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1. Introduction. The purpose of this paper is to prove the following
theorem.

Theorem 1.1. For any finite abelian group G of exponent 8, there are
infinitely many imaginary quadratic fields E such that

K2OE/(K2OE)8 ' G.
For any finite abelian group H of exponent 8 with rk2(H) ≥ 2 + rk4(H),
there are infinitely many real quadratic fields F such that

K2OF /(K2OF )8 ' H.
Note that rk2(K2OF ) ≥ [F : Q] for all totally real fields F .
Let F = Q(

√
d) be a quadratic number field with d a square free integer.

Let Cl(F ) be the class group of F , and Cl+(F ) the narrow class group
of F . The study of the 2-Sylow subgroup of Cl+(F ) has a very long history.
Gauss’s genus theory gives the 2-rank formula of Cl+(F ) (see [10] and [11]
for details). Then Rédei studied the 2-, 4-, 8-rank of Cl+(F ) in a series of
papers ([26], [27]). Stevenhagen’s paper [29] contains a nice review of Rédei’s
methods. In particular, Rédei proved that for any nonnegative integers r8 ≤
r4 ≤ r2, there are infinitely many real quadratic number fields such that r2,
r4 and r8 are the 2-, 4-, 8-rank of Cl+(F ) respectively.

Later, Morton [17] proved that Rédei’s theorem holds for imaginary
quadratic fields, i.e., there are infinitely many imaginary quadratic fields
E for which the 2-, 4-, 8 ranks of Cl(E) have arbitrarily assigned values. He
also gave a much simpler proof of Rédei’s theorem for real quadratic fields
(see [18] and [16]). Morton’s results were generalized by Stevenhagen [30]
by using the theory of governing fields. Kolster [14] gave an algorithm to
compute the 2n-rank of Cl+(F ) for every n. In this paper, we will mainly
use Kolster’s algorithm.
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One should note that the study of the 8-rank of Cl+(F ) is much more
difficult than that of the 4-rank. The reason is that the 8-rank formulas
involve solutions of certain Diophantine equations which cannot be solved
effectively.

By Tate’s Theorem 6.2 of [31], one can get a 2-rank formula for K2OF
(see [3] for a more explicit formula). Rédei’s theorem gives a formula for
the 4-rank of Cl+(F ) by means of the rank of a matrix whose entries are
the local Hilbert symbols (pi, d)pj , where pi, pj are prime divisors of the
discriminant of F . Formulas for the 4-rank of K2OF are much more involved.
If 2 ∈ NormF/Q(F×), we have to deal with solutions of certain Diophantine
equations. This is the difference between class groups and K2 groups.

By Qin’s methods of [21]–[23] and [25], we can determine the 2n-rank of
K2OF for n = 2 and 3. One can find the explicit structure of the tame kernels
of quadratic fields F whose discriminant has few prime divisors in [21]–
[25], [34], [35]. Qin’s method is generalized to relatively quadratic extensions
in [12]. The 4-rank density of the tame kernels of quadratic fields whose
discriminant has less than 3 prime divisors can be found in [19], [20] and [5].
The 4-rank density for general quadratic fields can be found in [8].

In [32], Vazzana proved that the 8-rank of the tame kernels of quadratic
fields can be arbitrarily large. He also studied certain cases where the 8-rank
of the tame kernel of a quadratic field is exactly the 8-rank of the narrow
class group.

In [25], Qin made the following conjecture.

Conjecture 1.2. Let k≥2 and n∈N. Given k−1 integers r4, r8, . . . , r2k

satisfying n ≥ r4 ≥ r8 ≥ · · · ≥ r2k ≥ 0. Then there exist infinitely many
quadratic number fields F = Q(

√
d) such that d > 0 square free has exactly

n prime divisors, all of them ≡ 1 (mod 8) and the 2j-rank of K2OF is r2j

(2 ≤ j ≤ k).
The same assertion should be true for F = Q(

√
d) with d = −d′ or

d = 2d′ or d = −2d′, where d′ has exactly n prime divisors, all of them ≡ 1
(mod 8).

In [24], Qin proved the above conjecture for k = 2 and n−1 ≥ r4 ≥ 0. In
our main theorem, there is a prime divisor q of d with q ≡ 3 or 5 (mod 8).
Hence Conjecture 1.2 remains open. We put q ≡ 3 or 5 (mod 8) for a tech-
nical reason (to avoid the case 2 ∈ NormF/Q(F×) in which even the 4-rank
of K2OF is very complicated).

This paper is organized as follows. In Section 2, we briefly review the well
known results on the 2n-rank of the narrow class groups of quadratic number
fields in the language of [14]. In Section 3, we briefly review Qin’s theorems
on the 2n-rank (n ≤ 3) of the tame kernels of quadratic number fields which
we will use in the next two sections. In Section 3, we prove that for any finite
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abelian groupG of exponent 8, there are infinitely many imaginary quadratic
fields E such that K2OE/(K2OE)8 ' G. In Section 5, we prove that for any
finite abelian group H of exponent 8 with rk2(H) ≥ 2 + rk4(H), there are
infinitely many real quadratic fields F such that K2OF /(K2OF )8 ' H.

