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On the divisor problem:
Moments of ∆(x) over short intervals

by

Werner Georg Nowak (Wien)

1. Introduction. Let as usual d(n) denote the number of (positive)
divisors of the positive integer n. The classical Dirichlet divisor problem is
concerned with estimates for the remainder term ∆(x) in the asymptotic
formula

(1.1) D(x) :=
∑

n≤x
d(n) = x log x+ (2γ − 1)x+∆(x),

where x is a large real variable and γ is the Euler–Mascheroni constant. The
sharpest upper bound published to date (1) is due to M. Huxley [5] and
reads

(1.2) ∆(x) = O(x23/73(log x)461/146).

(For a survey of the history of the problem, the reader is referred to the
monograph of E. Krätzel [8].) Concerning lower bounds, the best results
read (2)

(1.3) ∆(x) = Ω+(x1/4(logx)1/4(log log x)(3+log 4)/4 exp(−c
√

log log log x))

(c > 0),

due to J. L. Hafner [3], and

(1.4) ∆(x) = Ω−(x1/4 exp(c′(log log x)1/4(log log log x)−3/4)) (c′ > 0),

established by Corrádi and Kátai [2]. Most experts believe that in fact

∆(x) = O(x1/4+ε)

for every ε > 0. In favour of this conjecture, there is the classic mean-square

2000 Mathematics Subject Classification: Primary 11N37.
(1) Actually, M. Huxley has meanwhile further improved this estimate, essentially

replacing the exponent 23/73 = 0.315068 . . . by 131/416 = 0.3149038 . . . The author is
indebted to Professor Huxley for sending him a copy of his unpublished manuscript.

(2) Cf., e.g., [8] for the notations O, Ω, �, and �, used throughout the paper.

[329]
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asymptotics (3)

(1.5)
T�
1

(∆(t2))2 dt =
(ζ(3/2))4

8π2ζ(3)
T 2 +O(T (log T )4).

This precise form of the error term was achieved by E. Preissmann [10],
thus improving the estimate of K. C. Tong [12] who had the log-exponent 5
instead of 4. Only rather recently, K.-M. Tsang [13] found asymptotics for
the third and fourth power moments (4). He proved that

(1.6)
T�
1

(∆(t2))3 dt =
3c3

40π3 T
5/2 +O(T 33/14+ε)

where

c3 =
∞∑

m,n,k=1√
m+
√
n=
√
k

d(m)d(n)d(k)
(mnk)3/4

=
∞∑

q,r,s=1

|µ(q)|
q9/4

d(r2q)d(s2q)d((r + s)2q)(rs(r + s))−3/2,

µ(·) being the Möbius function, and

(1.7)
T�
1

(∆(t2))4 dt =
c4

32π4 T
3 +O(T 67/23+ε)

with

c4 =
∞∑

m,n,k,l=1√
m+
√
n=
√
k+
√
l

d(m)d(n)d(k)d(l)
(mnkl)3/4

.

We remark parenthetically that R. Heath-Brown [4] showed that the
limits

Am = lim
T→∞

(
1

T 1+m/2

T�
1

(∆(t2))m dt
)

exist for m = 1, . . . , 9. However, as Heath-Brown himself states, his argu-
ment is not able to decide if Am > 0 for 2 ≤ m ≤ 9. In fact, A1 = 0, by the

(3) In the context of integral means, we find it convenient to use t =
√
x as a basic

variable. If we imagine D(x) as the number of lattice points under a hyperbola, then t is
a length parameter of the configuration. Changing the variable and integrating by parts,
it is trivial to transform our asymptotics into the shape used in the literature cited, and
vice versa.

(4) It is very interesting to read Tsang’s interpretation of what his results, in particular
the third moment asymptotics, reveal about the qualitative behaviour of ∆(x).
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very old result of Voronöı [14] that
T�
1

(∆(t2)− 1/4) dt = O(T 1/2).

2. Formulation of results. It is the aim of the present paper to point
out that the “on average regular behaviour” of ∆(x), as displayed by the
asymptotics cited, can be observed already if taking the respective means
over much shorter intervals. In fact, it will be sufficient to average over
[T − Λ(T ), T + Λ(T )], where for the quadratic case, Λ(T ) has to grow just
faster than (log T )3, while for the third and fourth power moments, Λ(T )
must be at least of order T θ with θ > 1/2.

Theorem 1. For T a large real variable, suppose that T 7→ Λ = Λ(T )
increases with T , satisfies 0 < Λ(T ) ≤ 1

2T , and

(2.1) lim
T→∞

(log T )3

Λ(T )
= 0.

Then, as T →∞,

(2.2)
T+Λ�
T−Λ

(∆(t2))2 dt ∼ 1
2π2

ζ4(3/2)
ζ(3)

ΛT.

