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1. Introduction. L. Lovász conjectured that any set of natural num-
bers of positive upper density must contain distinct elements a and b such
that the difference a−b is a perfect square. In the late 1970s, Furstenberg [5]
and Sárközy [15] independently proved Lovász’s conjecture. Furstenberg
used ergodic theory, whereas Sárközy used the circle method. Sárközy actu-
ally proved a stronger result which we will describe shortly.

Let H denote a set of natural numbers. We say that H is intersective

if any set of natural numbers of positive upper density must contain dis-
tinct elements a and b such that the difference a − b is in H. Thus, Lovász
conjectured that the set of positive squares is an intersective set. For any
positive integer N we define D(H, N) to be the maximal size of a subset A
of {1, . . . , N} such that if a and b are in A then a−b is not in H. Notice that
if D(H, N) = o(N) then H is an intersective set. The converse implication
is also true; Ruzsa [13, Theorem 1] has given a proof of this.

Let S denote the set of positive squares. Sárközy proved Lovász’s con-
jecture by proving the stronger statement

D(S, N) ≪ N
(log log N)2/3

(log N)1/3
.

He also proved [16] that the set P = {p − 1 : p a prime} is intersective. In
particular, he proved that

D(P, N) ≪ N
(log log log N)2(log log log log N)

(log log N)2
.

Inspired by Sárközy’s results, Kamae and Mendès France [8] obtained
in 1978, by means of harmonic analysis, a general criterion for determining
when a set of positive integers is intersective.

Theorem A (Kamae and Mendès France). Let H be a set of natural

numbers such that for every positive integer m there are infinitely many
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elements in H divisible by m. Denote by {hi,m}∞i=1 the increasing sequence

whose terms are the elements of H which are divisible by m. If for every

positive integer m and every irrational number θ the sequence {θhi,m}∞i=1 is

uniformly distributed modulo 1, then the set H is intersective.

For any polynomial f let V (f) = {f(x) : x ≥ 1, f(x) > 0}. As an
application of their criterion Kamae and Mendès France proved the following
result.

Theorem B (Kamae and Mendès France). Let h be a nonconstant poly-

nomial , with integer coefficients, and positive leading coefficient. The set

V (h) is intersective if and only if for every integer m ≥ 2 the congruence

equation

(1) h(x) ≡ 0 (modm)

has a solution.

We remark that if the polynomial h has an integer root, then the con-
gruence equation h(x) ≡ 0 (modm) plainly has a solution for every integer
m ≥ 2. There are polynomials without an integer root that also have this
property, for example (x3 − 19)(x2 + x + 1). D. Berend and Y. Bilu [2] have
given a procedure for determining when a polynomial h(x) ∈ Z[x] has a root
modulo m for every integer m ≥ 2.

For brevity, given any positive integer N and polynomial f we write
D(f, N) in place of D(V (f), N). For any integer k ≥ 2, let fk(x) = xk. So
in terms our earlier notation V (f2) is the set S of positive squares.

In 1985 Srinivasan [18] used the circle method to prove V (fk) is inter-
sective for every integer k ≥ 2. In fact, Srinivasan was able to conclude
that

D(fk, N) ≪k N/(log log N)ck

for some ck > 0.
In 1988 Pintz, Steiger, and Szemerédi [12] improved Sárközy’s estimate

for D(f2, N) by proving that

D(f2, N) ≪ N/(log N)(log log log log N)/4.

In 1994 Balog, Pelikán, Pintz, and Szemerédi [1] showed that for k ≥ 3
the previous estimate also holds for D(fk, N) with the implicit constant
depending on k.

Green [7] has given a different proof that S = V (f2) is intersective.
Green’s argument, which follows the methodology of Gowers [6], gives a
weaker bound for D(f2, N).

Slijepčević [17] proved in 2003 the following result: If h(x) ∈ Z[x] has
degree greater than or equal to 3 and satisfies h(0) = 0, then

D(h, N) ≪ N/log log log N.
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The purpose of this paper is to provide a quantitative version of Theo-
rem B by estimating D(h, N) whenever h is a polynomial such that V (h)
is intersective. We remark that when h is linear it is trivial to estimate
D(h, N) and thus we will concern ourselves only with polynomials of de-
gree 2 or greater. We will obtain the following result.

Theorem 1. Let h be a polynomial with integer coefficients, a positive

leading coefficient , degree k ≥ 2, and such that for every integer m ≥ 2 the

congruence equation

h(x) ≡ 0 (modm)

has a solution. Set

(2) µ =

{

3 if k = 2,

2 if k ≥ 3.

Then

D(h, N) ≪h N
(log log N)µ/(k−1)

(log N)1/(k−1)
.

Working in the other direction Ruzsa [14] has given a lower bound for
D(fk, N) which in particular gives D(f2, N) ≥ (1/65)N0.733.

For any finite set A of integers and any integer n, let

r(A, n) = |{(a, b) ∈ A × A : a − b = n}|.

Furthermore, if H is a set of integers let

R(H, A) =
∑

n∈H

r(A, n).

In other words, R(H, A) is the number of solutions to a−b = h with a, b ∈ A
and h ∈ H. Note that if A is a subset of {1, . . . , N} and |A| > D(H, N),
then R(H, A) ≥ 1. For brevity, given any polynomial f we write R(f, A) in
place of R(V (f), A).

Using the circle method R. C. Vaughan [20, Theorem 10.2] proved that
if B is any set of positive integers with positive upper density, then

lim sup
N→∞

R(f2, B ∩ {1, . . . , N})

N3/2
> 0.

This result gives another proof that V (f2) (the set of positive squares) is
intersective. A second purpose of this paper is to generalize this result by
proving the following theorem.

Theorem 2. Let h be a polynomial as in Theorem 1 with leading coef-

ficient b. Let N be a sufficiently large integer in terms of h, and let A be a

subset of {1, . . . , N} with size δN . Let µ be as in (2). There exist positive
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numbers C and C ′ which depend only on h such that if

|A| ≥ CN
(log log N)µ/(k−1)

(log N)1/(k−1)
,

then

(3) R(h, A) ≫k
|A|2

b1/kN1−1/k
exp(−C ′δ−(k−1)(log 2δ−1)µ).

Note that for |A| ≫ N , this theorem implies R(h, A) ≫h N1+1/k. Apart
from the implied constant this is best possible since

R(h, A) =
∑

h(x)≤N

r(A, h(x)) ≤ |A|
∑

h(x)≤N

1 ≪h N1+1/k.

Observe that since R(h, A) is an integer and the right hand side of (3) is
positive, the conclusion of Theorem 2 implies R(h, A) ≥ 1. Thus Theorem 1
follows from Theorem 2.

The author would like to thank his doctoral advisor, Cameron Stewart,
for his valuable guidance in the preparation of this paper, the results of
which are part of the author’s Ph.D. thesis [9].

2. Preliminaries. Let h(x) ∈ Z[x] be a polynomial with a positive
leading coefficient and set f(x) = h(x + d) where d is some positive integer.
Then R(f, A) ≤ R(h, A), and hence any lower bound for R(f, A) is a lower
bound for R(h, A). The integer d can be taken to be large enough, in terms
of h(x) alone, so that f(x) and f ′(x) are positive and increasing for x ≥ 0.
Therefore to prove Theorem 2 we may assume h also has this property.

For any finite set A we define

W (h, A) =
∑

x≥1

h′(x)r(A, h(x)).

In order to prove Theorem 2 it will be technically more convenient to work
with the weighted function W (h, A) in place of R(h, A).

Given any polynomial f(x) = bkx
k + bk−1x

k−1 + · · · + b0, we define

(4) B(f) =
2

|bk|
(|bk−1| + |bk−2| + · · · + |b0|).

The next lemma, which contains some elementary properties regarding B(f),
can be proved easily thus we leave the details to the reader.

Lemma 3. Let f be a polynomial of degree k and with leading coefficient

b > 0. If x ≥ 1, then

bxk

(

1 −
B(f)

2x

)

≤ f(x) ≤ bxk

(

1 +
B(f)

2x

)

.
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As a consequence, if x ≥ B(f), then

1

2
bxk ≤ f(x) ≤

3

2
bxk.

Furthermore, f ′, the derivative of f , satisfies

B(f ′) ≤ B(f).

We relate the counting functions R(h, A) and W (h, A).

Lemma 4. Let h be a polynomial with integer coefficients, degree k, and

positive leading coefficient b. Furthermore, suppose that h(x) and h′(x) are

positive and increasing for x ≥ 1. If A is a subset of {1, . . . , N}, then

W (h, A) ≤ 3kb1/kN1−1/kR(h, A)

provided N is sufficiently large in terms of h.

Proof. We first note that

W (h, A) ≤ (maxh′(x))R(h, A),

where the maximum is taken over all x ≥ 1 such that h(x) ≤ N . Let
m = (2N/b)1/k, and suppose that N is large enough so that m ≥ B(h).
Then

h(m) ≥
1

2
bmk ≥ N.

By the assumptions made on h we are able to deduce that W (A, h) ≤
h′(m)R(A, h). Since B(h′) ≤ B(h) we find that h′(m) ≤ 3kb1/kN1−1/k.
Therefore

W (h, A) ≤ 3kb1/kN1−1/kR(h, A).