Although we cannot prove that the imaginary quadratic fields E (resp.
real quadratic fields F ) with

K2OE/(K2OE)8 ' G (resp. K2OF /(K2OF )8 ' H)

have a positive density among all imaginary (resp. real) quadratic fields, our
results show that for any G (resp. H) there exists a P (resp. Q) such that
the primes q with

K2OQ(
√
−Pq)/(K2OQ(

√
−Pq))

8 ' G
(resp. K2OQ(

√
Qq)/(K2OQ(

√
Qq))

8 ' H)

have a positive density by Morton’s Density Theorem in [17] and [18].
In the case of real quadratic fields, we assume in this paper that rk2(H) ≥

2 + rk4(H). However one should note that there are many examples of real
quadratic fields F with rk2(K2OF ) = rk4(K2OF ) + 1. Our construction
depends on Morton’s explicit construction of certain quadratic fields. While
in those cases one always has rk2(K2OF ) ≥ rk4(K2OF ) + 2, we believe that
for any finite abelian group H of exponent 8 with rk2(H) ≥ 1 + rk4(H),
there are infinitely many real quadratic fields F such that K2OF /(K2OF )8

' H (see Conjecture 5.8).

2. The 2n-rank of the class groups of quadratic fields. In this
section, we will briefly review the well known results on the 2n-rank of the
class groups of quadratic fields. We will use Kolster’s method and notation
of [14] to deal with the 2n-rank of the class groups of quadratic fields for
n = 1, 2, 3.

Let F = Q(
√
d) be a quadratic number field, where d is a square free

integer. Let Gal(F/Q) = {1, σ}. Let D be the discriminant of F . For each
nontrivial positive square free divisor m of D, let [m] be the product of the
distinct ramified primes above the prime divisors of m. Let Cl(F ) be the
class group of F and Cl+(F ) the narrow class group of F . Let

(2.1) α =
{√

d if d ≡ 2 or 3 (mod 4),
(1 +

√
d)/2 if d ≡ 1 (mod 4).

Then {1, α} is a basis of OF . An element a + bα ∈ OF is called primitive
if GCD(a, b) = 1 (see [9] and [14] for some equivalent descriptions). An
integral ideal J is called primitive if

J = I[m],
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where m is a square free positive divisor of D and I is an integral ideal such
that I is a product of powers of unramified primes p and p | I implies pσ - I.

Let p be a rational prime. Let a = pαu, b = pβv be two nonzero rational
numbers, where u and v are p-adic units. Then the local Hilbert symbol (a, b)p
is defined to be

(2.2) (a, b)p =

 (−1)αβε(p)
(
u

p

)β(v
p

)α
if p is odd,

(−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2,

where

ε(x) =
x− 1

2
, ω(x) =

x2 − 1
8

(see [28] for details).
Let A be a matrix whose entries are local Hilbert symbols. Following

Kolster’s notation of [14], we can view A as a matrix ϕ(A) over F2 if we
replace 1 by 0 and −1 by 1. The rank of A is understood as the F2-rank of
ϕ(A).

Let k be the number of primes which are ramified in F , and p1, . . . , pk
the prime divisors of the discriminant D. Let

R
(1)
F =


(p1, d)p1 (p1, d)p2 · · · (p1, d)pk

(p2, d)p1 (p2, d)p2 · · · (p2, d)pk

...
...

. . .
...

(pk, d)p1 (pk, d)p2 · · · (pk, d)pk

 =


(p1, d)

...
(pk, d)

 ,

where
(m, d) = ((m, d)p1 , . . . , (m, d)pk

)

for any m |D.

Theorem 2.1 (Rédei, [26]). Let F be a quadratic number field. Then

rk4(Cl+(F )) = k − 1− rank(R(1)
F ).

Let k1 = rank(R(1)). Without loss of generality, we may assume that the
first k1 rows ϕ((p1, d)), . . . , ϕ((pk1 , d)) are linearly independent. Let S(1) =
{p1, . . . , pk1} and

N
(1)
F =


(p1, d)

...
(pk1 , d)

 .

For any j with k1 + 1 ≤ j ≤ k, one can find pj1, . . . , pjlj ∈ S(1) such that

(pjpj1 · · · pjlj , d) = (1, . . . , 1).
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Letmj = pjpj1 · · · pjlj . As (mj , d) = (1, . . . , 1), we havemj ∈ NormF/Q(F×).
By Proposition 2.1 and Corollary 2.3 of [14], there exists a primitive integral
ideal Ij of norm less than

√
|d| such that

I2
j [mj ] = (zj)

for some primitive element zj ∈ O+
F , where O+

F is the set of totally positive
elements of OF . Let tj = Norm(Ij) and

R
(2)
F =


N

(1)
F

(tk1+1, d)
...

(tk, d)

 .

Note that the rank of R(2)
F does not depend on the choice of Ij . The

following theorem was proved by Waterhouse.

Theorem 2.2 (Waterhouse, [33]). Let F be a quadratic number field.
Then

rk8(Cl+(F )) = k − 1− rank(R(2)
F ).

