is for X0(N). Since cusps are interchanged by wN , they are
not rational anymore.
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Like X0(N), the twisted curve Xd(N) is a parameter space. A special
class of elliptic curves, called quadratic Q-curves of degree N , correspond
to Q-rational points on some Xd(N). A quadratic Q-curve of degree N is
an elliptic curve defined over a quadratic number field K = Q(

√
d) which

is isogenous to its Galois conjugate over K via an isogeny φ such that
ker(φ) ∼= Z/NZ. Therefore, if Xd(N)(Q) is empty then there are no such
quadratic Q-curves of degree N defined over Q(

√
d). Q-curves appear in

many interesting questions, such as those about ‘twisted’ Fermat equations.
More details about these results and in general about Q-curves, as well as
related questions can be found in Ellenberg’s survey article [7].

In general, there is no known algorithm to follow when trying to show
existence or non-existence of a rational point on a variety. One of the first
things to check is the existence of local points. If a curve over Q fails to have
a Qp-point for some p, then there is no rational point on that curve. This
gives rise to the main question of the paper, which was originally stated as
Problem A by Ellenberg in [7]:

Question (Ellenberg, [7]). For which d and N does Xd(N) have ratio-
nal points over every completion of Q?

In this paper we give an answer to this question under the assumption
that no prime is simultaneously ramified in K and Q(

√
−N).

Theorem 1.1. Let p be a prime, N a square-free integer, and K a
quadratic field. Then

(1) Xd(N)(Qp) 6= ∅ for all p that split in K and for Q∞ = R (Proposi-
tion 1.2).

(2) Xd(N)(Qp) 6= ∅ if p is inert in K and does not divide N (Theorem
3.17).

(3) For all odd p that are inert in K and divide N , Xd(N)(Qp) 6= ∅ if
and only if either

(a) N = p
∏
i qi where p ≡ 3 mod 4 and qi ≡ 1 mod 4 for all i and(−Q

i qi
p

)
= −1, or

(b) N = 2p
∏
i qi where p ≡ 3 mod 4 and qi ≡ 1 mod 4 for all i and(−Q

i qi
p

)
= −1 (Theorem 3.7).

(4) If 2 is inert in K and divides N , Xd(N)(Qp) 6= ∅ if and only if
N = 2

∏
i qi where qi ≡ 1 modulo 4 for all i (Theorem 3.8).

(5) For all p that are ramified in K and unramified in Q(
√
−N),Xd(N)(Qp)

6= ∅ if and only if p is in the set SN defined in Proposition 4.6 (Theorem
4.10).

(6) For all p that are ramified in K and Q(
√
−N), if Xd(N)(Qp) 6= ∅

then p ∈ SN (Proposition 4.5).
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The results about real points and Qp-points for primes p which split in
Q(
√
d) are rather elementary.

Proposition 1.2. Xd(N)(R) 6= ∅.

The proof of this fact for prime twists can be found, for instance, in [2],
but the proof works in general.

If the prime p splits in K then a copy of K is in Qp. Since X0(N) and
Xd(N) are isomorphic over K and X0(N)(Qp) is non-empty, Xd(N)(Qp) is
also non-empty.

Therefore, Xd(N) might fail to have p-adic points only for finite primes
that are inert or ramified in K.

Theorem 1.1 gives necessary and sufficient conditions to have Qp-points
of a twist for every p under the assumption that there is no prime simulta-
neously ramified in Q(

√
d) and Q(

√
−N). If such twists fail to have rational

points then they give a family of examples of curves that violate the Hasse
principle. Combining this with a theorem of Serre and using the technique
of Clark [1], we give the asymptotics of the number of twists that violate
the Hasse principle. In several cases we show that this obstruction to the
Hasse principle is explained by the Brauer–Manin obstruction.

Organization of the paper. In Section 2 we give an overview of the pre-
vious results and where our result fits in the general scheme. We prove,
under the assumption that no prime is simultaneously ramified in K and
Q(
√
−N), that the previous results on this problem by Clark, González,

Quer, and Shih follow from Theorem 1.1. We also answer a question of
Clark raised in [1].

We draw on a number of different techniques to handle the various cases
in Theorem 1.1. In Section 3, we handle the case when p is inert in K. For
instance, in this section we use Hensel’s Lemma when p |N . On the other
hand, in Section 4, we construct a Qp-point using the theory of CM elliptic
curves. We give some examples that illustrate Theorem 1.1 and compare
our result with previous results. Then in Section 5, we give the asymptotics
of the number of twists which violate the Hasse principle. In Section 6, we
give ideas about further directions, give examples of genus 2 curves that
violate the Hasse principle, and show that these violations are explained by
the Brauer–Manin obstruction.

2. Relation to previous work. In the case of conics there is a rational
point if and only if there is a local point for every completion of Q. Moreover
if a conic has a rational point then it has many others, since it is isomorphic
to P1. For the case of conics, i.e. when the genus of Xd(N) is zero, we have a
complete answer to our question due to the work of Shih [31] and González
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and Quer [24], based on the earlier work of Hasegawa [12]. The proof is
based on a special parametrization of the j-invariants of these curves and
some Hilbert symbol computations. Hence, González, Quer and Shih give
the following complete list in the case of genus 0.

Theorem 2.1 (González, Quer, Shih, [24], [31]). Using the notation
above:

• When N = 2, 3, 7, Xd(N)(Q) is infinite for any quadratic field Q(
√
d).

• Xd(5)(Q) is infinite if and only if d is of the form m or 5m where
m is a square-free integer each of whose prime divisors is a quadratic
residue modulo 5.
• Xd(6)(Q) is infinite if and only if d is of the form m or 6m where m

is a square-free integer such that 2 is a quadratic residue modulo each
prime divisor of m.
• Xd(10)(Q) is infinite if and only if d is of the form m or 10m where
m is a square-free integer each of whose prime divisors is a quadratic
residue modulo 5.
• Xd(13)(Q) is infinite if and only if d is of the form m or 13m where
m is a square-free integer each of whose prime divisors is a quadratic
residue modulo 13.

Note that since Xd(N) and X0(N) are isomorphic over K they are geo-
metrically the same; in particular, they have the same genus. Therefore the
cases for which we know the answer completely correspond to the values
N = 2, 3, 5, 6, 7, 10, 13.

ForN = 2, 3, 7, since the class number of Z[
√
−N ] is 1, anywN -fixed point

of X0(N) is defined over Q, hence gives a point in Xd(N)(Q) for any d. This
is another way of stating the first part of Theorem 2.1. Now we derive the
other parts of Theorem 2.1 using Theorem 1.1 for relatively prime N and d.

Corollary 2.2. Let N and d be square-free integers such that there is
no prime p that is simultaneously ramified in Q(

√
−N) and Q(

√
d). Then

Theorem 2.1 can be derived from Theorem 1.1.

Proof. Since we are dealing with the conics, having a Q-rational point
is equivalent to having Qp-points for every prime p. By Proposition 1.2,
Xd(N)(R) 6= ∅ for any N and d, hence we only need to check the finite
primes. Let d = ±

∏
i pi be the prime decomposition of d.

• N = 5: By Theorem 1.1(5), Xd(5)(Qpi) 6= ∅ if and only if there is
a prime of Q(j(

√
−5)) lying over pi with inertia degree 1. Note that

the class number of Z[
√
−5] is 2 and it is the maximal order of M :=

Q(
√
−5). The Hilbert class field of M is Q(

√
5, i), hence Q(j(

√
−5)) is

Q(
√

5), since j(
√
−5) is real. Therefore Xd(5)(Qpi) 6= ∅ if and only if(

5
pi

)
=
(pi

5

)
= 1.
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For all other primes q, Xd(5)(Qq) 6= ∅ by Theorem 1.1(1)&(2).
Hence, Xd(5)(Q) 6= ∅ if and only if each prime divisor pi of d is a
quadratic residue modulo 5.
The case N = 13 is quite similar to N = 5, since the corresponding
Hilbert class field is Q(

√
13, i), and they are both 1 mod 4.