By the remark made at the beginning of this section and by Lemma 4
we see that Theorem 2 follows from the following.

Theorem 5. Let h be a polynomial satisfying the hypothesis in Theo-

rem 2. Suppose further h(x) and h′(x) are positive and increasing for x ≥ 0.
Let N be a sufficiently large integer in terms of h, and let A be a subset of

{1, . . . , N} of size δN . Let µ be as in (2). There exist positive numbers C
and C ′ which depend only on h such that if

δ ≥ C
(log log N)µ/(k−1)

(log N)1/(k−1)
,

then

W (h, A) ≥
1

64
|A|2 exp(−C ′δ−(k−1)(log 2δ−1)µ).

3. Outline of the proof. In this section we sketch the major features in
our proof of Theorem 5. The proof is an adaptation of Sárközy’s method in
[15] and [16]. This method is indirect and involves an iterative construction
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to produce a contradiction. In our application of the circle method we will
use the discrete Fourier transform in a fashion similar to the approach taken
by Green [7].

We begin by describing a nonuniformity result which is at the core of
our argument. Let A be a subset of {1, . . . , N} with size δN , and let f be
some increasing polynomial of degree 2 or greater. For any real α we define
the exponential sums

F (α) =
∑

a∈A

e(αa), T (α) =
∑

f(x)≤N/2

f ′(x)e(αf(x)),

where as usual e(α) denotes exp(2πiα). In Section 6 we use these expo-
nential sums and some basic Fourier analysis to compare W (f, A) with its
“expected” size

δ2
∑

f(x)≤N

f ′(x)r({1, . . . , N}, f(x)) ≈ |A|2.

We suppose that W (f, A) ≤ |A|2/32. Then provided δ is not too small we
deduce that there exists a positive real number θ(f, δ), that depends only
of f and δ, such that

∑

|F (t/N)|2 ≫ θ(f, δ)|A|2,

where this sum is over a set of nonzero t such that t/N belongs to certain
“major arcs” used in our application of the circle method. This result, to-
gether with a standard argument given in Section 7, allows us to deduce that
A is nonuniform in the sense that there exists a large arithmetic progres-
sion P in {1, . . . , N} that contains more elements from A than the expected
amount δ|P |. In fact, we find that there is a positive number C such that

|A ∩ P | ≥ δ(1 + Cθ(f, δ))|P |.

We remark that the size of the increment θ(f, δ) will depend on estimates
of the exponential sum T (α). Section 5 is devoted to estimating T (α) in a
way that is suitable for our purposes. Our estimates will allow us to express
the increment θ(f, δ) as a function of δ and the content of the polynomial
f(x)− f(0) (the content of a polynomial is defined as the greatest common
divisor of its coefficients).

Let h be a polynomial as in Theorem 5. Following the method laid out
in [16] we need to consider intersective sets other than V (h). For any set of
integers H and integer m, we set

Hm = {k/m : k ∈ H, k ≡ 0 (modm)}.

If H is intersective then so is Hm (see [17, Proposition 1.3]). The set Hm

has the following property: If B is a finite set of integers and C =
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{c + mb : b ∈ B}, then

R(H, C) = R(Hm, B).

When H = V (h) we can write

V (h)m =
⋃

−m<r≤0
h(r)≡0 (modm)

{h(r + mx)/m : x ≥ 1}.

Notice that V (h)m is nonempty since h has at least one root modulo m.

The condition that h(x) ≡ 0 (modm) has a solution for every m ≥ 2 is
equivalent to the existence of a p-adic root of h for every prime p. For each
prime p we fix a p-adic root zp of h. By the Chinese Remainder Theorem
the p-adic roots zp determine for every positive integer d a unique integer
rd in the interval (−d, 0] such that h(rd) ≡ 0 (modd). Furthermore rdq ≡ rd

(modd) for all positive integers q. The p-adic roots zp also determine an
arithmetic function λ such that d |λ(d) and

h(rd + dx) ≡ 0 (modλ(d))

for every integer x. In Section 8 we define the polynomial hd by

hd(x) =
h(rd + dx)

λ(d)
.

These auxiliary polynomials hd(x) have the property that

(5) V (hdq) ⊆ V (hd)λ(d) ⊆ V (h)λ(dq)

for all positive integers d and q.

A technical aspect of the proof requires us to show that for every positive
integer d the content of the polynomial hd(x) − hd(0) is bounded above in
terms of h(x) alone. We accomplish this by introducing in this context the
semidiscriminant of Chudnovsky [4].

We can now describe the first step of the iteration. We begin by assuming
that δ is not too small and that W (h, A) is much smaller than |A|2/32. Then
by applying the nonuniformity result described above we deduce that there
is an arithmetic progression P in {1, . . . , N} of length N ′ ≤ N such that

|A ∩ P | ≥ δ0(1 + Cθ(h, δ))|P |.

The arithmetic progression can be chosen to have the form

P = {c + λ(q), . . . , c + λ(q)N ′},

with q a relatively small integer. We define the set A′ ⊆ {1, . . . , N ′} by

A ∩ P = {c + λ(q)b : b ∈ A′}.

Then

R(V (h)λ(q), A
′) = R(V (h), A) = R(h, A).
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Since V (hq) ⊆ V (h)λ(q), we obtain R(hq, A
′) ≤ R(h, A). In fact we will have

W (hq, A
′) ≤ W (h, A).

If we denote the size of A′ by δ′N ′, then δ′ = |A ∩ P |/N ′, and thus

δ′ ≥ δ(1 + Cθ(h, δ)).

By taking W (h, A) to be small enough, W (hq, A
′) will also be smaller than

|A′|2/32. We can then repeat the argument with A′ and hd. The number of
times we can repeat the argument depends on the size of δ and W (A, h).
By making δ large enough and W (A, h) small enough we can repeat this
iteration enough times to eventually obtain a set whose density is greater
than 1. This contradiction will imply the estimates on δ and W (h, A) found
in the statement of Theorem 5.

Finally, we remark that it is the use of the p-adic numbers which allows
us to treat polynomials h that do not have an integer root. If h has zero as a
root, say with multiplicity l, then we can take the p-adic roots to be zp = 0
for every prime p. In this case our auxiliary polynomials will become

hd(x) =
h(xd)

dl
,

and these are the polynomials used by Slijepčević [17] to give his bound on
D(h, N) when h(0) = 0.

4. Complete exponential sums. In this section we present some pre-
liminary lemmas dealing with complete exponential sums. Given any poly-
nomial f with integer coefficients and any positive integer q, we write S(f, q)
to denote the complete exponential sum given by

S(f, q) =

q
∑

r=1

e

(

f(r)

q

)

.

Let us write c(f) to denote the content of the polynomial f(x) − f(0). The
following result, obtained independently by Chen [3] and Nechaev [10], gives
an estimate for S(f, q) which is the best possible up to the implicit constant.

Lemma 6. Let f be a polynomial with integer coefficients and degree

k ≥ 2. Then

S(f, q) = Ok((c(f), q)1/kq1−1/k).

Let us note the following “orthogonality” relation: For any positive in-
teger m and integer x we have

(6)
1

m

m−1
∑

t=0

e

(

xt

m

)

=

{

1 if m |x,

0 if m ∤ x.
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We define c′(f) to be the content of the polynomial f(x)−f ′(0)x−f(0).

Lemma 7. Let f be a polynomial with integer coefficients and degree

k ≥ 2. Let q ≥ 2 be a positive integer , and set d = gcd(c′(f), q). If d ∤ f ′(0),
then S(f, q) = 0.

Proof. Let a0 and a1 be integers and h(x) a polynomial in Z[x] such that
f(x) = h(x) + a1x + a0. Then c′(f) = c′(h). Define h1(x) = (1/d)h(x) and
q1 = q/d. By (6) we find that

S(f, q) = e

(

a0

q

) q1
∑

r=1

e

(

h1(r)

q1

) q
∑

s=1
y≡x (mod q1)

e

(

a1s

q

)

= e

(

a0

q

) q1
∑

r=1

e

(

h1(r)

q1

) q
∑

s=1

e

(

a1s

q

)(

1

q1

q1
∑

t=1

e

(

(r − s)t

q1

))

= de

(

a0

q

) q1
∑

t=1

q1
∑

r=1

e

(

h1(r) + tr

q1

)(

1

q

q
∑

s=1

e

(

(a1 − dt)s

q

))

.

Suppose that d ∤ f ′(0). Then q ∤ (a1−dt) for every integer t. Therefore by (6)
the sum in the last pair of brackets above is zero. Thus S(f, q) = 0.

Lemma 8. Let f be a polynomial with integer coefficients, and q ≥ 2 an

integer. Then

1

q

q
∑

s=1

|S(f(x) + sx, q)| ≤ q1/2.

Proof. By using (6) we are able to deduce that

q
∑

s=1

|S(f(x) + sx, q)|2 =
1

q

q
∑

r=1

∣

∣

∣

∣

q
∑

s=1

S(f(x) + sx, q)e

(

−rs

q

)∣

∣

∣

∣

2

.

Also by (6), we find that for every integer t,

q
∑

s=1

S(f(x) + sx, q)eq(−ts) =

q
∑

s=1

q
∑

r=1

e

(

f(r) + sr

q

)

e

(

−ts

q

)

=

q
∑

r=1

e

(

f(r)

q

) q
∑

s=1

e

(

(r − t)s

q

)

= qe

(

f(t)

q

)

.