3. The 2-Sylow subgroups of the tame kernels of quadratic
fields. In this section, we briefly review the known results on the 2-Sylow
subgroups of the tame kernels of quadratic fields. Let F be a number field,
r1 the number of real embeddings of F , g2(F ) the number of distinct prime
ideals of OF above 2, and Cl2(F ) the subgroup of Cl(F ) generated by the
prime ideals of OF above 2. Then by Theorem 6.2 of [31],

(3.1) rk2(K2OF ) = rk2(Cl(F )/Cl2(F )) + g2(F ) + r1 − 1

(see also [3] and [2] for more details).
Let F = Q(

√
d), where d is a square free integer (d is allowed to be

negative), E = Q(
√
−d), δF = rk2(Cl+(F )/Cl+2 (F )) − rk2(Cl(F )/Cl2(F )),

where Cl+2 (F ) is the subgroup of Cl+(F ) generated by the prime ideals of
OF above 2.

Theorem 3.1 (Boldy, [1]). Let F = Q(
√
d) and E = Q(

√
−d) with d a

square free integer. Then

rk4(K2OF ) = rk4(Cl+(E)/Cl+2 (E)) + g2(E) + δF − 1.

See also Theorem 3.4 of [4]. The following theorem can be used to tell
if {−1,m} ∈ (K2OF )2, where m | d. Note that the theorem is only a special
case (2 /∈ NormF/Q(F×)) of Qin’s theorems. In our explicit construction, we
will always make F satisfy the condition 2 /∈ NormF/Q(F×).
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Theorem 3.2 (Qin, [21], [22], [25]). Let F = Q(
√
d), d ∈ Z square free.

Suppose m | d (m > 0 if d > 0) and 2 /∈ NormF/Q(F×). The set S(d) is
defined to be {±1,±2} if d > 0 or {1, 2} if d < 0. Then the Steinberg symbol
{−1,m} is in (K2OF )2 if and only if one can find an ε ∈ S(d) such that for
any odd prime p | d,

(m,−d)p =
(
ε

p

)
.

The 8-rank of the tame kernels of quadratic number fields involves the
solution of certain Diophantine equations. We know that a necessary condi-
tion for {−1,m} ∈ (K2OF )4 is that there is an ε ∈ {1, 2} such that

(3.2) εmZ2 = X2 + dY 2

is solvable. For a square free integer n and i = 1, 3, 5, 7, denote by ni the
product of all prime divisors of n which are ≡ i (mod 8) (ni = 1 if d has
no prime divisor which is congruent to i modulo 8). We use the notation
(a, b) 2= 1 to mean that the integers a and b have no common odd divi-
sors. We let σ(l) = 1 or 0 according to whether l |m5 or not. The following
theorem is a special case of Qin’s Theorem 2.4 of [25].

Theorem 3.3 (Qin, [23], [25]). Let F = Q(
√
d), d ∈ Z square free.

Suppose m | d. Write m = ±m1m3m5m7 with mi | di for i = 1, 3, 5, 7. As-
sume that (3.2) is solvable and let Xm, Ym, Zm ∈ N with (Xm, Ym) = 1 and
(Zm, d) 2= 1 be a solution of (3.2).

Suppose that 2 /∈ NormF/Q(F×). Then {−1,m} ∈ (K2OF )4 if and only
if for i = 1, 3, 5, 7, there are hi | di, in particular, hi = 1 is permitted, and
ε ∈ {±1,±2} such that for any odd prime l | d,

(d,m3h1h5)l(−2σ(l)d,m5h3h7)l =
(
εZm
l

)
.

4. Tame kernels of imaginary quadratic fields. Let G be any finite
abelian group of exponent 8. In this section, we will prove that there are
infinitely many imaginary quadratic fields E such that

K2OE/(K2OE)8 ' G.
By using Qin’s method of [21]–[23] and [25], we will reduce the problem

to showing that there are infinitely many real quadratic number fields F of
certain types such that

Cl+(F )/(Cl+(F ))8 ' G,
while the existence of infinitely many such real quadratic number fields F
can be proved by Morton’s Theorem [18].

Let s ≤ r be nonnegative integers. Then there exist r+ 1 primes p1, . . . ,
pr, pr+1 = q such that
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(4.1)

(1) pi ≡ 1 (mod 8) for 1 ≤ i ≤ r;

(2)
(
pi
pj

)
= 1 for 1 ≤ i 6= j ≤ r;

(3) q ≡ 5 (mod 8);

(4)
(
pi
q

)
=
{

1 if 1 ≤ i ≤ s,
−1 if s+ 1 ≤ i ≤ r.

The existence can be proved easily. One can define primes pj inductively by
applying well known properties of the Legendre symbol.

Let d = p1 · · · prq and F = Q(
√
d). Recall that in Section 2, we defined

R
(1)
F = ((pi, d)pj )(r+1)×(r+1).

By (2.1), we have

ϕ(R(1)
F ) =

(
Os×s Os×(r−s+1)

O(r−s+1)×s AF

)
,

where the O’s are zero matrices and

AF =



1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
1 1 · · · 1 a


(r−s+1)×(r−s+1)

where a ≡ r − s (mod 2). It is easy to see that rank(AF ) = r − s. Then by
Rédei’s Theorem,

rk4(Cl+(F )) = r − rank(AF ) = s.

By Gauss’s genus theory, 2Cl+(F ) is generated by [p1], . . . , [pr], [q]. And
there is a unique nontrivial relation among these r+ 1 elements. We assume
that this relation is

[pa1
1 · · · p

ar
r q

b] = 1 ∈ Cl+(F ), where ai, b ∈ {0, 1}.