• N=6: The Hilbert class field of Q(
√
−6) is Q(

√
−3,
√

2), and Q(j(
√
−6))

is Q(
√

2). Therefore by Theorem 1.1(5), Xd(6) has Qpi-rational points
if and only if ( 2

pi
) = 1.

If 3 is inert in K or splits in K then Xd(6)(Q3) 6= ∅ by Theorem
1.1(1)&(3).
If 2 splits in K then Xd(6)(Q2) 6= ∅ by Theorem 1.1(1).
Furthermore, 2 cannot be inert in K, since ( 2

pi
) = 1 for all pi.

For all other primes q, Xd(6)(Qq) 6= ∅ by Theorem 1.1(1)&(2).
The case N = 10 is quite similar to the previous cases.

Another result along these lines, which is a necessary condition for the
existence of degree-N Q-curves, was given in [24]:

Theorem 2.3 (Quer, González, [24, Theorem 6.2]). Assume that there
exists a quadratic Q-curve of degree N defined over some quadratic field K.
Then every divisor N1 |N such that

N1 ≡ 1 mod 4 or N1 is even and N/N1 ≡ 3 mod 4

is a norm of the field K.

The proof of this theorem is analytic, by constructing some functions
on X0(N) with rational Fourier coefficients and studying the action of the
involution wN on them. We will take a more algebraic approach and given
any square-free, relatively prime integers d and N show that Theorem 1.1
implies Theorem 2.3 in the following two corollaries.

Recall that saying that ‘N1 is a norm in K’ is equivalent to saying that
(N1, d) = 1, where (−,−) denotes the Hilbert symbol. Moreover (N1, d) = 1
if and only if the local Hilbert symbols (N1, d)p are 1 for all primes p.
Therefore, Theorem 2.3 gives a condition on the existence of local points.

The local Hilbert symbol is given by explicit formulas which can be found
in [28].

These formulas imply that if (N1, d)p = −1 for some prime p then p
divides N1 or d. Since

∏
p(a, b)p = 1, one can deduce that (N1, d)p = −1 for

some odd prime p that divides N1 or d.

Corollary 2.4. Let N be an odd square-free integer such that there
exists a divisor N1 of N with N1 ≡ 1 mod 4 and (N1, d)p = −1 for some p.
Then Xd(N)(Qp) = ∅.
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Proof. Suppose p |N1. Since (N1, d)p =
(
d
p

)
= −1, p is inert in K. Since

N1 ≡ 1 mod 4, either p ≡ 1 mod 4 or p ≡ 3 mod 4 and there is another
divisor p′ of N1 that is also congruent to 3 mod 4. If p ≡ 1 mod 4, then
Xd(N)(Qp) = ∅, and if p ≡ 3 mod 4, then there are at least two primes
dividing N1 that are congruent to 3 mod 4, hence Xd(N)(Qp) = ∅, by
Theorem 1.1(3).

Suppose p | d. Since (N1, d)p =
(
N1
p

)
= −1, p is inert in Q(

√
N1). Let H

denote the ring class field of the order Z[
√
−N ]. ThenH=Q(

√
−N, j(

√
−N))

andH∩R = Q(j(
√
−N)) by class field theory. Since N1 ≡ 1 mod 4, Q(

√
N1)

lies in the genus field of Q(
√
−N), hence Q(

√
N1) ⊂ Q(j(

√
−N)). This shows

that there is no prime of Q(j(
√
−N)) lying above p with residue degree 1,

thus Xd(N)(Qp) = ∅ by Theorem 1.1(5).

Corollary 2.5. Let N be an even square-free integer such that there
exists an even divisor N1 of N with N/N1 ≡ 1 mod 4 and (N1, d)p = −1 for
some p. Then Xd(N)(Qp) = ∅.

Proof. Suppose p |N1. Since (N1, d)p =
(
d
p

)
= −1, p is inert in K, and

since
∏
ν (a, b)ν = 1, we can assume that p is odd. By Theorem 1.1(3),

Xd(N)(Qp) 6= ∅ if and only if N = 2p
∏
i qi with p ≡ 3 mod 4 and all

qi ≡ 1 mod 4. Therefore N1 = 2p
∏
i qi for some of the qi’s congruent to

1 mod 4, which contradicts the assumption that N/N1 ≡ 3 mod 4, hence
Xd(N)(Qp) = ∅.

The case where p | d is similar to the corresponding case of Corollary
2.4.

Corollaries 2.4 and 2.5 imply Theorem 2.3.
Another result about the existence of local points on Xd(N) is given

by Clark in [1]. Generalizing the techniques used in Clark’s proof, we prove
Theorem 1.1(3). As a result, the following theorem follows from Theorem
1.1(3).

Theorem 2.6 (Clark, [2]). LetN be a prime number congruent to 1 mod 4,
and p∗ = (−1)(p−1)/2p where p is a prime different from N and such that(
N
p

)
= −1. Then Xp∗(N)(QN ) = ∅.

In [1], it was asked whether or not p and N were the only primes for
which Xp∗(N) fails to have local points. We prove that the answer is ‘yes’
in Corollary 5.5.

3. Primes that are inert in K. We will keep the same notation as
in the previous section. Given a square-free integer N , a quadratic number
field K := Q(

√
d), and a prime p, we will study the set Xd(N)(Qp), where

Xd(N) is the twist of X0(N) with wN and 〈σ〉 := Gal(Q(
√
d)/Q). Since

we are dealing with local points, by abuse of notation we regard σ as the
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generator of the extension Kν over Qp, where ν is a prime of K lying over p.
Let k be the residue field and R be the valuation ring of Kν .

For the two main cases that we are dealing with—the inert case and the
ramified case—we will be using different tools. For the inert case, since we
have the notion of Galois descent for X0(N)/R, existence or non-existence
of local points will be shown by checking the existence of points over the
corresponding special fiber. For this, the following version of Hensel’s Lemma
will be used:

Lemma 3.1 (Lemma 1.1 in [13]). Let K be a complete local ring, R its
valuation ring, and k its residue field. Let X be a regular scheme over S :=
Spec(R) and f : X → S a proper flat morphism. Say Xη := X ×S Spec(K)
is the generic fiber and X0 := X ×S Spec(k) is the special fiber. Then the
generic fiber has a K-rational point if and only if the special fiber has a
smooth k-rational point.

We will also use the following theorems of Deuring:

Theorem 3.2 (Deuring, [5]). Let p be a rational prime, Ẽ an elliptic
curve that has CM by Q(

√
−N) defined over a number field L, and β a

prime of L lying over p such that Ẽ has good reduction over β. Then E is
supersingular if and only if p is ramified or inert in Q(

√
−N).

Theorem 3.3 (Deuring’s Lifting Theorem, [5]). Let E be an elliptic
curve over a finite field k of characteristic p, and let α be an element of
End(E). Then there exists an elliptic curve Ẽ over a number field B, an
endomorphism α̃ ∈ End(Ẽ), and a place β of B lying over p such that the
reductions of Ẽ and α̃ modulo β are E and α respectively. Moreover, |k| = pf

where f is the inertia degree of β over p.

Recall that σ is the generator of Gal(Q(
√
d)/Q). When p is inert in

Q(
√
d), it induces the non-trivial map (Frobenius) on Gal(k/Fp), where

k = Fp2 . We have different cases according to whether p |N or not.