The equations above imply

q
∑

s=1

|S(f(x) + sx, q)|2 = q2.
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Thus, by the Cauchy–Schwarz inequality we obtain
q

∑

s=1

|S(f(x) + sx, q)| ≤ q1/2
(

q
∑

s=1

|S(f(x) + sx, q)|2
)1/2

≤ q3/2.

The result then follows.

5. Incomplete exponential sums. Throughout this section we let f
denote a polynomial with integer coefficients, degree k, and positive leading
coefficient b. Furthermore, we assume that f(x) and f ′(x) are positive and
increasing for x ≥ 1.

For any real number n ≥ 1 and real number α we define

S(α, n) =
∑

1≤x≤n

e(αf(x)), T (α, n) =
∑

1≤x≤n

f ′(x)e(αf(x)).

In this section we will estimate these two exponential sums. For applications
later on, any implicit constant appearing in our estimates must depend only
on the degree of the polynomial f . In order to obtain estimates of this nature
we will take n to be large enough in terms of the polynomial f .

5.1. A general estimate. In Lemma 11 below we give an estimate for
S(α, n) and T (α, n) which generalises a result due to Vaughan (Theorem
4.1 in [20]). The proof of Lemma 11 follows closely the proof of Theorem
4.1 in [20] except for the treatment of the error term. Before presenting
Lemma 11 we state two preliminary lemmas.

Lemma 9 ([19, Lemma 4.3]). Let F (x) be real-valued differentiable func-

tion on the interval [m, n] that never takes on the value 0. Let G(x) be a

real-valued function on the interval [m, n] such that G(x)/F ′(x) is mono-

tonic and |G(x)/F ′(x)| ≤ B for some positive real number B. Then

n\
m

G(t)e(F (t)) dt = O(B).

Lemma 10. Let F (x) be a real-valued function on the interval [m, n]
such that F (x) has a continuous second derivative, F ′(x) is monotonic, and

|F ′(x)| ≤ 3/4. Let G(x) be a real-valued differentiable function on [m, n]
such that both G(x) and G′(x) are positive and increasing. Then

∑

m≤x≤n

G(x)e(F (x)) =

n\
m

G(t)e(F (t)) dt + O(G(n) + G′(n)).

Proof. This can be viewed as a weighted version of Lemma 4.2 in [20].
Adapting the proof of Lemma 4.2 in [20] to handle the weight G(x) is fairly
straightforward. The result can also be seen as a variation of Lemma 4.10
in [19].
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Lemma 11. Let n ≥ 1 be a real number such that n ≥ B(f). Let a and q
be relatively prime integers with q ≥ 2, and let α and β be real numbers such

that α = a/q + β and |β| ≤ (3qkbnk−1)−1. Then

S(α, n) =
1

q
S(af, q)

n\
1

e(βf(t)) dt + Ok(q
1−1/k log q),

T (α, n) =
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt + Ok(bn
k−1q1−1/k log q).

Proof. We prove the result for T (α, n) only, the estimate for S(α, n) is
proved in a similar fashion. Using the expression α = a/q + β we find by
using (6) that

(7) T (α, n) =
1

q

∑

−q/2<s≤q/2

S(af(x) + sx, q)
∑

1≤x≤n

f ′(x)e

(

βf(x) −
s

q
x

)

.

We now approximate the inner sum appearing in (7). Since n ≥ B(f) we
are able to deduce from Lemma 3 that

(8) |f ′(t)| ≤ f ′(n) ≤
3

2
kbnk−1

for every t ∈ [1, n]. Thus for every integer s in (−q/2, q/2], the bound on |β|
implies

∣

∣

∣

∣

βf ′(t) −
s

q

∣

∣

∣

∣

≤ |βf ′(t)| +
|s|

q
≤

1

2q
+

1

2
≤

3

4
.

These observations and the hypotheses on h indicate that we can apply
Lemma 10 with F (x) = βf(x) − sx/q and G(x) = f ′(x) to obtain

∑

1≤x≤n

f ′(x)e

(

βf(x)−
s

q
x

)

=

n\
1

f ′(t)e

(

βf(t)−
s

q
t

)

dt + Ok(f
′(n) + f ′′(n)).

Since n ≥ B(f), Lemma 3 implies f ′(n) + f ′′(n) = Ok(bn
k−1). Thus if we

set

I(s) =

n\
1

f ′(t)e

(

βf(t) −
s

q
t

)

dt,

then

(9)
∑

1≤x≤n

f ′(x)e

(

βf(x) −
s

q
x

)

= I(s) + Ok(bn
k−1).

By (7) and (9) we have

T (α, n) =
1

q

∑

−q/2<s≤q/2

S(af(x) + sx, q)(I(s) + Ok(bn
k−1)).
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By Lemma 8 this implies

(10) T (α, n) =
1

q

∑

−q/2<s≤q/2

S(af(x) + sx, q)I(s) + Ok(bn
k−1q1/2).

For any nonzero integer s, (8) and the bound on |β| imply

(11)

∣

∣

∣

∣

βf ′(t) −
s

q

∣

∣

∣

∣

≥
|s|

q
− |βf ′(t)| ≥

|s|

q
−

1

2q
≥

|s|

2q

for all t ∈ [1, n]. Hence when s 6= 0 the function βf ′(t) − s/q is nonzero on
the interval [1, n]. In this case we can apply Lemma 9, together with (8) and
(11), to obtain

(12) I(s) = O

(

f ′(n)

min |βf ′ − s/q|

)

= Ok

(

q

|s|
bnk−1

)

.

Estimates (10) and (12) imply

(13) T (α, n) −
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt

= Ok

((

∑

−q/2<s≤q/2
s6=0

|S(af(x) + sx, q)|

|s|
+ q1/2

)

bnk−1

)

.

Let d = (c′(f), q). Since a and q are relatively prime, it follows that for any
integer s,

(c′(af(x) + sx), q) = (c′(af), q) = d.

If d ∤ (af ′(0) + s), then Lemma 7 implies S(af(x) + sx, q) = 0. Therefore

(14)
∑

−q/2<s≤q/2
s6=0

|S(af(x) + sx, q)|

|s|
=

∑

−q/2<s≤q/2
s6=0

s≡−af ′(0) (mod d)

|S(af(x) + sx, q)|

|s|
.

If d | (af ′(0) + s) then

(c(af(x) + sx), q) = ((c′(af), af ′(0) + s), q) = (d, af ′(0) + s) = d.

Lemma 6 then implies S(af(x) + sx, q) = Ok(d
1/kq1−1/k). Thus by (14),

∑

−q/2<s≤q/2
s6=0

|S(af(x) + sx, q)|

|s|
≪k d1/kq1−1/k

∑

−q/2<s≤q/2
s6=0

s≡−af ′(0) (mod d)

1

|s|
.

This last sum can be estimated by using partial summation to find that

(15)
∑

−q/2<s≤q/2
s6=0

|S(af(x) + sx, q)|

|s|
≪k q1−1/k log q

d
.
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Finally, (13) and (15) imply

T (α, n) =
1

q
S(af, q)

n\
1

g(t)e(βf(t)) dt + Ok(bn
k−1q1−1/k log q),

which is the desired result.

5.2. Estimates for the major arcs

Lemma 12. Let n ≥ 1 be a real number such that n ≥ B(f). Let a, q be

relatively prime integers with q ≥ 1, and let α be a real number such that

|α − a/q| ≤ (3kbqnk−1)−1. If

q ≪
n

log n

then

S(α, n) ≪k (c(f), q)1/knq−1/k, T (α, n) ≪k (c(f), q)1/kbnkq−1/k.

Proof. We prove the result for T (α, n) only. Let us assume first that
q ≥ 2 and put β = α − a/q. We can apply Lemma 11 to obtain

T (α, n) =
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt + Ok(bn
k−1q1−1/k log q).

The upper bound on q implies

q1−1/k log q ≪ (q log n)q−1/k ≪ nq−1/k.

Since (a, q) = 1 we deduce that (c(af), q) = (c(f), q), and hence Lemma 6
implies

S(af, q) = Ok((c(f), q)1/kq1−1/k).

To deal with the integral we note that since n ≥ B(f),

∣

∣

∣

n\
1

f ′(t)e(βf(t)) dt
∣

∣

∣
≤

n\
1

f ′(t) dt ≤ f(n) ≤
3

2
bnk.

Combining the above estimates we obtain

T (α, n) ≪k (c(f), q)1/kbnkq−1/k.

Thus, we have proved the lemma for q ≥ 2. For q = 1 we use Lemma 3 to
obtain the trivial estimate

|T (α, n)| ≤
∑

1≤x≤n

f ′(x) ≤

n+1\
1

f ′(t) dt ≪k bnk.

5.3. Estimates for the minor arcs. To obtain estimates for S(α, n) and
T (α, n) when α does not satisfy the hypothesis of Lemma 12 we use a result
(Lemma 13 below) due to Vinogradov. To state this result we introduce
some notation.
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For real numbers R and Q such that 1 ≤ R ≤ Q we write s(R, Q) to
denote the set of all real numbers α such that there do not exist relatively
prime integers a and q that satisfy 1 ≤ q ≤ R and |α − a/q| < q−1Q−1.