Since [pa1
1 · · · par

r q
b] = (α) for some α ∈ O+

F (the totally real elements of OF ),
we have pa1

1 · · · par
r q

b = NormF/Q(α). Hence (pa1
1 · · · par

r q
b, d) = 1. Since

(pi, d) = 1 for any 1 ≤ i ≤ s, we have (pas+1

s+1 · · · par
r q

b, d) = 1. Hence for

any s+ 1 ≤ j ≤ r, we have (pas+1

s+1 · · · par
r q

b, d)pj = 1, i.e.,
( q
pj

)b+aj = 1. Since( q
pj

)
= −1 for s + 1 ≤ j ≤ r, we have as+1 = · · · = ar = b. The subgroup

2Cl+(F ) ∩ (Cl+(F ))2 is generated by the elements

[p1], . . . , [ps], [ps+1 · · · prq]
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by Proposition 2.1 of [14], and there is exactly one nontrivial relation among
these s+ 1 elements. By Proposition 2.1 of [14], for 1 ≤ i ≤ s+ 1, there are
ti ∈ Z and αi ∈ O+

F such that

(4.2)

p1t
2
1 = NormF/Q(α1),
...

pst
2
s = NormF/Q(αs),

ps+1 · · · prqt2s+1 = NormF/Q(αs+1),

where ti (1 ≤ i ≤ s + 1) are the norms of some primitive integral ideals
of OF .

By Lemma 2.5 of [14], (ti, d)l is trivial for all primes l which are unram-
ified in F . Let

(ti, d) = ((ti, d)p1 , . . . , (ti, d)pr , (ti, d)q).

Note that (ti, d)p1 · · · (ti, d)pr(ti, d)q = 1 by the product formula.
Let

N
(1)
F =


(ps+1, d)

...
(pr, d)

 , R
(2)
F =


N

(1)
F

(t1, d)
...

(ts+1, d)

 .

By Theorem 2.2, the 8-rank of Cl+(F ) is

r8 = r − rank(R(2)
F ).

Let m be a divisor of d such that [m] ∈ 2Cl+(F ) ∩ (Cl+(F ))2. Note that if
q |m, then ps+1 · · · pr |m also. We assume that

m = pa1
1 · · · p

as
s (ps+1 · · · prq)b,

where ai, b ∈ {0, 1}. We define

t(m) = ta1
1 · · · t

as
s t

b
s+1.

Then there is a primitive element α ∈ O+
F such that t2(m)m = NormF/Q(α)

and t(m) is the norm of some primitive integral ideal of OF . By Theorem 2.6
of [14], [m] ∈ 2Cl+(F )∩ (Cl+(F ))4 if and only if there is an integral ideal I ′

whose class in Cl+(F ) is of exponent 2 such that for t′ = NormF/Q(I ′) the
product t(m) · t′ is a norm from F , i.e., there is a divisor t′ of ps+1 · · · pr such
that (t(m)t

′, d) is trivial. We write this fact as a proposition.

Proposition 4.1 (Kolster, Theorem 2.6 of [14]). Let the notation be as
above. Assume that [m] ∈ 2Cl+(F ) ∩ (Cl+(F ))2 and t(m) ∈ Z+ such that

t2(m)m = NormF/Q(α) for some primitive α ∈ O+
F
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and t(m) is the norm of some primitive integral ideal of OF . Then [m] ∈
2Cl+(F ) ∩ (Cl+(F ))4 if and only if there is a divisor t′ of ps+1 · · · pr such
that (t(m)t

′, d) is trivial.

Let E = Q(
√
−d), where d = p1 · · · prq and pi, q satisfy the four condi-

tions of (4.1).

Theorem 4.2. With the notation as above, we have

rk2(K2OE) = r, rk4(K2OE) = s.

Let m | d, where m is allowed to be negative. Then {−1,m} ∈ (K2OE)2 if
and only if [|m|] ∈ (Cl+(F ))2.

Proof. By (3.1), we have rk2(K2OE) = r. Let F = Q(
√
d). Then by

Theorem 3.1, we have rk4(K2OE) = s.
Since pi ≡ 1 (mod 8) and q ≡ 5 (mod 8), we have(

2
pi

)
= 1 for 1 ≤ i ≤ r and

(
2
q

)
= −1.

Hence we can always choose ε ∈ {1, 2} such that

(m,−d)q =
(
ε

q

)
and

(
ε
pi

)
= 1. By Theorem 3.2, {−1,m} ∈ (K2OE)2 if and only if

(m, d)pi = 1

for any 1 ≤ i ≤ r. Note that (−1, d)pi = 1 for pi ≡ 1 (mod 8) for any
1 ≤ i ≤ r. Hence (m, d)pi = 1 if and only if (|m|, d)pi = 1. By Corollary
2.3 of [14], [|m|] ∈ (Cl+(F ))2 if and only if (|m|, d) = 1 for any prime p.
By Lemma 2.5 and the product formula, (|m|, d) = 1 for all primes p if and
only if (|m|, d)pi = 1 for all 1 ≤ i ≤ r. So {−1,m} ∈ (K2OE)2 if and only if
[|m|] ∈ (Cl+(F ))2.