3.1. p dividing the level. Say p |N , ν is the prime of K lying over p,
and R is the ring of integers of the localization Kν .

In Mazur [17] and Deligne–Rapaport [4] there is a model of X0(N)/Zp
whose special fiber X0(N)/Fp is two copies of X0(N/p)/Fp glued along su-
persingular points twisted by the first power Frobenius. The Atkin–Lehner
involution wN interchanges the two branches and Frobenius stabilizes each
branch (see Figure 1). A regular model X̃0(N) can be obtained by blow-
ing up |Aut(E,C)|/2− 1 times at each supersingular point. The actions of
Frobenius and of wN extend to regularization as well.

Since p is ramified in Q(
√
−N), by Theorem 3.2, any wN -fixed point is

supersingular. Say x is a wN -fixed supersingular (hence singular) point of
X0(N)/Fp . To have a regular model, we need to blow up at each supersingular
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Fig. 1. Special fiber of X0(N)/Zp

point |Aut(E,C)|/2−1 times where (E,C) is on X0(N/p)/Fp . To keep track
of the different schemes, we need to introduce some notation. As introduced
at the beginning, X0(N) denotes the model ofX0(N) over Zp (not necessarily
regular). Let X̃0(N) denote the regularization of X0(N) after blow-ups, and
X̃0(N)/Fp be its special fiber.

We can define a model of Xd(N) over Zp as a descent to Spec(Zp) of
X0(N)×Spec(Zp) Spec(R) by a descent datum twisted by wN . Note that the
extension R/Zp is Galois since p is inert in K. This model will be denoted
by X d(N)/Zp . Our aim is to use Hensel’s Lemma (Lemma 3.1) to make
conclusions about Qp-rational points of the generic fiber of X d(N)/Zp . In
order to do this, we must first show that X d(N)/Zp is regular. This is because
the minimal regular model commutes with etale base change. The next result
recalls this fact.

Proposition 3.4 (Lemma 3.33 of [15]). Let OK be a discrete valua-
tion ring with residue field k, and let OL be a discrete valuation ring that
dominates OK , with field of fractions L algebraic over K. Suppose more-
over that L is separable over K, the extension OL/OK is unramified, and
its residue field is separable algebraic over k. Let C be a smooth projective
curve over OK . Then the formation of the minimal regular model and of the
canonical model of C over OK (if they exist) commutes with the base change
Spec(OL)→ Spec(OK).

Now we will give a necessary condition for the existence of a smooth
point on Xd(N)(Fp).

Proposition 3.5. There exists a smooth point on Xd(N)(Fp) if and
only if there is a wN/p-fixed supersingular point on X0(N/p)(Fp2) with an
automorphism of order 4.

Proof. As explained above,Xd(N) is a generic fiber of X d(N)/Zp which is
the Galois descent of X0(N)/Zp by R/Zp. Since wN interchanges the branches
of X0(N)/Fp , Fp-rational points on the special fiber Xd(N)/Fp come from
supersingular points of X0(N)/Fp , which are all singular. In fact Xd(N)/Fp
consists of supersingular points of X0(N)/Fp fixed by wN ◦σ. Since σ acts as
wp on supersingular points (see Chapter V, Section 1 of [4] or Proposition
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3.8 in [25]), wN ◦σ acts as wN/p on supersingular points. Recall that at each
singular (hence supersingular) point we have |Aut(E,C)|/2− 1 exceptional
lines. The automorphism group of an elliptic curve over a field of charac-
teristic ` is µ2, µ4 or µ6 if ` is not 2 or 3, where µs denotes the group of
primitive sth roots of unity. If ` = 2 or 3 and E is the unique supersingular
elliptic curve in characteristic ` then Aut(E) is C3 o {±1,±i,±j,±k} or
C3 o C4 respectively, where Cm denotes the cyclic group of order m.

Therefore if |Aut(P )| = 4n for n > 1, there is an element of order 4 in
Aut(P ) and the number of blow-ups is 2n− 1, which is odd. Since we have
an odd number of exceptional lines, there is one line L/Fp that is fixed by the
action of wN (see the second column of Figure 2). On this line L the points
A and B are singular and fixed by wN ◦ σ, but these are not the only fixed
points. The action of σ ◦ wN on the zeroth, first, and second cohomology
of L has traces 1, 0, and p respectively. Then by the Lefschetz fixed point
theorem (Theorem 25.1 in [20]), there is a smooth wN ◦ σ-fixed point on
this exceptional line L. Therefore if we have a supersingular point with an
automorphism of order 4, then there is a smooth point on Xd(N)(Fp).

For the reverse direction, say there is no such supersingular point P with
an automorphism of order 4. If |Aut(P )| is 2, then X0(N) is already regular
but all Fp-rational points of Xd(N) are singular.

If |Aut(P )| = 6, then we replace this point by two exceptional lines over
Fp and σ ◦wN interchanges these lines. Each of these exceptional lines cuts
one of the branches and also the other exceptional line once. Denote the
intersection point of these lines by x; then σ(x) = x and it is the only point
fixed by the action of σ on these lines. Furthermore, wN (x) = wN (σ(x)) =
σ(wN (x)), hence wN (x) is also fixed by σ, i.e. wN (x) = x = σ(x). Thus x
induces an Fp-rational point of Xd(N). However, x is a singular point. For
a picture of this situation we refer to the table at the end of this section.

Using Proposition 3.5 and Hensel’s Lemma we get the following:

Corollary 3.6. There exists a point on Xd(N)(Qp) if and only if there
is a wN/p-fixed supersingular point with an automorphism of order 4.

Theorem 3.7. Let N be a square-free positive integer and p be an odd
prime. If p is inert in K and divides N , then Xd(N)(Qp) 6= ∅ if and only if
p ≡ 3 mod 4 and N is of the form either

(1) p
∏
i qi with all qi ≡ 1 mod 4 and

(−Q
i qi
p

)
= −1, or

(2) 2p
∏
i qi with all qi ≡ 1 mod 4 and

(−Q
i qi
p

)
= −1.

Proof. By Corollary 3.6, a local point exists if and only if there is a wN/p-
fixed supersingular point (E,C) on X0(N)/Fp with automorphism group
divisible by 4.
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Say N/p is different than 2. Then x is fixed by wN/p if and only if
Z[
√
−N/p] embeds into the endomorphism ring of x. Note that End(x)

is an Eichler order of level N/p in the quaternion algebra ramified at p.
By Proposition 3.12 (Optimal Embedding Theorem), Z[

√
−N/p] embeds in

End(x) if and only if
(−Q

i qi
p

)
= −1. If N/p is 2 then since the elliptic curve

over Q with CM by Q(i) is w2-fixed and its reduction mod p is supersingular
for every p ≡ 3 mod 4, we need no further conditions.

We also want the automorphism group of x to be divisible by 4. In partic-
ular we want j = 1728 to be a supersingular j-invariant in characteristic p.
By Deuring’s criterion this is equivalent to saying that p ≡ 3 mod 4 since p
is assumed to be odd.