If α is an element of Rk, say α = (αk, αk−1, . . . , α1), then we define the
polynomial P (α, x) in the variable x by

(16) P (α, x) = αkx
k + αk−1x

k−1 + · · · + α1x.

Let ̺ = ̺(k) be defined by

(17) ̺ =

{

1/4 if k = 2,

1/(8k2(log k + 1.5 log log k + 4.2)) if k ≥ 3.

Lemma 13. Let k and m be positive integers with k ≥ 3. Let α =
(αk, . . . , α1) be an element of Rk, and let c be a positive integer such that

c ≤ m2̺. If αk is an element of s(m1/k, mk−2/k) then

m
∑

x=1

e(P (α, x)) ≪ m1−̺.

Proof. This follows from a result of Vinogradov: Theorem 3 of Chapter 4,
Section II in [21]. One just needs to note that if α = (αk, . . . , α1) is such
that αk ∈ s(m1/k, mk−2/k), then α is a point in class II of Vinogradov’s
theorem.

Lemma 14. Suppose that k, the degree of f , satisfies k ≥ 3. Let n ≥ 1
be a real number , sufficiently large in terms of k, such that n ≥ B(f) and

(18) b ≤ n̺.

Let R ≥ 1 be a real number such that

(19) R ≪ nk̺.

Then for every α ∈ s(R, 4kbnk−1),

sup
1≤m≤n

|S(α, m)| ≪k c(f)1/knR−1/k.

Proof. If m ≤ n1−̺ then the trivial bound implies |S(α, m)| ≤ n1−̺.
Thus by (19) we obtain

|S(α, m)| ≪ nR−1/k ≪ c(f)1/knR−1/k,

the required result. We assume then throughout the rest of the proof that
m satisfies

(20) n1−̺ < m ≤ n.

Let f(x) = bxk + bk−1x
k−1 + · · · + b0, and set

α =

(

α,
bk−1

b
α, . . . ,

b1

b
α

)

.
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By (16) we can write P (b · α, x) = α(f(x) − f(0)), hence

(21) S(α, m) = e(b0α)
m

∑

x=1

e(P (b · α, x)).

The current assumption in (20) implies n < m1/(1−̺), and therefore the
bound on b in (18) implies b < m̺/(1−̺). Since ̺ < 1/2 we deduce that
̺/(1 − ̺) < 2̺, and therefore the previous inequality involving b implies

(22) b < m2̺.

We now break the proof into two cases.

Case 1: α ∈ s(m1/k, mk−2/k). By (22) we can apply Lemma 13 to obtain
S(b · α, m) ≪ m1−̺. Then by (21) we obtain

m
∑

x=1

e(P (b · α, x)) ≪ m1−̺.

Using the inequality m ≤ n and (19), we find that S(α, m) ≪ nR−1/k, which
implies the desired result.

Case 2: α 6∈ s(m1/k, mk−2/k). Then there exist relatively prime integers
a and q such that

(23) 1 ≤ q ≤ m1/k

and

(24)

∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

≤
1

qmk−2/k
.

We will now show, provided n is sufficiently large in terms of k, that

(25)

∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

≤ (4qkbnk−1)−1.

Since ̺ < 1/2 we have 1/(1 − ̺) < 1 + 2̺, and thus (20) implies

n < m1+2̺.

This inequality and (22) imply

(26) bnk−1 < mk+2k̺−1.

A calculation shows that k + 2k̺ − 1 < k − 2/k. It follows from (20) that
as n approaches infinity so does m. Therefore (26) implies for n to be large
enough in terms of k that

4kbnk−1 ≤ mk−2/k.

It then follows from (24) that (25) is true. Since m ≤ n, (23) implies

(27) q ≤ m1/k ≤
m

log m
≤

n

log n
.
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We can apply Lemma 12 in these circumstances to obtain

S(α, m) ≪k (c(f), q)1/kmq−1/k ≪k c(f)1/knq−1/k.

Since (a, q) = 1 and α ∈ s(R, 4kbnk−1) we deduce from (25) that q > R,
and therefore the last estimate implies

S(α, m) ≪k c(f)1/knR−1/k.

This completes the proof.

Lemma 15. Let n ≥ 1 be a real number , sufficiently large in terms of k,
such that n ≥ B(f) and

(28) n̺ ≥ b.

Let R and Q be real numbers such that 1 ≤ R < Q,

(29) R ≪ nk̺,

and

(30) 4kbnk−1 ≤ Q ≪ bnk/R.

Then for every α ∈ s(R, Q),

T (α, n) ≪k c(f)1/kbnkR−1/k.

Proof. Let α be an element of s(R, Q). It can be seen that

s(R, 4kbnk−1) ⊆ s(R, Q).

We break the proof into cases.

Case 1: α /∈ s(R, 4kbnk−1). Then there exist integers a and q such that
(a, q) = 1,

(31) 1 ≤ q ≤ R,

and

(32) |α − a/q| ≤ (4kqbnk−1)−1.

Let β = α − a/q. We can apply Lemma 11 to obtain

(33) T (α, n) =
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt + Ok(bn
k−1q1−1/k log q).

By (29) and (31) we obtain

q1−1/k log q ≤ (R log n)R−1/k ≪ nR−1/k.

Therefore

(34) bnk−1q1−1/k log q ≪ bnkR−1/k.
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We now estimate the main term on the right hand side of (33). Since
α ∈ s(R, Q) it follows that

(35) |β| =

∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

>
1

qQ
.

Thus β is nonzero, and therefore
n\
1

f ′(t)e(βf(t)) dt =
1

2πiβ
(e(βf(n))− e(βf(1))) = O(1/|β|).

This last estimate together with (30) and (35) implies

(36)

n\
1

f ′(t)e(βf(t)) dt = Ok(qbn
kR−1).

From Lemma 6 and the fact that (a, q) = 1, we deduce

(37) S(af, q) = Ok(c(f)1/kq1−1/k).

The estimates (31), (36), and (37) imply

(38)
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt ≪k c(f)1/kbnkR−1/k.

Finally, by (33), (34), and (38) we obtain

T (α, n) ≪k c(f)1/kbnkR−1/k.

Case 2: α ∈ s(R, 4kbnk−1). This case is further divided according to
the degree of f . Assume for now that k ≥ 3. By partial summation we have

T (α, n) = S(α, n)f ′(n) −

n\
1

S(f)(α, t)f ′′(t) dt.

Hence

(39) |T (α, n)| ≤ max
1≤m≤n

|S(α, m)|
(

|f ′(n)| +

n\
1

|f ′′(t)| dt
)

.

Since we are assuming n ≥ B(f) we have

|f ′(n)| ≪ kbnk−1,(40)
n\
1

|f ′′(t)| dt ≪ 2kbnk−1.(41)

By (39)–(41) we have

|T (α, n)| ≪k bnk−1 max
1≤m≤n

|S(α, m)|.

This inequality and Lemma 14 imply

T (α, n) ≪k c(f)1/kbnkR−1/k.

Thus the result is true for k ≥ 3.
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Assume now that k = 2. By Dirichlet’s approximation theorem there
exist integers a and q such that (a, q) = 1,

(42) 1 ≤ q ≤ 4bn

and
∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

≤
1

4qbn
.

Set β = α − a/q. We can apply Lemma 11 to obtain

(43) T (α, n) =
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt + O(bnq1/2 log q).

Inequality (42) and the fact that ̺(2) = 1/4 imply

q1/2 log q ≪ n1/2+̺/2 log n ≪ n1−̺.

Thus

(44) q1/2 log q ≪ nR−1/2.

By the same argument we used in the case k ≥ 3 we obtain

(45)
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt ≪ c(f)1/2bn2q−1/2.

Since we are assuming that α ∈ s(R, 4kbnk−1), we must have q > R. Thus
(45) implies

(46)
1

q
S(af, q)

n\
1

f ′(t)e(βf(t)) dt ≪ bn2R−1/2.

Finally, (43), (44) and (46) imply

T (α, n) ≪ c(f)1/2bn2R−1/2.

This completes the proof.

6. A nonuniformity result. For any positive integer q and positive
real number η we let

M(q, η) =

q
⋃

a=0
(a,q)=1

{α ∈ [0, 1] : |α − a/q| ≤ q−1η}.

Let f be a polynomial as in Section 5. Throughout this section we let N
denote a positive integer such that

(47) b ≤ N̺/2k.

Define the integer n by

(48) f(n) ≤ N/2 < f(n + 1).
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We can deduce from Lemma 3 that

(49) n ∼ (N/2b)1/k,

where in this asymptotic relation the implicit constants depend only on k
and B(f). For any real number α we let

T (α) = T (α, n) =

n
∑

x=1

f ′(x)e(αf(x)).

Lemma 16. Let N be a positive integer sufficiently large in terms of k
and B(f). Let R be a real number such that

(50) 1 ≤ R ≪k N̺/2.

If there exists an integer q such that 1 ≤ q ≤ R and α ∈ M(q, R/N), then

T (α) ≪k c(f)1/kNq−1/k.

Otherwise,
T (α) ≪k c(f)1/kNR−1/k.

Proof. By (47) and (49) we can deduce that

(51) N1/2k < n

for N sufficiently large in terms of k and B(f). Therefore (50) implies

(52) R ≪k nk̺ (≪ n/log n).