Theorem 4.3. Let the notation be as above. Let F = Q(
√
d) and E =

Q(
√
−d). Let m ∈ Z with m | d and [|m|] ∈ (Cl+(F ))2. Then {−1,m} ∈

(K2OE)4 if and only if [|m|] ∈ (Cl+(F ))4.

Proof. Since −d ≡ 3 (mod 8), we have 2 /∈ NormE/Q(E×). Since [|m|] ∈
(Cl+(F ))2, there is a primitive element α ∈ O+

F such that

|m|Z̃2
m = NormF/Q(α),

where Z̃m is the norm of a primitive integral ideal of OF . If α = Xm+Ym
√
d

with Xm, Ym ∈ Z, then |m|Z̃2
m = X2

m − dY 2
m. If α = (Xm + Ym

√
d)/2 with

Xm, Ym ∈ Z odd integers, then |m|(2Z̃m)2 = X2
m − dY 2

m. We define

Zm =
{
Z̃m if α ∈ Z + Z

√
d,

2Z̃m otherwise,
ε0 =

{
1 if α ∈ Z + Z

√
d,

2 otherwise.
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These Xm, Ym, Zm satisfy the conditions of Theorem 3.3. By Theorem 3.3,
{−1,m} ∈ (K2OE)4 if and only if there exist h1 | p1 · · · pr, h3 | q and ε ∈
{±1,±2} such that for any odd prime l | d,

(4.3) (−d,m3h1h5)l(2σ(l)d,m5h3h7)l =
(
εZm
l

)
.

Note that m3 = h3 = h7 = 1. Since Zm is prime to d, we have(
εZm
l

)
= (d, εZm)l

for any primitive prime divisor l | d. Note that
(−1
pi

)
=
(

2
pi

)
=
(−1
q

)
= 1 and(

2
q

)
= −1. Hence (−1, h1h5)l = 1 and (±d,−1)l = 1 for any prime l. So we

can assume that ε = 1 or 2.
Hence (4.3) holds if and only if we can find h1 | p1 · · · pr, h5 | q and ε ∈

{1, 2} such that for any prime l | d, we have

(4.4)
(1) if q - m, then (h1h5εZm, d)l = 1 for all l | d;

(2) if q |m, then (h1h5qεZm, d)l =
{

1 if l = pi, 1 ≤ i ≤ r,
−1 if l = q.

Since (2, d)pi = 1 (1 ≤ i ≤ r) and (2, d)q = −1, we have (ε, d)pi = 1
(1 ≤ i ≤ r) and (ε, d)q = ±1. Hence (4.4) holds if and only if we can find
h1 | p1 · · · pr, h5 = 1 or q and ε = 1 or 2 such that

(4.5)
(1) (h1h5m5Zm, d)pi = 1, where 1 ≤ i ≤ r;
(2) (h1h5m5Zm, d)q = (ε, d)q.

If 2 - Zm, then Zm = Z̃m. We know that (h1h5m5Zm, d)pi = 1 for 1 ≤ i ≤ r
implies (h1h5m5Zm, d)q = 1 by the product formula. Hence ε = 1. If 2 |Zm,
then Zm = 2Z̃m. Hence ε = 2 by the product formula. Item (2) of (4.5) is
now (h1h5m5Z̃m, d)q = 1. So (4.5) holds if and only if we can find h1 | p1 · · · pr
and h5 = 1 or q such that

(4.6) (h1h5m5Z̃m, d)l = 1 for any l | d.

Since h5m5 = 1, q or q2, and (p1, d)l = · · · = (ps, d)l = (ps+1 · · · prq, d)l = 1
for any l | d, we see that (4.6) holds if and only if we can find h′1 | ps+1 · · · pr
such that

(4.7) (h′1Z̃m, d)l = 1 for any l | d.

By Theorem 2.6 of [14], [|m|] ∈ (Cl+(F ))4 is equivalent to the existence
of an integral ideal I ′ ∈ 2Cl+(F ) such that for t′ = NormF/Q(I ′) we have
Zmt

′ ∈ NormF/Q(F×). Recall that 2Cl+(F ) is generated by [pi] (1 ≤ i ≤ r)
and [q]. Since p1, . . . , ps and ps+1 · · · prq are in NormF/Q(F×), we can assume
that t′ | ps+1 · · · pr. So [|m|] ∈ (Cl+(F ))4 is equivalent to the existence of an



8-rank of tame kernels 417

integral ideal I ′ ∈ 2Cl+(F ) such that t′ = NormF/Q(I ′) | ps+1 · · · pr and
Zmt

′ ∈ NormF/Q(F×), i.e.,

(4.8) (t′Zm, d)l = 1 for any l | d.
It is easy to see that (4.8) is equivalent to (4.7). Hence {−1,m} ∈ (K2OE)4

if and only if [|m|] ∈ (Cl+(F ))4.

We define
A4 = {m : m ∈ Z, m | d, {−1,m} ∈ (K2OE)4},
B4 = {n : n ∈ Z>0, n | d, [n] ∈ (Cl+(F ))4},
G4 = A4(E×)2/(E×)2.