In order to have such a point, Z/4Z must inject into (Z/qiZ)∗ for every
odd prime divisor qi of N that is not p. Therefore if N is odd, N = p

∏
i qi

with p ≡ 3 mod 4 and all qi ≡ 1 mod 4.
Since the automorphism [i], which has order 4, sends a 2-torsion point

(x, 0) of E1728 : y2 = x3 + x to (−x, 0), [i] fixes the cyclic-2 subgroup
〈(0, 0)〉 of E1728[2]. Hence, if N is even and there is a supersingular point on
X0(N)/Fp with automorphism group divisible by 4, then N = 2p

∏
i qi with

p ≡ 3 mod 4 and all qi ≡ 1 mod 4.
Conversely, if N is of the form (1) or (2) then there is a wN/p-fixed

supersingular point and 1728 is a supersingular j-invariant. Let E1728 be the
elliptic curve over Fp having j-invariant 1728. Then [i] is in Aut(E1728) and
acts on E1728[

∏
i qi]. The automorphism [i] stabilizes a cyclic-

∏
i qi subgroup

if and only if [i] stabilizes cyclic-qi subgroups of E1728[qi] = Z/qiZ × Z/qiZ
for all i. The automorphism [i] can be seen as an element of GL2(Fqi) and
it stabilizes a cyclic subgroup of order qi if and only if [i] has eigenvalues
defined over Fp. If qi is odd then the minimal polynomial of [i] is x2 + 1,
which is equivalent to saying that qi ≡ 1 mod 4 for all i. If qi = 2 then the
minimal polynomial of [i] is x+ 1 and [i] fixes the cyclic-2 subgroup 〈(0, 0)〉
of E1728[2].

For p = 2 inert in K and N even, we get the following result:

Theorem 3.8. If 2 is inert in K and divides N then Xd(N)(Q2) 6= ∅ if
and only if N = 2

∏
i qi with all qi ≡ 1 mod 4.

Proof. Over F2, 1728 is the only supersingular j-invariant and |Aut(E1728)|
= 24. Say qi is a prime dividing N/2. Since N is square-free, qi is odd.

By Corollary 3.6, a Q2-point exists if and only if there is a wN/2-fixed
supersingular point (E1728, C) on X0(N)/F2

with automorphism group di-
visible by 4. In order to have a point with automorphism group divisible
by 4, Z/4Z must inject into (Z/qiZ)∗ for every odd prime divisor qi of N/2,
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hence N = 2
∏
i qi with qi ≡ 1 mod 4 for all i. This automatically implies

that this point is wN/2-fixed by Proposition 3.12 below.
For the converse, the argument is the same as in the corresponding part

of Theorem 3.7.

Over Qp or Kν such that |Aut(x)| = h

Kν/Qp is unramified Singularity type is Ak−1 where k = h/2

no smooth point There exists a point no smooth point There exists a point

h = 2, A0 h = 4, A1 h = 6, A2 (p = 2) h = 8, A3

Fig 2. Blow-ups

3.2. p does not divide N . In this section we will construct a point on
the special fiber Xd(N)(Fp) and then by Hensel’s Lemma we will be done.
In order to construct such a point, our strategy is to prove that there is a
supersingular point fixed by wN ◦ frob, or equivalently, by wN ◦ wp = wNp.
This is a known result of quaternion arithmetic (see [35, p. 152]. We will
recall the necessary definitions and write the details of the proof in a slightly
different way.

We will be using the notation introduced in the previous subsection, in
particular X d(N)/Zp denotes the Galois descent X0(N) from R to Zp. If
p does not divide N then the following models are smooth, in particular
regular:

• X0(N)/Zp ,
• X0(N)×Zp R (since R/Zp is unramified),
• X ′d(N)/R :=X d(N)×ZpR (asX ′d(N)/R is isomorphic toX0(N)×ZpR).

By Proposition 3.4, X d(N)/Zp is also regular.
Let ΣN be the set of tuples (E,C) such that E is a supersingular elliptic

curve in characteristic p and C is cyclic group of order N . We start by
studying the action of the involution wN ◦ σ on ΣN .

Definition 3.9. Let B be the unique quaternion algebra over Q that is
ramified only at p and at infinity. An Eichler order O of B is of level N if

• q 6= p, Oq = O ⊗Z Zq ∼=
( Zq Zq
NZq Zq

)
,

• Op ∼=
{( α β

pβ̄ ᾱ

) ∣∣ α, β ∈ R
}

where R is the ring of integers of the
unique unramified quadratic extension of Qp.
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Proposition 3.10. Let B := End(E) ⊗Z Q, E a supersingular elliptic
curve over Fp2, and C a cyclic subgroup of E of order N . Then B is the
unique quaternion algebra over Q which is ramified only at p and∞, End(E)
is a maximal order in B, and End(E,C) is an Eichler order of level N .

Proof. For B being the claimed quaternion algebra and End(E) its max-
imal order we refer to Silverman [32, Chapter 5] for the rest of the claim see
for instance [25].

Now we will focus on the orders lying inside certain Eichler orders. This
will give us information about the elements in End(E,C).

Definition 3.11. Let L be an imaginary quadratic number field, O an
order of L, and α : L ↪→ B an algebra embedding such that α(L)∩R = α(O)
where R is an Eichler order of level N in B as above. Then the pair (R,α)
is called an optimal embedding of O.

The following theorem of Eichler states conditions for existence of an
optimal embedding (see [35]):

Proposition 3.12. Given R, B as above, and L = Q(
√
M), an optimal

embedding (R,α) of an order O of L exists if and only if

• M < 0, p is inert or ramified in L, and p is relatively prime to the
conductor of O, and
• q splits or ramifies in O for every q dividing N .

For any q |N and q′ := N/q, let wq be the Atkin–Lehner operator that
sends (E,C) 7→ (E/q′C,E[q] + C/q′C) where E[q] is the kernel of multipli-
cation by q. Each wi is an involution and wi ◦ wj = wj ◦ wi = wij for every
coprime i, j. We have another operator, Frobenius, acting on the set ΣN ; re-
member that σ is acting as Frobenius in the inert case. The following result
shows that Frobenius can also be seen as an Atkin–Lehner operator on ΣN .

Theorem 3.13 (see Chapter V, Section 1 of [4] or Proposition 3.8 in
[25]). The involution wp permutes the two components of X0(Np)/Fp. It
acts on the set of singular points of X0(Np)/Fp as the Frobenius morphism
x 7→ xp.

Let ψ be a map from X0(N)/Fp to X0(Np)/Fp , an isomorphism onto
one of the two components. The map ψ takes the supersingular locus of
X0(N)/Fp to the supersingular locus of X0(Np)/Fp . The set ΣN defined at
the beginning of the section is the supersingular locus of X0(N)/Fp . The
Atkin–Lehner operator wNp acts on X0(Np), in particular acts on ψ(ΣN ).
When we speak of the action of wNp on ΣN , we actually mean the action
of wNp on ψ(ΣN ).
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In the following two corollaries we show that the Atkin–Lehner involution
wNp has a fixed point. This result can be seen as a classical fact of quaternion
arithmetic, but we will state it in a slightly different way.

Corollary 3.14. Given B there is an embedding of Z[
√
−pN ] into

some Eichler order R of level N .

Proof. By Proposition 3.12 there is an optimal embedding (R,α) of order
Z[
√
−pN ] for an Eichler order R of level N .

Corollary 3.15. If there is an embedding α of Z[
√
−pN ] into R for

some Eichler order R = End(E,C) of level N then there is a fixed point of
wNp in ΣN .

Proof. By assumption there exists an element whose square is −pN in R,
i.e. an endomorphism of degree Np of (E,C), in particular an endomorphism
of degree Np, say f , of E. Using Deuring’s Lifting Theorem (Theorem 3.3),
this endomorphism and E can be lifted to characteristic 0, i.e. (Ẽ, ker(f̃))
(E and f lifted to characteristic 0) is in X0(Np)(Q̄) and is fixed by wNp.
The reduction of this point modulo p is a supersingular point on X0(Np)/Fp
that is fixed by wNp. Since E has no p-torsion, we have | ker(f)| = N , and
(E, ker(f)) is identified with a point in ΣN , i.e. is in ψ(ΣN ).