We can apply Lemma 12 to obtain

T (α) ≪k (c(f), q)1/kbnkq−1/k.

By (49) this implies for N sufficiently large that

T (α) ≪k c(f)1/kNq−1/k.

Suppose now that α is not in any of the sets M(q, R/N) with 1 ≤ q ≤ R.
Then we find that α ∈ s(R, RN−1). From the definition of n and (52) we
are able to deduce that

4kbnk−1 ≤ R−1N ≪ bnk/R.

Note that (47) and (51) imply b < n̺. We can apply Lemma 15 (with
Q = R−1N) to obtain

T (α) ≪k c(f)1/kbnR−1/k.

By (49) this implies

T (α) ≪h NR−1/k

for N sufficiently large.

Lemma 17. For N sufficiently large in terms of k and B(f) we have

|T (0)| ≥ N/8.
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Proof. By Lemma 3 we find that

|T (0)| =

n
∑

x=1

f ′(x) ≥ kb

n
∑

x=1

(

xk−1 −
B(f)

2
xk−2

)

.

Since xk−1 − (B(h)/2)xk−2 is an increasing function we have
n

∑

x=1

(

xk−1 −
B(f)

2
xk−2

)

≥

n\
0

(

tk−1 −
B(f)

2
tk−2

)

dt

=
1

k
nk −

B(f)

2(k − 1)
nk−1.

Therefore

|T (0)| ≥ bnk

(

1 −
kB(f)

2(k − 1)n

)

.

We can assume that n ≥ 2B(f) and thus

|T (0)| ≥ bnk/2.

It then follows from (49) that |T (0)| ≥ N/8 for N large enough in terms of
k and B(f).

Lemma 18. Let N be a positive integer sufficiently large in terms of k,
B(f), and c(f). Suppose that A is a subset of {1, . . . , N} with size δN such

that

(53) δ ≥ N−̺/4k

and

(54) W (f, A) ≤
1

64
|A|2.

Then there exist a real number R (≥ 1) and an integer q such that

(55) c(f)δ−k ≪k R ≪k c(f)δ−k,

(56) 1 ≤ q ≤ R,

(57)

N−1
∑

t=1
t/N∈M(q,R/N)

|F (t/N)|2 ≫k θ(f, δ)|A|2,

where

(58) θ(f, δ) =

{

δ/log(2c(f)δ−1) if k = 2,

c(f)−2/kδk−1 if k ≥ 3.

Proof. Let A1 = {a ∈ A : a ≤ N/2} and A2 = {a ∈ A : a > N/2}. Then
A is the disjoint union of A1 and A2, and we must have |Ai| ≥ |A|/2 for
some i ∈ {1, 2}. Without loss of generality let us assume that |A1| ≥ |A|/2,
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otherwise the proof can easily be adapted for the other case. For any real α
we define

F1(α) =
∑

a∈A1

e(αa).

Note that for any a ∈ A, b ∈ A1, and integer x ∈ {1, . . . , n}, we have

−N < a − b − f(x) < N.

It follows from (6) that

W (f, A) ≥
1

N

N−1
∑

t=0

F1(t/N)F (−t/N)T (t/N).

Then by the triangle inequality we obtain

1

N
|F1(0)F (0)T (0)| − W (f, A) ≤

1

N

N−1
∑

t=1

|F1(t/N)F (t/N)T (t/N)|.

It follows from Lemma 17 and (54) that

(59)
1

64
|A|2 ≤

1

N

N−1
∑

t=1

|F1(t/N)F (t/N)T (t/N)|.

Let

R = C(k) · c(f)δ−k,

where C(k) is a real number greater than or equal to 1 and whose size we
will determine implicitly in terms of k. Put

M =
⋃

1≤q≤R

M(q, R/N), m = [0, 1] \ M.

By the definition of R and (53) we deduce that

R ≪k N̺/2

for N sufficiently large in terms of c(f). We can then apply Lemma 16 to
deduce that

|T (α)| ≪k c(f)1/kNR−1/k

for all α in m.

It follows from the Cauchy–Schwarz inequality that

(60)
1

N

N−1
∑

t=1
t/N∈m

|F1(t/N)F (t/N)T (t/N)|

≤
1

N
sup
α∈m

|T (α)|(N |A1|)
1/2(N |A|)1/2 ≪k c(f)1/kN |A|R−1/k.



78 J. Lucier

By the definition of R we have

c(f)1/kN |A|R−1/k ≪k C(k)−1/k|A|2.

Therefore we can ask that C(k) be large enough so that (60) implies

(61)
1

N

N−1
∑

t=1
t/N∈m

|F1(t/N)F (t/N)T (t/N)| ≤
|A|2

128
.

Since m = [0, 1] \ M, it follows from (59) and (61) that

(62) |A|2 ≪
1

N

N−1
∑

t=1
t/N∈M

|F1(t/N)F (t/N)T (t/N)|.

By the Cauchy–Schwarz inequality and Parseval’s relation this implies

|A|2 ≪ (|A|/N)1/2
(

N−1
∑

t=1
t/N∈M

|F (t/N)T (t/N)|2
)1/2

.

By squaring both sides and rearranging some terms we find that

(63) N |A|3 ≪
N−1
∑

t=1
t/N∈M

|F (t/N)T (t/N)|2.

Let

C(q) =
N−1
∑

t=1
t/N∈M(q,R/N)

|F (t/N)|2.

Then the definition of M and (63) imply

(64) N |A|3 ≪ max
q≤R

C(q)
∑

q≤R

sup
α∈M(q,R/N)

|T (α)|2.

By Lemma 16 we have T (α) ≪k c(f)1/kNq−1/k for all α ∈ M(q, R/N) with
1 ≤ q ≤ R. Thus, we can deduce that

∑

q≤R

sup
α∈M(q,R/N)

|T (α)|2 ≪k

{

c(f)2/kN2 log 2R if k = 2,

c(f)2/kN2R1−2/k if k ≥ 3.

Since R ≪k c(f)δ−k, this implies

(65)
∑

q≤R

sup
r∈M(q,R/N)

|T (α)|2 ≪k

{

N2 log(2c(f)δ−1) if k = 2,

N2c(f)2/kδ−k+2 if k ≥ 3.
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From (64) and (65) we deduce that

max
q≤R

C(q) ≫k θ(f, δ)|A|2,

where θ(f, δ) is given by (58). By the definition of C(q) this completes the
proof.

7. A density increment. In this section we prove a result, Lemma 20
below, which roughly says that if the generating function for some finite set
takes on large values, then the set has a higher density in some arithmetic
progression.

Lemma 19. Let L and m be positive integers, and α a real number. Set

G(α) =
L

∑

k=1

e(αmk).

Let q be a positive integer such that q |m. If there exists an integer a such

that

(66)

∣

∣

∣

∣

α −
a

q

∣

∣

∣

∣

≤
1

2πmL
,

then |G(α)| ≥ L/2.

Proof. We begin by noting that

(67) |G(α)| =
∣

∣

∣
L −

L−1
∑

k=0

(1 − e(αmk))
∣

∣

∣
≥ L −

L−1
∑

k=1

|e(αmk) − 1|.

Given any real number x let ‖x‖ denote the distance from x to the nearest
integer. For all real x we have |e(x) − 1| ≤ 2π‖x‖. Thus (67) implies

(68) |G(α)| ≥ L − 2π

L−1
∑

k=1

‖αmk‖.

If l is a nonnegative integer then (66) implies
∣

∣

∣

∣

αml −
aml

q

∣

∣

∣

∣

≤
l

2πL
.

Since q |m this implies ‖αml‖ ≤ l/2πL. Therefore

2π
L−1
∑

k=1

‖αmk‖ ≤
1

L

L−1
∑

k=1

k ≤
L

2
.

It then follows from (68) that |G(α)| ≥ L/2.

For any subset X of {1, . . . , N} and integer t, we define the subset X(t)
of {1, . . . , N} by

X(t) = {z ∈ {1, . . . , N} : z ≡ x + t (modN) for some x ∈ X}.
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If 0 ≤ t ≤ N − 1, then

X(t) = (t + X) ∩ (t − N + X) ∩ {1, . . . , N}.

Lemma 20. Let N be a positive integer and A a subset of {1, . . . , N}
with size δN . For any real α set

F (α) =
∑

a∈A

e(αa).

Let m be a positive integer and let ε be a positive real number such that

(69) m ≤ 2πεN ≤ N.

Let q be a positive integer such that q |m, and let E = E(q, m, ε) denote the

subset of [0, 1] defined by

E = {α ∈ [0, 1] : |α − a/q| ≤ ε/m for some 0 ≤ a ≤ q}.

If θ is a positive number such that

(70)
N−1
∑

t=1
t/N∈E

|F (t/N)|2 ≥ θ|A|2,

then there exists an arithmetic progression P in {1, . . . , N} with differ-

ence m, length |P | ≥ (δθε−1)/32π, and such that

|A ∩ P | ≥ δ(1 + θ/8)|P |.

Proof. Let L = [(2πε)−1] and Q = {mk : k = 1, . . . , L}. By (69) we are
able to deduce that L ≥ 1 and mL ≤ N . Thus the arithmetic progression Q
is a subset of {1, . . . , N} and has length L ≥ ε−1/4π.