Theorem 2. For T,Λ(T ) as above, suppose in addition that

lim
T→∞

Λ(T )
T

=: λ

exists (5), and for some ε0 > 0,

(2.3) lim
T→∞

T 1/2+ε0

Λ(T )
= 0.

Then, as T →∞,

(2.4)
T+Λ�
T−Λ

(∆(t2))3 dt ∼ 3c3β(λ)
16π3 ΛT 3/2,

with (6)

(2.5) β(λ) :=

{ 2 for λ = 0,
2

5λ
((1 + λ)5/2 − (1− λ)5/2) else,

(5) Of course, if [T −Λ, T +Λ] is really a short interval, then λ is 0. We state the result
for general λ only to make possible an alternative approach to the asymptotics (1.6) and
(1.7). See Remark 2 below.

(6) Obviously, λ 7→ β(λ) is continuous at λ = 0.
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and

(2.6)
T+Λ�
T−Λ

(∆(t2))4 dt ∼ 3c4
16π4

(
1 + 1

3λ
2)ΛT 2.

Remarks. 1. Of course, (2.2) follows from (1.5), if (stronger than (2.1))
Λ(T ) grows faster than (log T )4. However, there is little hope to obtain
the full strength of Theorem 1 via a corresponding improvement of (1.5).
Similarly, (1.6), (1.7) imply (2.4), (2.6), resp., provided that Λ(T ) grows at
least like T θ, θ > 6/7, resp. θ > 21/23. Compared to this, (2.3) is much less
stringent.

2. If we take, in particular, T = 3
4X, Λ = 1

4X, the interval [T − Λ,
T + Λ] becomes

[
1
2X,X

]
, and λ = 1/3. Using (2.4), resp. (2.6) for X =

T, 1
2T,

1
4T, . . . (with a new T ), and summing up the geometric series arising,

we reprove the asymptotics (1.6), resp. (1.7), though without obtaining an
error term. However, our analysis is somewhat simpler than Tsang’s.

3. Proof of Theorem 1. We start from the classic truncated Voronöı
formula (see, e.g., Ivić [7, p. 86, (3.17)])

(3.1) ∆(t2) =

√
t

π
√

2

∑

1≤n≤N

d(n)
n3/4

cos
(

4πt
√
n− π

4

)
+O(N−1/2t1+ε)

(ε > 0),

where N � t2 is any positive number. We apply this with t ∈ [T − Λ(T ),
T + Λ(T )], Λ = Λ(T ) as in Theorem 1, and N = N(T )� T 2 remaining at
our disposal. Clearly we may infer that

(3.2) ∆(t2) =

√
t

π
√

2
S(t) +O(

√
t|R(t)|) +O(N−1/2T 1+ε),

with

S(t) :=
∑

1≤n≤M

d(n)
n3/4

cos
(

4πt
√
n− π

4

)
, R(t) :=

∑

M<n≤N

d(n)
n3/4

e(2t
√
n),

where e(w) = e2πiw as usual, and M is another large real parameter, inde-
pendent (7) of T . We shall use further the simple fact that, for real functions
F,G defined on I (with an obvious brief notation),

(3.3)
�
I

(F +G)2 =
�
I

F 2 +O
(( �

I

F 2
)1/2( �

I

G2
)1/2)

+O
( �
I

G2
)
.

(7) Ultimately, T will be sent to +∞ while M is kept fixed. We may thus imagine T
to be of order much larger than M .
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First we estimate the mean-square of
√
t |R(t)|, claiming that

(3.4)
T+Λ�
T−Λ
|
√
tR(t)|2 dt� T (log T )3 + ΛTM−1/6+ε (ε > 0).

To prove this, we employ a device which goes back to Huxley [6], and
was developed further by the author [9]. It is based on the Fejér kernel

ϕ(w) :=
(

sin(πw)
πw

)2

.

By Jordan’s inequality, ϕ(w) ≥ 4/π2 for |w| ≤ 1/2, and the Fourier trans-
form has the particularly simple shape

ϕ̂(y) =
�
R
ϕ(w)e(wy) dw = max(0, 1− |y|).

Thus we conclude that

(3.5)
T+Λ�
T−Λ
|
√
tR(t)|2 dt� T

T+Λ�
T−Λ
|R(t)|2 dt = 2ΛT

1/2�
−1/2

|R(T + 2Λw)|2 dw

≤ 1
2
π2ΛT

�
R
|R(T + 2Λw)|2ϕ(w) dw

=
1
2
π2ΛT

∑

M<m,n≤N

d(m)d(n)
(mn)3/4

e(2T (
√
n−√m))ϕ̂(4Λ(

√
n−√m))

� ΛT
∑

M<m,n≤N
|√n−√m|<1/(4Λ)

d(m)d(n)
(mn)3/4

� ΛT
∑

M<m≤N

d(m)
m3/2

∑

n∈N∗
|√n−√m|<1/(4Λ)

d(n)

≤ ΛT
∑

M<m≤N

d(m)
m3/2

(
D

((√
m+

1
4Λ

)2)
−D

((√
m− 1

4Λ

)2))
.