Example 3.16. Let p = 7 and N = 5. Since
(−5

7

)
= 1, by Theorem 3.2

reduction of any elliptic curve which has CM by Q(
√
−5) over p is ordinary.

Hence, there is no w5-fixed point in Σ5, i.e. there is no optimal embedding of
Z[
√
−5] into any R where R is an Eichler order of level 5 in the quaternion

algebra Q7,∞. In fact, there is no embedding of Q(
√
−5) into Q7,∞ since 7

splits in Q(
√
−5) and the localization of Q(

√
−5) at the primes lying above

7 is not even a field.

Theorem 3.17. If p is inert in Q(
√
d) and p - N then Xd(N)(Qp) 6= ∅.

Proof. By Corollaries 3.14 and 3.15, there is a point x ∈ ΣN such that
wNp(x) = x. Since (p,N) = 1 we have wN ◦ wp(x) = wNp(x) = x. By
Theorem 3.13, wp acts as frobp on ΣN , hence wN ◦ frobp(x) = x. By the
theory of Galois descent this gives a point in Xd(N)(Fp) and since p - N , we
have a smooth model, and by Hensel’s Lemma (Lemma 3.1) we are done.

4. Primes ramified in K and unramified in Q(
√
−N). Let p be a

prime that is ramified in the quadratic field K but not in Q(
√
−N). Let ν

be the prime of K lying over p, and R be the ring of integers of Kν . Note
that we do not have a good model for Xd(N) over R, since R/Zp is not
Galois. By assumption, p - N . Then by a well-known theorem of Igusa (see
for instance [6, Section 8.6]), X0(N) is a smooth Z[1/N ]-scheme, hence for
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any p - N the special fiber of X0(N) → Spec(R) is smooth over the residue
field R/ν.

Since p is ramified, the residue field R/ν is Fp, and the induced action
of σ on the residue field is trivial. In this setting, our approach will be to
produce points on X0(N)(Qp) which are fixed by wN and which are thus CM
points. Note that such points are Qp-rational points of Xd(N). The main
tool is Deuring’s Lifting Theorem (Theorem 3.3). It allows us to lift wN -fixed
points of X0(N)(Fp) to wN -fixed points of X0(N)(Qp), as Proposition 4.3
below demonstrates. Before stating the proposition we need to recall the
following facts about CM elliptic curves.

If E corresponds to a fixed point of wN on X0(N)(Q̄) and N > 2 then E
has an endomorphism whose square is [−N ], as stated in [22]. Hence, End(E)
contains a copy of Z[

√
−N ] and can be embedded in Z[(D +

√
D)/2] where

D is the discriminant of the CM field M := Q(
√
−N). If N ≡ 1 or 2 mod

4 then these two orders are the same, hence End(E) is the maximal order
of M. Otherwise, End(E) is an order of conductor 2 in the maximal order.

Let O be Z[
√
−N ], h the class number of O, E an elliptic curve such

that End(E) contains Z[
√
−N ], and H the ring class field of O. Recall that

by the theory of CM, we have h elliptic curves which have CM by O, and
their j-invariants are all conjugate.

Proposition 4.1. Let E be an elliptic curve over a number field B and
suppose E has an endomorphism α0 whose square is [−N ]. Then (E, ker(α0))
is a wN -fixed point on X0(N)(B).

Proof. By definition (E, ker(α0)) is a wN -fixed point of X0(N)(Q̄) and E
is defined over B, while α0 is defined over B(

√
−N). Let φ be the generator

of Gal(B(
√
−N)/B). Then ker(α0)φ = ker(±α0) = ker(α0) since the only

endomorphisms of E whose square is [−N ] are ±α0. Therefore ker(α0) is
defined over B as well.

Remark 4.2. If N = 2 then a w2-fixed point X0(N)(Q̄) corresponds to
an elliptic curve with CM by Q(i) or Q(

√
−2). However, both of them have

class number one, hence E is defined over Q. The CM map α0 is 1 + i in the
previous case (see [22]). Hence, as in Proposition 4.1, ker(1+ i)φ = ker(1+ i)
where φ is complex conjugation.

Proposition 4.3. Let p be an odd prime. Any wN -fixed point on
X0(N)(Fp) is the reduction of a wN -fixed Qp-rational point on the generic
fiber of X0(N). Conversely, a wN -fixed point on the generic fiber reduces to
a wN -fixed point on X0(Fp).

Proof. By Theorem 3.3, any wN -fixed point on X0(N)(Fp) can be lifted
to a wN -fixed point (E,α0) such that E is defined over a number field B
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such that the inertia degree of p in B is 1. Since p is unramified in B, B can
be embedded in Qp, and by Proposition 4.1 we are done.

Conversely, since the fixed locus of wN is proper, a wN -fixed point on
X0(N)(Qp) reduces to a wN -fixed point on X0(N)(Fp).

Proposition 4.3 shows that if X0(N)(Fp) contains a smooth wN -fixed
point, then Xd(N)(Qp) is non-empty. We now show the converse.

Proposition 4.4. Let x be a point of X0(N)(Kν) such that wN (xσ) = x.
Then x reduces to a wN -fixed point on the special fiber of X0(N)/R.

Proof. Note that σ is not a morphism of Spec(R)-schemes. We define
the map σ̂ : X0(N)→ X0(N) using the following diagram:

Spec(R) σ // Spec(R)

X0(N)

OO

σ̂ // X0(N)

OO

Since Kν/Qp is ramified, σ induces the trivial action on the residue field
R/ν, and therefore also on the special fiber:

We now add to the picture the Atkin–Lehner involution wN which is a
morphism of Spec(R)-schemes:

Spec(R) σ // Spec(R)

X0(N)
wN //

44jjjjjjjjjjjjjjjjjj
X0(N)

OO

σ̂ // X0(N)

OO

X0(N)×R Spec(R/ν)

OO

wn // X0(N)×R Spec(R/ν)

OO

σ̂×id//

��

X0(N)×R Spec(R/ν)

OO

��
Spec(R/ν) id // Spec(R/ν)
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Every point on X0(N)(Kν) extends to a morphism φ : Spec(R)→ X0(N)
by properness, and if the point of X0(N)(Kν) is fixed by wN ◦ σ then the
morphism φ is preserved under composition with wN ◦σ̂. To be more precise,
let x be a point in X0(N)(Kν) such that wN ◦σ(x) = x. By properness, x =
φ◦ i where i is the injection i : Spec(Kν)→ Spec(R), so wN ◦ σ̂ ◦φ◦ i = φ◦ i,
hence wN ◦ σ̂ ◦ φ = φ.

Moreover the diagram shows that the restriction of φ to the special fiber
p̃ : Spec(R/ν)→ X0(N)×R Spec(R/ν) is a wN -fixed point on X0(N)(Fp).

In fact Proposition 4.4 is true even if p is ramified in Q(
√
−N): in order

to have a Kν-rational wN ◦ σ-fixed point there must be a wN -fixed Fp-
rational point of X0(N). However, the converse cannot be concluded using
Proposition 4.3. Since if p is ramified in Q(

√
−N), p is ramified in H/Q, it is

not immediately clear how B ramifies at primes over p. Nonetheless, we have
the following result for any prime p ramified in K, without any restriction
on the decomposition of p in Q(

√
−N):

Proposition 4.5. Let p be a prime ramified in K. If Xd(N)(Qp) 6= ∅
then there is a wN -fixed point in X0(N)(Fp).

It remains to determine when there are wN -fixed points of X0(N)(Fp).
Let SN be the set of primes p such that there is a wN -fixed, Fp-rational point
on the special fiber of X0(N)/R. In Proposition 4.6, we describe the set SN
explicitly as a Chebotarev set. In addition to the notation introduced at the
beginning of the section, B denotes Q(j(O)) where j(O) is the j-invariant
of the order O = Z[

√
−N ], and M := Q(

√
−N).