For any real α let G(α) be the exponential sum defined as in the state-
ment of Lemma 19. By Parseval’s relation we have

N−1
∑

t=0

|F (t/N)G(t/N)|2 =
1

N

N−1
∑

t=0

∣

∣

∣

N−1
∑

s=0

F (s/N)G(s/N)e(−ts/N)
∣

∣

∣

2
.

By (6) we find that

N−1
∑

s=0

F (s/N)G(s/N)e(−ts/N) = N |A ∩ Q(t)|.

It follows that

(71)

N−1
∑

t=0

|A ∩ Q(t)|2 =
1

N

N−1
∑

t=0

|F (t/N)G(t/N)|2.

From the definition of L we can deduce that ε ≤ (2πL)−1. Thus Lemma 19
implies |G(α)| ≥ L/2 for any α ∈ E. This estimate together with (70)
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and (71) implies

N−1
∑

t=0

|A ∩ Q(t)|2 ≥
1

N
|F (0)|2|G(0)|2 +

1

N

N−1
∑

t=1
t/N∈E

|F (t/N)|2|G(t/N)|2

≥ δ|A|L2 +
1

4
δθ|A|L2.

Let t′ ∈ {0, . . . , N − 1} be such that |A ∩ Q(t′)| is maximal. Then

N−1
∑

t=0

|A ∩ Q(t)|2 ≤ |A ∩ Q(t′)|
N−1
∑

t=0

|A ∩ Q(t)| = |A ∩ Q(t′)| |A| |Q|.

The above inequalities imply

|A ∩ Q(t′)| |A|L ≥ δ(1 + θ/4)|A|L2.

Dividing this inequality through by |A|L we obtain

(72) |A ∩ Q(t′)| ≥ δ(1 + θ/4)L.

If Q(t′) is an arithmetic progression, then the result follows from (72) by
taking P to be Q(t′). If Q(t′) is not an arithmetic progression, then it can
be verified that Q(t′) = P1 ∪ P2, where P1 and P2 are disjoint arithmetic
progressions both with difference m. Then by (72), we obtain

(|A ∩ P1| − δ|P1|) + (|A ∩ P2| − δ|P2|) ≥
1

4
δθL.

Thus there exists an index i ∈ {1, 2} such that

|A ∩ Pi| − δ|Pi| ≥
1

8
δθL.

From this inequality we find that |Pi| ≥ (δθ/8)L and

|A ∩ Pi| ≥ δ(1 + θ/8)|Pi|.

The result then follows by taking P to be Pi.

8. Auxiliary polynomials. Let h be the polynomial given in Theo-
rem 5. Then for every prime p and integer l the congruence equation h(x) ≡ 0
(modpl) has a solution. It follows by Proposition 1.4 in [11] that h has a
root in Zp, the ring of p-adic integers. For each prime p let zp be a fixed
p-adic integer which is a root of h.

We define the arithmetic function λ on the positive integers as follows.
We ask that λ be completely multiplicative and that its value at the prime p
be given by λ(p) = pm, where m is the multiplicity of zp as a root of h
over Qp. It follows that

(73) d |λ(d), λ(d) | dk.
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Let vp denote the p-adic valuation on Qp normalized so that vp(p) = 1. For
every positive integer d we define rd to be the unique integer that satisfies

(74) −d < rd ≤ 0

and

(75) rd ≡ zp (modpvp(d)Zp)

for every prime p.

For any positive integer d we define hd to be the polynomial given by

(76) hd(x) =
h(rd + dx)

λ(d)
.

By Taylor’s expansion formula we find that

(77) hd(x) =

k
∑

j=0

h(j)(rd)

j!

(

dj

λ(d)

)

xj .

The leading coefficient of h is b, thus by (77) the leading coefficient of hd is
b(dk/λ(d)).

Lemma 21. Let d be a positive integer. Then hd is a polynomial with

integer coefficients and degree k.

Proof. The polynomial hd(x) clearly has rational coefficients and is of
degree k. Let p be any prime number. We will show that the coefficients of
hd(x) are p-adic integers.

Denote by m the multiplicity of zp as a root of hd(x) over Qp. Then by
Gauss’ Lemma there exists a polynomial g(x) ∈ Zp[x] such that

h(x) = (x − zp)
mg(x) and g(zp) 6= 0.

From the definition of λ we have λ(p) = pm. Let l and d1 be the unique
integers such that d = pld1 and p ∤ d1. Then by (76) we find that

hd(x) =
(rd + dx − zp)

mg(rd + dx)

λ(d)
=

(pld1x + rd − zp)
mg(rd + dx)

plmλ(d1)
.

By (75) we have zp ≡ rd (mod plZp). Hence there exists a p-adic integer y
such that zp = rd + ply. Using this expression for zp we can rewrite hd(x) as

hd(x) =
(d1x − y)mg(rd + dx)

λ(d1)
.

Since p ∤ d1 we see that λ(d1) is a unit in Zp. Thus, the above expression for
hd(x) implies that its coefficients are p-adic integers.

Since p is an arbitrary prime it follows that hd is a polynomial with
integer coefficients.
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Lemma 22. Let d and q be positive integers. Then there exists an integer

s such that −q < s ≤ 0 and

hdq(x) =
hd(s + qx)

λ(q)
.

Proof. It follows from (75) that rdq ≡ rd (modd), and hence there exists
an integer s such that rdq = rd + ds. Thus by (76) we obtain

hdq(x) =
h(rdq + (dq)x)

λ(dq)
=

h(rd + d(s + qx))

λ(d)λ(q)
=

hd(s + qx)

λ(q)
.

We now prove the inequality −q < s ≤ 0. By (74) we know that −d < rd ≤ 0
and −dq < rdq ≤ 0. From this it follows that

s =
rdq − rd

d
≤ 1 −

1

d

and

s =
rdq − rd

d
≥ −q +

1

d
.

Since s is an integer these two inequalities imply −q < s ≤ 0.

Lemma 23. Let d and q be positive integers, and let B be a finite set of

integers. Put C = {c + λ(q)b : b ∈ B}. Then

W (hdq, B) ≤ W (hd, C).

Proof. By Lemma 22 there exists an integer s such that −q < s ≤ 0 and

hdq(x) =
hd(s + qx)

λ(q)
.

Therefore b, b′ ∈ B satisfy b − b′ = hdq(x) if and only if

(c + λ(q)b) − (c − λ(q)b′) = hd(s + qx).

Thus r(B, hdq(x)) = r(C, hd(s + qx)), and it follows that

W (hdq, B) =
∑

x≥1

h′
dq(x)r(B, hdq(x)) =

q

λ(q)

∑

x≥1

h′
d(s + qx)r(C, hd(s + qx))

≤ W (hd, C).

We recall from Section 4 that c(f) denotes the content of the polynomial
f(x) − f(0). We will estimate the numbers c(hd) and show that as d varies
they are uniformly bounded above in terms of h alone. Our estimate for
c(hd) will be obtained by estimating vp(c(hd)) in terms of h for an arbitrary
prime p. We begin by giving a relation between c(hd) and c(h).

Lemma 24. Let d be a positive integer. Then c(h) divides λ(d)c(hd), and

c(hd) divides (dk/λ(d))c(h).
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Proof. Let us write h(x) = bkx
k + · · · + b0 and hd(x) = skx

k + · · · + s0.
So c(h) = gcd(bk, . . . , b1) and c(hd) = gcd(sk, . . . , s1). By (77) we have

(78) sj =
h(j)(rd)

j!

dj

λ(d)

for j = 0, . . . , k. Now

h(j)(x)

j!
=

k
∑

l=j

(

l

j

)

blx
l−j,

and thus we deduce that

λ(d)sj = dj
k

∑

l=j

(

l

j

)

blr
l−j
d

for j = 0, . . . , k. Therefore c(h) divides λ(d)sj for j = 1, . . . , k, and hence
c(h) divides λ(d)c(hd).

Now we prove the second result. For l = 0, . . . , k we have

bl =
h(l)(0)

l!
.

By Taylor’s expansion formula,

h(l)(x + y) =

k−l
∑

i=0

h(l+i)(x)

i!
yi =

k
∑

j=l

h(j)(x)

(j − l)!
yj−l.

Therefore

bl =
h(l)(rd − rd)

l!
=

k
∑

j=l

h(j)(rd)

l!(j − l)!
(−rd)

j−l =
k

∑

j=l

(

j

l

)(

h(j)(rd)

j!

)

(−rd)
j−l

for l = 0, . . . , k. It follows by (78) that

dk

λ(d)
bl =

k
∑

j=l

(

j

l

)

(−rd)
j−ldk−jsj

for l = 0, . . . , k. Therefore c(hd) divides (dk/λ(d))bl for l = 1, . . . , k, and
hence c(hd) divides (dk/λ(d))c(h).

A prime p divides λ(d) if and only if it divides d. Therefore the previous
lemma implies the following result.

Lemma 25. Let d be a positive integer and p a prime number such that

p ∤ d. Then

vp(c(hd)) = vp(c(h)).

To approximate vp(c(hd)) when p divides d we use the notion of the semi-
discriminant introduced by Chudnovsky [4, p. 63]. Let f(x) be a polynomial
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of degree k ≥ 1 with coefficients from a field K. Suppose that in some
splitting field,

f(x) = a(x − η1)
e1 · · · (x − ηr)

er ,

where all the ηi are distinct. Then the semidiscriminant of f , which we
denote by ∆(f), is given by

∆(f) = a2k−2
∏

i6=j

(ηi − ηj)
eiej .