Then G4 is a finite elementary 2-group. Since −d ∈ A4 ∩ (E×)2, we have
#G4 = (#A4)/2. Let TE = {x ∈ E× : {−1, x} = 1} be the Tate kernel of E.
Then by Theorem 6.3 of [31], we have

TE/(E×)2 ' Z/2Z⊕ Z/2Z.
Since 2 ∈ TE but 2 /∈ A4(E×)2, we have TE * A4(E×)2. Consider the map

f : G4 → K2OE , x 7→ {−1, x}.
Lemma 4.4. With the notation as above, ker f = (TE/(E×)2) ∩ G4 '

Z/2Z.

Proof. Since TE * A4(E×)2, ker f must be trivial or Z/2Z. Let

A2 = {m : m ∈ Z, m | d, {−1,m} ∈ (K2OE)2}, G2 = A2(E×)2/(E×)2.

Let g be the map

g : G2 → K2OE , y 7→ {−1, y}.
Then by Theorem 4.2, rk4(K2OE) = s. Hence the cardinality of the image
of g is 2s. And the cardinality of G2 is 2s+1. Hence there is exactly one
nontrivial y0 ∈ G2 such that {−1, y0} = 1. Obviously y0 ∈ G4. Hence
ker f ' Z/2Z.

Theorem 4.5. With the notation as above, rk8(Cl+(F ))=rk8(K2OE).

Proof. By Lemma 4.4,

rk8(K2OE) = rk2(G4)− 1 = log2(#A4)− 2 = log2(#B4)− 1.

Recall that there is exactly one nontrivial n | d such that [n] is trivial in
Cl+(F ) by Gauss’s genus theory. Hence rk8(Cl+(F )) = log2(#B4) − 1.
Therefore rk8(Cl+(F )) = rk8(K2OE).

For any 1 ≤ i ≤ s, let Ki be the unique quartic cyclic extension of Q
with conductor pi. Note that Ki ⊃ Q(

√
pi). For any i,j such that 1 ≤ i 6=

j ≤ s, let Lij be the unique quartic cyclic extension of Q(√pipj) which is
unramified at finite primes. Let M = p1 · · · ps. Let ΛM be the class field over



418 X. J. Guo and H. R. Qin

Q(
√
−M) corresponding to the subgroup (Cl(Q(

√
−M)))4 of fourth powers

in Cl(Q(
√
−M)). Let

KM =
∏

1≤i≤s
Ki, ΣM = KMΛM ,

ΛM =
∏

1≤i 6=j≤s
Lij , ΣM = ΣMΛM .

Theorem 4.6 (Morton, [18]). With the notation as above, the struc-
ture of Cl+(F )/(Cl+(F ))8 is completely determined by the Frobenius symbol(ΣM/Q

q

)
. Moreover, for any nonnegative integer ρ ≤ s, there are infinitely

many primes q ≡ 1 (mod 4) such that

Cl+(F )/(Cl+(F ))8 ' (Z/2Z)r−s ⊕ (Z/4Z)s−ρ ⊕ (Z/8Z)ρ.

Corollary 4.7. For any nonnegative integer ρ ≤ s, there are infinitely
many primes q such that q ≡ 5 (mod 8) and

Cl+(F )/(Cl+(F ))8 ' (Z/2Z)r−s ⊕ (Z/4Z)s−ρ ⊕ (Z/8Z)ρ.

Proof. Let G = (Z/2Z)r−s⊕(Z/4Z)s−ρ⊕(Z/8Z)ρ. Note that i =
√
−1 ∈

ΣM . By considering the ramification index of 2 in the extension ΣM/Q, it
is easy to see that ζ8 /∈ ΣM . Let K = ΣMQ(ζ8) = ΣM (

√
2). Choose a

τ0 ∈ Gal(ΣM/Q) such that there is a q ≡ 1 (mod 4) satisfying(
ΣM/Q
q

)
= τ0 and Cl+(F )/(Cl+(F ))8 ' G.

Then there is a τ ∈ Gal(K/Q) such that τ |ΣM
= τ0 and τ(

√
2) = −

√
2.

By Chebotarev’s density theorem, there are infinitely many q such that(K/Q
q

)
= τ . Hence τΣM

=
(ΣM/Q

q

)
= τ0 and τ(

√
2) = −

√
2. So q is inert in

Q(
√

2), which implies that q ≡ 5 (mod 8). Hence there are infinitely many
q such that q ≡ 5 (mod 8) and Cl+(F )/(Cl+(F ))8 ' G.

By Theorem 4.5 and Corollary 4.7, we have

Theorem 4.8. For any finite abelian group G of exponent 8, there are
infinitely many imaginary quadratic fields E such that

K2OE/(K2OE)8 ' G.

5. Tame kernels of real quadratic fields. Let ρ, s, r̃ be three non-
negative integers such that ρ ≤ s ≤ r̃ and r̃ ≥ 2 + s. In this section, we will
prove that there are infinitely many real quadratic fields F such that

K2OF /(K2OF )8 ' (Z/2Z)er−s ⊕ (Z/4Z)s−ρ ⊕ (Z/8Z)ρ.

Note that we always have rk2(K2OF ) ≥ 2 for real quadratic fields F by (3.1).
See [3], [13, Lemma 2.4] or [6, p. 325] for more details. All real quadratic
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fields with K2OF /(K2OF )2 ' (Z/2Z)2 are determined by Browkin and
Schinzel [3]. All totally real number fields L with K2OL ' (Z/2Z)[L:Q] are
determined in [15] and [7].