Proposition 4.6. Let p be an odd prime and let P be a prime of M
lying over p. Then p is in SN if and only if there exists a prime ν of B lying
over p such that f(ν|p) = 1 and P totally splits in H/M.

Proof. We know that H/M is an abelian extension with Galois group
G isomorphic to the ideal class group of M, and [H : M] = [B : Q]. The
extension H/Q is Galois with Galois group G o Z/2Z where Z/2Z acts by
inversion on G. The Z/2Z-fixed subfield of H is B as explained in Section 6
of [3].

We want to know for which primes there is awN -fixed point onX0(N)(Fp).
We have shown in Proposition 4.3 that this is equivalent to the presence of
a wN -fixed point on X0(N)(Qp).

Let P be a wN -fixed point of X0(N), defined over B. Then P reduces to
an Fp-point on the special fiber if and only if it is fixed by Frobenius. Recall
that since B/Q is unramified at p, Frobenius acts on B. Hence, we should
find for which p there exists a prime ν of B such that f(ν|p) = 1.

Let πp be the Frobenius at p. The map πp gives a conjugacy class in
Gal(H/Q) via Artin symbol.
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The conjugacy classes of Go Z/2Z are as follows:

(1) {(g, 0)}, one for each g ∈ G[2].
(2) {(g, 0), (−g, 0)}, one for each g in G−G[2].
(3) {(g + 2x, 1) | x ∈ G}, one for each representative g of G/2G.

A prime ν of B over p has f(ν|p) = 1 if and only if the conjugacy class
πp contains an element of the form (0, y) for some y in Z/2Z. Hence, the
only allowed conjugacy classes are the trivial class and one of the classes of
type (3).

Hence, p is in SN if and only if πp contains an automorphism which
fixes B, equivalently, P totally splits in H/M.

Remark 4.7. Note that if p splits in M/Q then there are two primes of
M lying over p. If a prime P of M lying over p splits totally in H/M then p
splits totally in H/Q, hence it does not matter which prime of M lying over
p we take.

Remark 4.8. Proposition 4.6 determines for which p the field of defini-
tion of an elliptic curve whose endomorphism ring contains Z[

√
−N ] embeds

into Qp. Then using Proposition 4.1, we get a wN -fixed Qp-rational point of
X0(N).

We have thus established a complete criterion for the non-emptiness of
Xd(N)(Qp), where p is an odd prime ramified in K but not in Q(

√
−N).

For Q2-points, the argument is as follows. Let d and N be square-free
integers such that d ≡ 2, 3 and −N ≡ 1 mod 4. Over F2 there are two elliptic
curves: the ordinary one, with endomorphism ring Z[(1 +

√
−7)/2], and the

supersingular one whose endomorphism ring is the Hurwitz quaternions,
B(Z) := Z + iZ + jZ + 1+i+j+k

2 Z. It is a maximal order in the quaternion
algebra ramified only at 2 and at infinity. Hence, if a wN -fixed point (E,C)
of X0(N)(F2) is ordinary—in particular N = 7—then E can be lifted to
an elliptic curve over a number field B that has complex multiplication by
the maximal order of Q(

√
−7) by Theorem 3.3. If (E,C) is supersingular,

then the maximal order of Q(
√
−N) embeds in End(E) since the local order

B(Z)⊗Z Z2 contains all elements of B(Q)⊗Q2 with norm in Z2. Therefore
by Theorem 3.3, E can be lifted to an elliptic curve over a number field B
that has complex multiplication by the maximal order of Q(

√
−N). Hence,

we proved the following lemma:

Lemma 4.9. Let (E,C) be a wN -fixed point of X0(N)(F2). Then E can
be lifted to an elliptic curve Ẽ over a number field B such that Ẽ has complex
multiplication by the maximal order of Q(

√
−N).

Suppose Ẽ has CM by the maximal order of Q(
√
−N). Since 2 is unram-

ified in Q(
√
−N) and the Hilbert class field is an unramified extension of
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Q(
√
−N), 2 is unramified in B/Q. This implies that Bν embeds in Q2, where

ν is a prime of B lying over 2. Therefore Ẽ induces a point in Xd(N)(Q2).
Hence, we conclude that Xd(N)(Q2) 6= ∅ if and only if there is a wN -fixed
point on X0(N)(F2), if and only if p is in the set SN defined above, exactly
as in the case of odd primes. This yields

Theorem 4.10. Let p be a prime ramified in Q(
√
d) and N a square-free

integer such that p is unramified in Q(
√
−N). Then Xd(N)(Qp) 6= ∅ if and

only if p is in the set SN defined in Proposition 4.6.

Example 4.11. Let d = 5 and N = 29. According to Theorem 2.3, since
(5, 29) = 1, the necessary condition for the existence of a Q-curve of degree
29 over K = Q(

√
5) is satisfied, but the existence is not guaranteed. Note

that this case is not covered by Theorem 2.6.
If we use Theorem 4.10 for the ramified prime 5, we see that X5(29)(Q5)

is empty, hence there is no Q-curve of degree 29 over K. For X5(29)(Q5) to
be non-empty, 5 should split in H/Q(

√
−29), where H is the Hilbert class

field of Q(
√
−29). However, the prime P | 5 of Q(

√
−29), decomposes as

P1P2 where the inertia degree of Pi is 3, hence X5(29)(Q5) = ∅. Note that
X5(29)(Qp) 6= ∅ for any other prime p different from 5 using Theorem 1.1. It
is interesting that this curve fails to have local points at exactly one place,
unlike the examples of Shih, Quer and Clark.

5. Violations of the Hasse principle. We now give a more precise
statement of the density result stated in the introduction and prove it.

Definition 5.1. If L/Q is a finite normal extension of Q and c ⊂
Gal(L/Q) is a subset closed under conjugacy, then the set of primes p whose
Artin symbol in Gal(L/Q) lies in c is called a Chebotarev set.

The density of a Chebotarev set is well-defined by the Chebotarev density
theorem, and the set SN of primes defined in Proposition 4.6 is a Chebotarev
set with density (|2G|+ 1)/(2|G|) where G is the Galois group of H over M
as introduced in the previous section.

Theorem 5.2 (Serre, Theorem 2.8 in [30]). Let 0 < α < 1 be the Frobe-
nius density of a set of primes S, and NS(X) the number of square-free
integers in [1, . . . , X] all of whose prime factors lie in S. Then

NS(X) = cS
X

log1−αX
+O

(
X

log2−αX

)
for some positive constant cS .

Using this result we obtain a density result for the twists which have local
points at every prime p. One can write down a curve X0(N) and compute an
explicit asymptotics for the set of quadratic twists of X0(N) violating the
Hasse principle using Faltings’ finiteness results as in the proof of Theorem 2
in [1]. We will detail the case of N prime and congruent to 1 modulo 4 below.
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The other cases are similar. Note that for a given N , the set SN , defined in
the previous section, is fixed.

Proposition 5.3. Given a prime number N ≡ 1 mod 4 and a positive
integer X, let A′ be the set of positive square-free integers d ≤ X such that
Xd(N)(Qp) is non-empty for all p and there is no prime simultaneously
ramified in Q(

√
d) and Q(

√
−N). Then

|A′| = 1
2
MSN

X

log1−αX
+O

(
X

log2−αX

)
where α = (|2G|+ 1)/(2|G|) is the density of SN .