An important feature of the semidiscriminant is that it is never zero. It can
be shown that ∆(f) is an element of K and is independent of the splitting
field over which f(x) factors. Furthermore, if f(x) = anxn + · · · + a0 then
∆(f) can be expressed as G(a0, . . . , an), where G(x0, . . . , xn) is a polynomial
with integer coefficients. As a consequence, if the coefficients of f(x) are
algebraic over K then so is ∆(f).

Lemma 26. Let f be a polynomial of degree k (≥ 1). Suppose that α is

a root of f(x) with multiplicity m ≥ 1, and that g is a polynomial such that

f(x) = (x − α)mg(x). Then

∆(f) = (−1)(k−m)mg(α)2m∆(g).

Proof. Suppose that f has leading coefficient a. Then the polynomial g
has degree k − m and leading coefficient a. Let η1, . . . , ηr be the distinct
roots of g. Then

g(x) = a(x − η1)
e1 · · · (x − ηr)

er ,

where e1, . . . , er are positive integers satisfying

(79) e1 + · · · + er = k − m.

The semidiscriminant of f can be written as

∆(f) = a2k−2
r

∏

i=1

(α − ηi)
mei

r
∏

i=1

(ηi − α)eim
∏

i6=j

(ηi − ηj)
eiej .

By (79) the middle product on the right can be written as

r
∏

i=1

(ηi − α)eim = (−1)(k−m)m
r

∏

i=1

(α − ηi)
mei .

Thus

∆(f) = (−1)(k−m)m
(

a
r

∏

i=1

(α − ηi)
ei

)2m(

a2(k−m)−2
∏

i6=j

(ηi − ηj)
eiej

)

= (−1)(k−m)mg(α)2m∆(g).
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Lemma 27. Let p be a prime divisor of the positive integer d. Then

vp(c(hd)) ≤ vp(c(h)) +
k − 1

2
vp(∆(h)).

Proof. Denote by m the multiplicity of zp as a root of hd(x) over Qp.

Then 1 ≤ m ≤ k and by Taylor’s expansion formula h
(m)
d (0)/m! is a coeffi-

cient of hd(x) which is not the constant term. It follows that

(80) vp(c(hd)) ≤ vp(h
(m)
d (0)/m!).

Let l and d1 by the unique positive integers such that d = pld1 and p ∤ d1.
There exists a polynomial g(X) in Zp[X] such that g(zp) 6= 0 and

(81) h(x) = (x − zp)
mg(X).

As in the proof of Lemma 21 there exists a p-adic integer y such that

hd(x) =
(d1x − y)mg(rd + pld1x)

λ(d1)
.

By Leibniz’s formula,

h
(m)
d (x) =

1

λ(d1)

m
∑

j=0

(

m

j

)

∂m−j

∂x
(xd1 − y)m ∂j

∂x
g(rd + pld1x).

Now
∂m−j

∂x
(d1x − y)m = dm−j

1

m!

j!
(d1x − y)j,

∂j

∂x
g(r + pld1x) = dj

1p
ljg(j)(r + d1p

lx).

Therefore

h
(m)
d (0)

m!
=

dm
1

λ(d1)

m
∑

j=0

plj

(

m

j

)

(−y)j g(j)(rd)

j!
.

Inspecting the sum in the previous equation we see that all of its summands
corresponding to a positive index are divisible by pl. Therefore

h
(m)
d (0)

m!
≡

dm
1

λ(d1)
g(rd) (mod plZp).

From (75) we have rd ≡ zp (modplZp). By the previous two congruence
equations there exists a p-adic integer y such that

(82)
h

(m)
d (0)

m!
=

dm
1

λ(d1)
g(zp) + ply.

By (81) and Lemma 26 we obtain ∆(h) = ±g(zp)
2m∆(g), and therefore

vp(∆(h)) = 2mvp(g(zp)) + vp(∆(g)).
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Since g(X) ∈ Zp[X] it follows that ∆(g) ∈ Zp, and hence vp(∆(g)) ≥ 0.
Therefore the previous equation implies

2mvp(g(zp)) ≤ vp(∆(h)).

Recall that p ∤ d1; therefore vp(d
m
1 /λ(d1)) = 0. It then follows that

(83) vp

(

dm
1

λ(d1)
g(zp)

)

≤
1

2m
vp(∆(h)).

Assume now that vp(∆(h)) < 2ml. Then

(84) vp

(

dm
1

λ(d1)
g(zp)

)

< l.

By (82)–(84) we deduce that

vp

(

h
(m)
d (0)

m!

)

= vp

(

dm
1

λ(d1)
g(zp)

)

≤
1

2m
vp(∆(h)).

Therefore by (80) we have

vp(c(hd)) ≤
1

2m
vp(∆(h)).

Since m ≥ 1, this implies the result of the lemma when vp(∆(h)) < 2ml.

Let us now assume that

(85) vp(∆(h)) ≥ 2ml.

By Lemma 24 we see that c(hd) divides (dk/λ(d))c(h). Therefore

vp(c(hd)) ≤ vp(d
k/λ(d)) + vp(c(h)).

Since d = pld1 with p ∤ d1, we have

vp(d
k/λ(d)) = vp(p

kl/pml) = (k − m)l.

Therefore

vp(c(hd)) ≤ (k − m)l + vp(c(h)).

By (85) this implies

vp(c(hd)) ≤
k − m

2m
vp(∆(h)) + vp(c(h)).

Since m ≥ 1, it follows that

vp(c(hd)) ≤
k − 1

2
vp(∆(h)) + vp(c(h)).

This completes the proof.

Lemma 28. For any positive integer d,

c(hd) ≤ |∆(h)|(k−1)/2c(h).
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Proof. This follows from Lemmas 25 and 27.

We end this section with two technical lemmas which we need in the next
section. For the next result we remind the reader of the notation introduced
in (4).

Lemma 29. For any positive integer d,

B(hd) ≤ 2k−1k(B(h) + 2).

Proof. Let us put h(x) = bkx
k + bk−1x

k−1 + · · ·+ b0 and hd(x) = skx
k +

sk−1x
k−1 + · · · + s0. By (77) we have that

sj =
h(j)(rd)

j!

dj

λ(d)

for j = 0, . . . , k. Now

h(j)(x)

j!
=

k
∑

l=j

(

l

j

)

blx
l−j,

so that

|sj | =

∣

∣

∣

∣

k
∑

l=j

(

l

j

)

blr
l−j
d

dj

λ(d)

∣

∣

∣

∣

≤
dj

λ(d)

k
∑

l=j

(

l

j

)

|bl| |rd|
l−j

for j = 0, . . . , k. Since |rd| < d, this implies

|sj | ≤
dk

λ(d)

k
∑

l=j

(

l

j

)

|bl| ≤ 2k dk

λ(d)

k
∑

l=0

|bl| = 2k−1 dk

λ(d)
bk(B(h) + 2)

for j = 0, . . . , k. By (77) the leading coefficient of hd is sk = bk(d
k/λ(d)),

thus the above implies

B(hd) =
2

|sk|
(|s0| + · · · + |sk−1|) = 2kk(B(h) + 2).

Lemma 30. For every positive integer d the polynomials hd(x), h′
d(x),

and h′′
d(x) are positive and increasing for x ≥ 1.

Proof. Let d be a positive integer and j an integer from {0, 1, 2}. Then

h
(j)
d (x) =

dj

λ(d)
h(j)(rd + dx).

By definition −d < rd ≤ 0, therefore rd + dx > 0 whenever x ≥ 1. Since

h(j)(x) is positive and increasing for x ≥ 1, it follows that h
(j)
d (x) is positive

and increasing for x ≥ 1.
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9. The iteration step. The results of Sections 6–8 will now be used to
prove a lemma which will be the basis for our proof of Theorem 5. Before
stating the lemma we define the (k-dependent) real-valued function θ on the
positive reals by

(86) θ(x) =







x

2 log(2x−1)
if k = 2,

xk−1 if k ≥ 3.

Note that θ(x) ∈ (0, 1] whenever x ∈ (0, 1].

Lemma 31. Let N be a positive integer sufficiently large in terms of h,
and let d be a positive integer such that

(87) d ≤ N̺/4k2

.

Suppose A be a subset of {1, . . . , N} with size δN such that

(88) δ ≥ N−̺/2k

and

(89) W (hd, A) ≤
1

64
|A|2.

Then there exist positive integers d′ and N ′, and a set A′ ⊆ {1, . . . , N ′} of

size δ′N ′, such that

W (hd′ , A
′) ≤ W (hd, A), δ′ ≥ δ(1 + C1θ(δ)),

C2δ
2k2

N ≤ N ′ ≤ N, d ≤ d′ ≤ C3δ
−kd.

Here, C1, C2, and C3 are positive constants that depend only on h.

Proof. Note that by Lemmas 28 and 29, by taking N sufficiently large
in terms of h alone we can consider N to be sufficiently large in terms of
B(hd) and c(hd) regardless of the value of d.

Let b(d) denote the leading coefficient of hd. By (77) we have b(d) =

bdk/λ(d), and from (73) we find that b(d) ≤ bdk−1. It then follows by (87)
that we can take N large enough in terms of h so that

(90) b(d) ≤ N̺/2k.