Let p, q be two different primes. The biquadratic residue symbol
(p
q

)
4

is
defined to be(

p

q

)
4

=


1 if p ≡ a4 (mod q) for some integer a,
−1 if p 6≡ a4 (mod q) for any integer a and

(p
q

)
= 1,

0 otherwise.
Let r = r̃ − 2. We choose primes p1, . . . , pr and q (q will vary to create

infinitely many real quadratic fields F ) such that

(5.1)

(1) pi ≡ 1 (mod 8) for 1 ≤ i ≤ r;

(2)
(
pi
pj

)
= 1 for 1 ≤ i 6= j ≤ r;

(3)
(
pi
pj

)
4

(
pj
pi

)
4

= 1 for i 6= j,

(4) q ≡ 3 (mod 8),

(5)
(
pi
q

)
=
{

1 if 1 ≤ i ≤ s,
−1 if s+ 1 ≤ i ≤ r.

Let d = p1 · · · prq, F = Q(
√
d) and E = Q(

√
−d). Recall that

R
(1)
E = ((pi,−d)pj )(r+1)×(r+1).

By (2.1), we have

(5.2) ϕ(R(1)
E ) =

(
Os×s Os×(r−s+1)

O(r−s+1)×s AE

)
,

where the O’s are zero matrices,

(5.3) AE =



1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
1 1 · · · 1 a


(r−s+1)×(r−s+1)

and a ≡ r − s (mod 2). It is easy to see that rank(AE) = r − s. Then by
Rédei’s Theorem,

rk4(Cl(E)) = r − rank(AE) = s.

By Gauss’s genus theory, 2Cl(E) is generated by [p1], . . . , [pr], and these
r elements are linearly independent. By (3.1), we have rk2(K2OF ) = r + 2.
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Note that (−2, d)pj =1 for any prime pj . Hence d∈NormQ(
√
−2)/Q(Q(

√
−2)×),

i.e., there exist u,w ∈ N such that d = u2+2w2. By [3], 2(K2OF ) is generated
by linearly independent elements

{−1, p1}, . . . , {−1, pr}, {−1,−1}, {−1, u+
√
d}.

The linear independence follows from Theorem 6.3 of [31].
We will show that 2(K2OF ) ∩ (K2OF )2 is contained in the subgroup

generated by {−1, p1}, . . . , {−1, pr}. We suppose that {−1,m(u +
√
d)} ∈

(K2OF )2. Then we see that the real Hilbert symbols (−1,m(u +
√
d))R =

(−1,m(u−
√
d))R are 1. Hence u+

√
d > 0 and u−

√
d > 0. However this is

impossible for (u+
√
d)(u−

√
d) = u2−d = −2w2 < 0. So 2(K2OF )∩(K2OF )2

is contained in the subgroup generated by {−1, p1}, . . . , {−1, pr}.
Theorem 5.1. With the notation as above, let m be a positive integer

with m | d. Then {−1,m} ∈ (K2OF )2 if and only if [m] ∈ (Cl(E))2.

Proof. By Theorem 3.2, {−1,m} ∈ (K2OF )2 if and only if one can find
an ε ∈ {±1,±2} such that for any odd prime l | d,

(5.4) (m,−d)l =
(
ε

l

)
.

By the product formula, we need only show that there exists ε ∈ {±1,±2}
such that

(5.5) (m,−d)pi =
(
ε

pi

)
for 1 ≤ i ≤ r.

Since pi ≡ 1 (mod 8), we have
(
ε
pi

)
= 1. Hence (5.5) is equivalent to

(5.6) (m,−d)pi = 1.

By Corollary 2.3 of [14], we know that (5.6) holds if and only if [m] ∈
Cl(E)2.

By (5.2), (5.3) and Corollary 2.3 of [14], [m] ∈ (Cl(E))2 if and only if
m = pa1

1 · · · pas
s (ps+1 · prq)b for some a1, . . . , as, b ∈ {0, 1}. Hence {−1,m} ∈

(K2OF )2 if and only m = pa1
1 · · · pas

s (ps+1 · prq)b for some a1, . . . , as, b ∈
{0, 1}.

Theorem 5.2. Assume m = pa1
1 · · · pas

s (ps+1 ·prq)b for some a1, . . . , as, b
∈ {0, 1}. Then {−1,m} ∈ (K2OF )4 if and only if [m] ∈ (Cl(E))4.

Proof. Since d ≡ 3 (mod 8) and q ≡ 3 (mod 8), we have (2, d)q = −1.
Hence 2 /∈ NormF/Q(F×). Since {−1, d} = 1 and [d] = 1 ∈ Cl(E), we can
always assume that b = 0. Hence m | p1 · · · ps and the following Diophantine
equation is solvable in Z:

mZ2 = X2 + dY 2.

We assume that (Xm, Ym, Zm) is a solution with Zm > 0 and Zm prime to d.
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By Lemma 3.3, {−1,m} ∈ (K2OF )4 if and only if there exist h1 | p1 · · · pr,
h3 = 1 or q, and ε ∈ {±1,±2} such that for any odd prime l | d,

(5.7) (d,m3h1h5)l(−2σ(l)d,m5h3h7)l =
(
εZm
l

)
.