Proof. By Theorem 5.2 the set A = {d ∈ Z | d ≤ X, square-free,
(d,N) = 1, d =

∏
i pi, pi ∈ SN} has density

MSN

X

log1−αX
+O

(
X

log2−αX

)
where α =

|2G|+ 1
2|G|

is the density of SN .
We will examine Qp-points for each p separately, starting with p = 2. If

N ≡ 1 mod 4 then 2 is ramified in Q(
√
−N), hence it cannot be ramified in

Q(
√
d) when d ≡ 1 mod 4 and 2 is not in SN . Therefore, in order to have

Q2-points we should consider the d’s in A which are congruent to 1 mod 4.
By Theorem 1.1, the only primes p such that Xd(N) may fail to have

Qp-points are the primes ramified in Q(
√
d) and unramified in Q(

√
−N) and

the primes that are inert in Q(
√
d), dividing N . We start by showing that

N splits in Q(
√
d), hence Xd(N)(QN ) 6= ∅.

By Theorem 6.1 in [3], the genus field of Q(
√
−N) is Q(

√
N,
√
−N).

Recall that the ring class field of Z[
√
−N ] is Q(

√
−N, j(

√
−N)) and j(

√
−N)

is real ([3, p. 220]). Therefore Q(
√
N) lies inside Q(j(

√
−N)). Let p be a

prime divisor of d. Note that p has to be odd. Since p is in SN , there is a
prime P of Q(j(

√
−N)) lying over p with inertia degree 1. Consequently,(

N
p

)
=
( p
N

)
= 1, hence

(
d
N

)
= 1, and N splits in Q(

√
d). Therefore if N

is prime congruent to 1 mod 4, then for any d in A and d ≡ 1 mod 4,
Xd(N)(Qp) 6= ∅ for all p. Since A consists of only odd numbers, the set A′

has density 1
2 |A|.

In [1, Theorem 2] Clark proved that there are only finitely many d’s
such that Xd(N)(Q) is non-empty, when N > 131 and N 6= 163. Therefore,
excluding this finite set of N , Proposition 5.3 gives the asymptotics for the
number of twists Xd(N) which violate the Hasse principle when N is a
prime congruent to 1 mod 4 and there is no prime simultaneously ramified
in Q(

√
d) and Q(

√
−N). Hence one gets the following result:

Theorem 5.4. Let N be a prime greater than 131 and congruent to 1
mod 4. Then the number of twists Xd(N) which violate the Hasse principle
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when there is no prime simultaneously ramified in Q(
√
d) and Q(

√
−N), is

asymptotically 1
2MSN

X
log1−αX

.

The following corollary gives an answer to a question of Clark [1].

Corollary 5.5. Let N be a prime congruent to 1 mod 4, and p be an
odd prime such that (N/p) = −1. Then

(1) Xp∗(N)(QN ) = ∅.
(2) Xp∗(N)(Qp) = ∅.
(3) Xp∗(N)(Q`) 6= ∅ for any other prime ` different than p and N .

Proof. The first conclusion was also given in [1] and can be seen as a
consequence of Theorem 3.7. The second conclusion can also be derived
from a theorem of González [1, Theorem 9] but we give a slightly different
approach below.

Let M := Q(
√
−N). Since N ≡ 1 mod 4, the genus field of M is Q(i,

√
N).

Note that since −N ≡ 3 mod 4, the ring class field of Z[
√
−N ] is the Hilbert

class field. Let B := Q(j(Z[
√
−N ])). Since j(Z[

√
−N ]) is real, B∩Q(i,

√
N)

is Q or Q(
√
N). If it is Q, the class number of Z[

√
−N ] is 1, a contradiction.

By Theorem 4.10 and Lemma 4.6, Xd(N)(Qp) = ∅ if and only if p /∈ SN .
Since (N/p) = −1 this is equivalent to saying that for all primes ν of B lying
over p, f(ν|p) > 1.

The third conclusion can be derived from Theorem 3.17.

6. Further directions. We have seen that there are lots of curves over
Q which have local points everywhere (Proposition 5.3). As stated by Clark
[1], one natural follow-up question would be asking about the Q-rational
points. We know by Theorem 5.4 that there are many quadratic twists which
have local points everywhere but no Q-rational points. In this section we
will give examples of such twists and show that this violation of the Hasse
principle can be explained by the Brauer–Manin obstruction.

In the case of imaginary quadratic fields K and when N is inert in K, we
have an answer to the question of Clark mentioned above, implied by the
following theorem of Mazur:

Theorem 6.1 (Mazur, [18]). If K is a quadratic imaginary field and N
is a sufficiently large prime which is inert in K, then X0(N)(K) is empty.
In particular, there are no Q-curves over K of degree N .

When N splits in K and K is imaginary quadratic, or N is inert in K and
K is real quadratic, using the formula of Weil given in [14], every cuspform as-
sociated with a quotient of the Jacobian of Xd(N) has odd functional equa-
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tion. Thus, conjecturally none of these quotients has Mordell–Weil rank 0
and we cannot hope to apply Mazur’s techniques. The future plan is to
prove a result about existence of rational points on Xd(N) where K is a real
quadratic field and N splits in K using Mazur’s techniques.

Another direction to go is understanding the reasons of violations of the
Hasse principle. Say for some d and N , Xd(N) has local points for every
p but no global points, hence it violates the Hasse principle. What is the
reason for that? One natural guess would be the Brauer–Manin obstruc-
tion.

Let C be a smooth, projective, geometrically integral curve over Q of
genus greater than or equal to 2 with a rational degree one divisor D. Then
we can embed C into its Jacobian J via the map P 7→ [P ]−D. The aim is
to obtain information on the set C(Q), in particular we would like to prove
that C(Q) is empty. Using the technique that is explained below, which
first appeared in Scharaschkin’s thesis [26], one may prove that C(Q) is
empty.

Let S be a finite set of primes at which C has good reduction and assume
that we know the generators of the Mordell–Weil group, J(Q). Then for
every p in S we can compute the finite abelian group J(Fp) and the set
C(Fp). Let injp denote the injection from C(Fp) to J(Fp), and redp be the
reduction map from J(Q) to J(Fp). Then we obtain the following diagram:

C(Q)
P 7→[P ]−D //

��

J(Q)

red=
Q
p∈S redp

��∏
p∈S C(Fp)

inj=
Q
p∈S injp //

∏
p∈S J(Fp)

If there is a P in C(Q) then redp([P ]−D) is in injp(C(Fp)) for any p in S.
In particular if the images of red and inj do not intersect then C(Q) = ∅.
This technique is called Mordell–Weil sieve.

The Brauer–Manin obstruction is checking if a certain subset CB, where
B is a subset of the Brauer group of C, is empty or not. This method
was introduced by Manin in [16] and says that if CB is empty then C(Q)
is empty. Note that CB is a subset of adeles

∏
ν C(Qp), containing C(Q).

What Scharaschkin proved in his thesis is that in the case of curves (and
under the assumption that the Tate–Shafarevich group of J is finite and C
has a rational degree one divisor), Mordell–Weil sieve is equivalent to the
Brauer–Manin obstruction ([26], [27]).

Given a smooth, projective, geometrically integral curve over Q with
local points for every Qp, it is an open question whether the Brauer–Manin
obstruction is the only obstruction to the Hasse principle [33]. However, in
the cases below, this is known.
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Theorem 6.2 (Manin, [33]). Let C be a proper, smooth curve of genus
1 with Jacobian J . If Sha(J) is finite then the Brauer–Manin obstruction is
the only obstruction to the Hasse principle.

Theorem 6.3 (Scharaschkin, [26]). Let C be a proper, smooth curve
with Jacobian J . If C has a rational divisor class of degree 1, and J(Q) and
Sha(J) are finite, then the Brauer–Manin obstruction is the only obstruction
to the Hasse principle.