By Lemma 30, (88)–(90), and the remark made at the begining of this
proof, we can apply Lemma 18 with f replaced by hd to obtain a real
number R (≥ 1) and an integer q such that

(91) c(hd)δ
−k ≪k R ≪k c(hd)δ

−1,

(92) 1 ≤ q ≤ R,

(93)
N−1
∑

t=1
t/N∈M(q,R/N)

|F (t/N)|2 ≫k θ(hd, δ)|A|2.
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We note that (58), (86), and Lemma 28 imply

(94) θ(hd, δ) ≫h θ(δ).

Let us set m = λ(q) and ε = λ(q)R/qN . Then the set E = E(q, m, ε) defined
in Lemma 20 satisfies M(q, R/N) ⊆ E. Therefore (93) and (94) imply

N−1
∑

t=1
t/N∈E

|F (t/N)|2 ≫h θ(δ)|A|2.

We will apply Lemma 20 to this estimate. To do so we must show that the
values given to m and ε satisfy the conditions in (69), that is,

λ(q) ≤ 2π
λ(q)R

qN
N ≤ N.

The first inequality here is true by (92). The second inequality follows for
N sufficiently large in terms of h since by (17), (73), (88), (91), and (92),

λ(q)R

q
≤ Rk ≪h δ−k2

≪h N1/2.

Therefore we can apply Lemma 20 to deduce that there exists an arithmetic
progression P in {1, . . . , N}, with difference m = λ(q), length

(95) |P | ≫ δθ(δ)ε−1,

and such that

(96) |A ∩ P | ≥ δ(1 + C1θ(δ))|P |,

where C1 is some positive number that depends only on h.
Let N ′ = |P |. Then there exist an integer c and a set A′ ⊆ {1, . . . , N ′}

such that A ∩ P = {c + λ(q)b : b ∈ A′}. An application of Lemma 23 (with
B = A′ and C = A ∩ P ) shows that

W (hdq, A
′) ≤ W (hd, A ∩ P ).

Put d′ = dq; then the above implies

W (hd′ , A
′) ≤ W (hd, A).

Let the size of A′ be δ′N ′. Then (96) implies

δ′ ≥ δ(1 + C1θ(δ)).

All that is left to do is to estimate N ′ (= |P |) and d′. Using (73), (86), (91),
and (95) we are able to infer for k ≥ 2 and for N sufficiently large in terms
of h that

N ′ ≫h δθ(δ)ε−1 ≫h Nδ2k2

.

Thus there exists a positive number C2 that depends only on h such that

C2Nδ2k2

≤ N ′ ≤ N.
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Since d′ = dq it follows from (92) that d ≤ d′ ≤ Rd. Then by Lemma 28
and (91) we can deduce that there exists a positive number C3 that depends
only on h such that

d ≤ d′ ≤ C3δ
−1d.

This completes the proof.

10. The proof of Theorem 5. We are now ready to prove Theorem 5,
which we remind the reader implies both Theorem 1 and Theorem 2.

Proof of Theorem 5. Let N be a positive integer which is sufficiently
large in terms of h. Let A be a subset of {1, . . . , N} and size δN . Let µ be
defined as in (2). Suppose that

(97) δ ≥ C
(log log N)µ/(k−1)

(log N)1/(k−1)
,

where C is a positive number that depends only on h. Let C1, C2 and C3 be
the positive numbers given in Lemma 31. We define the positive integer Z by

(98) Z = [8C−1
1 δ−(k−1)(log 2δ−1)µ−1].

For N sufficiently large in terms h it follows from (97) that

(99) Z ≤ 8C−1C−1
1

log N

log log N
.

Assume that

(100) W (h, A) ≤
1

64
(C2

2δ4k2

)Z |A|2.

We will show that this assumption leads to a contradiction. Set

N0 = N, A0 = A, δ0 = δ, d0 = 1.

We will inductively construct a finite sequence of quadruples

{(Ni, Ai, δi, di)}
Z
i=0,

where for each 1 ≤ i ≤ Z, Ni and di are positive integers, Ai ⊆ {1, . . . , Ni},
and δi = |Ai|/Ni. Furthermore:

(101) W (hdi
, Ai) ≤

1

64
(C2

2δ4k2

i )Z−i|Ai|
2,

(102) δi ≥ δi−1(1 + C1θ(δi−1)),

(103) C2δ
2k2

i−1Ni−1 ≤ Ni ≤ Ni−1,

(104) di−1 ≤ di ≤ C3δ
−k
i di−1.

Let 0 ≤ l ≤ Z − 1, and suppose we have obtained the first l terms of the
sequence. We will use Lemma 20 to find the succeeding (l + 1)th term.
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We begin by estimating Nl in terms of N . By (103) and (102) we can
deduce that

Nl ≥
(

l−1
∏

j=0

C2δ
2k2

j

)

N0 ≥ (C2δ
2k2

)ZN.

Taking logarithms we find that

(105) log Nl ≥ log N − Z log(C2δ
2k2

)−1.

By (97) and (99) we have, for large N ,

Z log(C2δ
2k2

)−1 ≪h C−1 log N.

Therefore we can take C to be large enough so that (105) implies

(106) log Nl ≥
1

2
log N.

Hence Nl ≥ N1/2, and thus we can assume that Nl is large in terms of h
whenever N is.

We now give an estimate for dl. Since C3 ≥ 1 we deduce from (104) that

dl ≤
(

l
∏

j=1

C3δ
−k
j

)

d0 ≤ (C3δ
−k)Z .

Thus

log dl ≤ Z log(C3δ
−k).

By (97) and (99) we deduce that

log dl ≪h C−1 log N.

We ask that C be large enough so that this implies

log dl ≤
̺

8k2
log N.

By (106) this implies log dl ≤ (̺/4k2) log Nl, and hence

(107) dl ≤ N
̺/4k2

l .

We now estimate δl. By (102) we deduce that δl ≥ δZ
0 , and therefore

log δ−1
l ≤ Z log δ−1.

By taking C to be large enough, an argument similar to the one used to
estimate dl shows that, for large N ,

(108) δl ≥ N
−̺/2k
l .

Since l < Z and C2 < 1 it follows from (101) that

(109) W (hdl
, Al) ≤

1

64
|Al|

2.
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By (107)–(109) we can apply Lemma 18 with N , d, and A replaced by
Nl, dl and Al respectively. By relabeling the results of Lemma 18, we obtain
an integer Nl+1 and a subset Al+1 of {1, . . . , Nl+1} of size |Al+1| = δl+1Nl+1

such that

(110) C2δ
2k2

l Nl ≤ Nl+1 ≤ Nl,

(111) δl+1 ≥ δl(1 + C1θ(δl)).

Furthermore, there exists an integer dl+1 such that

(112) dl ≤ dl+1 ≤ C3δ
−k
l dl,

(113) W (hdl+1
, Al+1) ≤ W (hdl

, Al).

It follows from (101) that

(114) W (hdl+1
, Al+1) ≤

1

64
(C2

2δ4k2

l )Z−l|Al|
2.

From (110) and (111) we can deduce that

(115) |Al| = δlNl ≤ δl+1C
−1
2 δ−2k2

l Nl+1 = C−1
2 δ−2k2

l |Al+1|.

Then (114) and (115) imply

(116) W (hdl+1, Al+1) ≤
1

64
(C2

2δ4k2

l+1)
Z−(l+1)|Al+1|

2.

By induction we can conclude that there exist a finite sequence of quad-
ruples {(Ni, Ai, δi, di)}

Z
i=1 whose components satisfy the properties in (101)–

(104). Since θ(x) is increasing for x > 0, repeated applications of (102) imply

δZ ≥ δ0(1 + C1θ(δ0))
Z = δ(1 + C1θ(δ))

Z .

Taking the logarithm we obtain

(117) log δZ ≥ Z log(1 + C1θ(δ)) − log δ−1 ≥ Z
C1θ(δ)

2
− log 2δ−1.

(Here we used the fact that log(1 + x) ≥ x/2 whenever 0 ≤ x ≤ 1.)

Assume now that k ≥ 3. Then (98) and (117) imply

log δZ ≥ 4C−1
1 δ−(k−1)(log 2δ−1)C1δ

k−1/2 − log 2δ−1,

and thus

(118) log δZ ≥ log 2δ−1 > 0.

A calculation shows that (118) is also true when k = 2. From (118) we find
that δZ > 1, a contradiction. Therefore (100) is false, and thus

(119) W (A, h) ≥
1

64
(C2

2δ4k2

)ZN2δ2.
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By (98) we have

(C2
2δ4k2

)Z = exp(−Z log C−2
2 δ−4k2

)

= exp([−8C−1
1 δ−(k−1)(log 2δ−1)µ−1] log C−2

2 δ−4k2

).

Thus there exists a positive number C ′ such that

(120) (C2
2δ4k2

)Z ≥ exp(−C ′δ−(k−1)(log 2δ−1)µ).

By (119) and (120) we obtain

W (A, h) ≥
1

64
|A|2 exp(−C ′δ−(k−1)(log 2δ−1)µ).

This completes the proof.
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[17] S. Slijepčević, A polynomial Sárközy–Furstenberg theorem with upper bounds, Acta

Math. Hungar. 98 (2003), 111–128.
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