Note that m5 = h5 = h7 = 1, σ(l) = 0 and
(
εZm
l

)
= (−d, εZm) for any odd

prime l | d. Hence (5.7) is equivalent to the existence of h1|p1 · · · pr, h3 = 1
or q, and ε ∈ {±1,±2} such that for any odd prime l | d,

(5.8) (−d,m3h1h3Zmε)l = (−1,m3)l.

Let

(5.9) h′3 =
{
q if m3h3 = q,
1 otherwise.

Hence (5.8) is equivalent to the existence of h1 | p1 · · · pr, h′3 = 1 or q, and
ε ∈ {±1,±2} such that

(5.10)
(1) (−d, h1h

′
3Zm)pi = 1 for all 1 ≤ i ≤ r,

(2) (−d, h1h
′
3Zmε)q = −1.

Since (−d, 2)q = −1, we can always find ε ∈ {±1,±2} such that (2) of 5.10
holds. Hence (5.10) holds if and only if we can find h1 | p1 · · · pr and h′3 = 1
or q such that

(5.11) (−d, h1h
′
3Zm)pi = 1 for all 1 ≤ i ≤ r.

By the product formula, (5.11) implies (−d, h1h
′
3Zm)q = 1.

By the same argument as in the proof of Theorem 4.3 and [14, Theorem
2.6], (5.11) is equivalent to [m] ∈ (Cl(E))4.

By Tate’s Theorem 6.3 of [31], the Tate kernel TF is (F×)2 ∪ 2(F×)2.
Hence if m | d, then {−1,m} = 1 if and only if m = 1. Hence

(5.12) #{m : m | p1 · · · ps and {−1,m} ∈ (K2OF )4} = 2rk8(K2OF ).

Letm be a divisor of p1 · · · ps. Since [p1], . . . , [ps] are linearly independent,
we have [m] = 1 ∈ Cl(E) if and only m = 1. Hence

(5.13) #{m : m | p1 · · · ps and [m] ∈ (Cl(E))4} = 2rk8(Cl(E)).

Thus we get the following theorem.

Theorem 5.3. With the notation as above, rk8(Cl(E)) = rk8(K2OF ).

Proof. This follows from (5.12), (5.13) and Theorem 5.2.

Hence we have the following theorem.
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Theorem 5.4. Let p1, . . . , pr, q be primes satisfying conditions (1)–(5)
of (5.1). Let d = p1 · · · prq, F = Q(

√
d), and E = Q(

√
−d). Then

rk2(Cl(E)) = r, rk4(Cl(E)) = s,

rk2(K2OF ) = r + 2, rk4(K2OF ) = s,

rk8(Cl(E)) = rk8(K2OF ).

For any 1 ≤ i ≤ s, let Ki be the unique quartic cyclic extension of Q with
conductor pi. Note that Ki ⊃ Q(

√
pi). For any i, j such that 1 ≤ i 6= j ≤ s,

let Lij be the unique quartic cyclic extension of Q(√pipj) which is unramified
at finite primes. Let

Σ =
( ∏

1≤i≤s

)( ∏
1≤i 6=j≤s

Lij

)
.

Theorem 5.5 (Morton, Theorems 1 and 4 of [17]). With the notation
as above, let E = Q(

√
−d), where d = p1 · · · prq and p1, . . . , pr, q satisfy

the five conditions of (5.1). Then the structure of Cl(E)/(Cl(E))8 is com-
pletely determined by the Frobenius symbol

(Σ/Q
q

)
. Let G be a finite abelian

group whose exponent divides 8. Then there are infinitely many imaginary
quadratic fields E = Q(

√
−p1 · · · prq) (i.e., infinitely many q) such that

Cl(E)/(Cl(E))8 ' G.

Theorem 5.6. For any nonnegative integer ρ ≤ s, there are infinitely
many q such that q ≡ 3 (mod 8) and

Cl(E)/(Cl(E))8 ' (Z/2Z)r−s ⊕ (Z/4Z)s−ρ ⊕ (Z/8Z)ρ.

Proof. Note that
√
−1 /∈ Σ and

√
2 /∈ Σ. This theorem can be proved

by the same argument as Corollary 4.7.

Hence by Theorems 5.4 and 5.6, we get

Theorem 5.7. For any finite abelian group H of exponent 8 with rk2(H)
≥ 2 + rk4(H), there are infinitely many real quadratic fields F such that

K2OF /(K2OF )8 ' H.

As mentioned in the Introduction, our proof depends on Morton’s ex-
plicit construction of certain quadratic fields. In these cases one always
gets rk2(K2OF ) ≥ rk4(K2OF ) + 2. However there are many examples of
real quadratic fields F with rk2(K2OF ) = rk4(K2OF ) + 1. Note that since
{−1,−1} is not a square in K2OF , rk2(K2OF ) ≥ rk4(K2OF ) + 1 always
holds. In our cases, 2 /∈ NormF/Q(F×). However, if rk2(K2OF ) = rk4(K2OF )
+ 1, then one might have to deal with the cases when 2 ∈ NormF/Q(F×)
which are much more difficult.
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Conjecture 5.8. For any finite abelian group H of exponent 8 with
rk2(H) ≥ 1 + rk4(H), there are infinitely many real quadratic fields F such
that K2OF /(K2OF )8 ' H.
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