In order to apply Scharaschkin’s technique, one needs an equation of
the curve C, generators of J(Q) and also existence of a Q-rational degree
one divisor class. In the case of quadratic twists of X0(N), if the curve is
hyperelliptic and wN is the hyperelliptic involution then finding the equation
of the twist is easy. According to [22] there are 18 values of N such that
X0(N) is hyperelliptic. Moreover there exist relatively simple equations of
X0(N) given by Galbraith in [9] that make the computations feasible. Such
equations for hyperelliptic modular curves were first given by González [10]
(see also the works of Murabayashi [21] and Hasegawa [11]). It is a result
of Ogg [22] that X0(N) is hyperelliptic with automorphism group {1, wN}
for N = 23, 26, 29, 31, 35, 39, 41, 47, 50, 59, 71. Then the equation of the twist
Xd(N) is dy2 = f2g+2(x) where g is the genus of the curve and fm is a degree
m polynomial.

Since for genus 1 the claim is already proved, we will restrict to the cases
g ≥ 2 and we want a hyperelliptic curve with wN = −1. The smallest such
N is 23 and X0(23) is given by (x3 − x+ 1)(x3 − 8x2 + 3x− 7) in [9]. The
following computations were done using the computer package MAGMA.

Example 6.4. Let N = 23. We will study the twists of X0(23) for all
primes d between −300 and 300. There are 124 such primes. The twist is
given by the equation y2 = d(x3 − x+ 1)(x3 − 8x2 + 3x− 7). Let a1, a2, a3

be the roots of x3 − x+ 1, and Pi = (ai, 0) be the corresponding points on
Xd(N). Then D = [P1 + P2 + P3 −∞1 −∞2] is a rational divisor of degree
one on Xd(N). A similar construction can be found in [8].

(1) Let |d| be prime different from 23 and between −300 and 300. Then
Xd(N) has local points everywhere for 39 values of d. For 10 among these
39 values, Xd(N) has points with small height. When we eliminate these,
we are left with a set with 29 elements.

(2) In order to apply Scharaschkin’s technique, we need the generators
of Jd(Q) where Jd is the Jacobian of Xd(N). This seems to be the hardest
thing to do. First let us consider the only case where we were able to apply
Scharaschkin’s technique.

Say d = 17: Let C be X17(23) and J17 be its Jacobian. It can be com-
puted that J17 has no non-trivial torsion and the rank of J17(Q) is less than
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or equal to 2. After a short search we come up with the generators of J17(Q):
D1 = 〈x2 + 3, 17x− 34, 2〉 and D2 = 〈x2 − 3/4x+ 5/8, 153/16x− 17/32, 2〉.
The notation means that D1 = [P1 + P̄1−∞1−∞2] with P1 = (a, 17a−34)
where a is one of the roots of x2 +3 and P̄1 = (ā, 17ā−34). Similarly for D2.

To apply Scharaschkin’s idea, we need a finite set S of primes. In our
case S will be {3, 19}. Now we explain how we came up with this S. The
first thing to do is reduce the generators D1, D2 of the Mordell–Weil group
modulo several primes such that J17 has good reduction. Let C̃, J̃17, D̃1, D̃2

be the reductions of C, J17, D1, D2 modulo p. We did this for primes in [3, 25]
and we got Table 1.

Table 1

Prime Order of D̃1 and D̃2 k such that D2 = kD1

3 [11, 11] 4

5 [10, 10] -

7 [38, 38] -

11 [38, 38] -

13 [11, 11] 4

19 [11, 11] 4

Since the strategy is to compare the linear combinations of reductions of
D1 and D2 modulo p with the image of injp, we would like to have primes
which will give fewer linear combinations, i.e. primes p for which D1 and D2

have smaller orders modulo p. Another thing that might be useful is having
the extra relation D̃2 = kD̃1. We see that there are three primes 3, 13, 19
for which this happens. We remark that, in fact, the set {13} would also
work to show the non-existence of any point on C, but we think that the set
consisting of two primes gives a better understanding of the technique. We
should also mention that none of the primes 3, 19 (or 5) would work alone.

Say there exists a point P in C(Q). Then its image D under the injection
map is in J(Q), hence D = n1D1 + n2D2 for some integers n1, n2.

Let p = 3. The reduction of D is D̃ = n1D̃1 +n2D̃2. Since D̃2 = 4D̃1, for
any linear combination we have n1D̃1 +n2D̃2 = (n1 + 4n2)D̃1. The image of
the map inj3 is kD̃1 with k ∈ {1, 5, 6, 10}. This shows that n1 + 4n2 ≡ 1, 5, 6
or 10 mod 11.

Now let p = 19. Again we have D̃2 = 4D̃1 so any linear combination
n1D̃1 + n2D̃2 reduces to (n1 + 4n2)D̃1. However, the image of inj19 is kD̃1

with k ∈ {2, 3, 8, 9}. This yields n1+4n2 ≡ 2, 3, 8 or 9 mod 11. Contradiction.

This example shows that the twisted modular curve X17(23) has local
points everywhere but no global points, hence it violates the Hasse principle,
and this violation can be explained by the Brauer–Manin obstruction.
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This example is also interesting in the sense that 23 is inert in the
quadratic field Q(

√
17). Then, using the formula of Weil given in [14], ev-

ery cuspform associated with a quotient of the Jacobian of X17(23) has
odd functional equation. Thus, conjecturally none of these quotients has
Mordell–Weil rank 0 and Mazur’s methods cannot be applied. In fact, the
Jacobian of X17(23) is simple since J17(23) is an abelian surface with rank 2
and therefore its only non-trivial quotients are the elliptic ones. However, the
q-expansion of the corresponding newforms of level 23 has conjugate coeffi-
cients in Q(

√
−5) (see [34]), hence there is only one isogeny class, therefore

J17(23) is simple.
If we continue our search for the same level, N = 23, we get some more

d values such that the corresponding twists fail to have rational points.

Example 6.5 (continuation of the above). For d = 173,−211, 101,−59,
−223 the rank of J(Q) is 0 since the 2-Selmer group is trivial. Moreover,
the torsion part of J(Q) is also trivial in all these cases. Say there exists
P ∈ C(Q) where C is the twist Xd(23); then [P ]−D, where D is as above,
is in J(Q). By Lemma 6.6 below, D is not equivalent to [P ] for any point P ,
hence [P ]−D is non-zero, contradiction. Therefore Xd(23)(Q) = ∅ for d =
173,−211, 101,−59,−223.

Lemma 6.6. Let C be a hyperelliptic curve of genus at least 2. Let
P1, P2, P3 be fixed points of the hyperelliptic involution, and let I1, I2 be a
pair of points interchanged by the hyperelliptic involution. Let D = P1 +P2 +
P3 − I1 − I2. Then D is not linearly equivalent to a point.

Proof. Since 2P3 and (I1+I2) are fibers of the hyperelliptic map C → P1,
the divisor 2P3 − I1 − I2 is principal. Hence, D can also be written as
P1 +P2−P3. If D is equivalent to some point Q, then P1 +P2−P3−Q is a
principal divisor div(f). But then f : C → P1 would have degree 2, and in
particular would give another hyperelliptic map and another hyperelliptic
involution. It must be different from the hyperelliptic involution we already
know, because it interchanges P1 and P2. Since the hyperelliptic involution
is unique in genus greater than one, this gives us a contradiction.

In [2] Clark proves that the density of twists that violate the Hasse
principle is positive. Hence, we know they exist. However, the examples
stated so far are the first explicit examples of this family of twists that
violate the Hasse principle. Moreover, this violation is explained by the
Brauer–Manin obstruction.
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