By (1.1), with the easy bound ∆(x) � x1/3 log x (see Krätzel [8, p. 198,
Theorem 5.3]), it follows that, for arbitrary large reals X1 � X � X2,

D(X1)−D(X2)� |X1 −X2| logX +X1/3 logX.

Therefore, the last line in (3.5) is

� ΛT
∑

M<m≤N

d(m)
m3/2

(√
m

Λ
logm+m1/3 logm

)

� T
∑

1≤m≤N

d(m)
m

logm+ ΛT
∑

m>M

m−7/6+ε.

But this is just � the right hand side of (3.4), as asserted.
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We proceed to evaluate the mean-square of (
√
t/(π
√

2))S(t). Let S(t)2 =
S1(t) + S2(t) with

S1(t) :=
∑

1≤m≤M

d(m)2

m3/2
cos2

(
4πt
√
m− π

4

)
,

S2(t) :=
∑

1≤m,n≤M
m6=n

d(m)d(n)
(mn)3/4

cos
(

4πt
√
m− π

4

)
cos
(

4πt
√
n− π

4

)
.

Using the elementary facts that, for arbitrary positive reals A,B,

T+Λ�
T−Λ

t cos
(
At− π

4

)
cos
(
Bt− π

4

)
dt =

{
ΛT +O(T/A) if A = B,

O(T/|A−B|) if A 6= B,

we obtain

1
2π2

T+Λ�
T−Λ

tS1(t) dt =
1

2π2

∑

1≤m≤M

d(m)2

m3/2

(
ΛT +O

(
T√
m

))

=
1

2π2

ζ4(3/2)
ζ(3)

ΛT +O(ΛTM−1/2+ε) +O(T )

and
T+Λ�
T−Λ

tS2(t) dt� T
∑

1≤m,n≤M
m6=n

d(m)d(n)
(mn)3/4|√m−√n| � B1(M)T.

Here and throughout, Bj(M), j = 1, 2, . . . , denote positive numbers de-
pending only on M . Thus, altogether,

T+Λ�
T−Λ

( √
t

π
√

2
S(t)

)2

dt =
1

2π2

ζ4(3/2)
ζ(3)

ΛT(3.6)

+O(ΛTM−1/2+ε) +O(B1(M)T ).

For the present context, we choose N = N(T ) = T 2. Using (3.2), (3.4),
and (3.6) in (3.3), we arrive at

T+Λ�
T−Λ

(∆(t2))2 dt =
1

2π2

ζ4(3/2)
ζ(3)

ΛT +O(ΛTM−1/2+ε) +O(B1(M)T )

+O(((ΛT )1/2+B2(M)T 1/2)(T 1/2(log T )3/2+ (ΛT )1/2M−1/12+ε+Λ1/2T ε))

+O(T (log T )3+ ΛTM−1/6+ε + ΛT 2ε).
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Hence, in view of our condition (2.1),

lim sup
T→∞

∣∣∣∣
1
ΛT

T+Λ�
T−Λ

(∆(t2))2 dt− 1
2π2

ζ4(3/2)
ζ(3)

∣∣∣∣�M−1/12+ε.

Since M can be chosen arbitrarily large, this completes the proof of Theo-
rem 1.

4. Proof of Theorem 2

4.1. The fourth power moment. Proof of (2.6). Again we start from the
decomposition (3.2), but with

(4.1) N = N(T ) = T 4/5Λ2/5,

Λ = Λ(T ) satisfying the conditions of Theorem 2. Instead of (3.3) we now
use the fact that, for real functions F,G,

(4.2)
�
I

(F +G)4 =
�
I

F 4 +O
(( �

I

F 4
)3/4( �

I

G4
)1/4)

+O
( �
I

G4
)
.

This is immediate by Hölder’s inequality. Furthermore, we shall need the
following technical tool.

Lemma. Let 0 < δ < 1, and y a large real variable. Then

Σ(δ, y) :=
∑

(k,l)∈N2
∗

|
√
k+
√
l−y|<δ

(kl)−3/4 � δ + y−4/3,

the implied constant being absolute.

Proof. By symmetry, it suffices to estimate the corresponding sum re-
stricted to k ≤ l. This implies that k ≤ 1

4 (y+δ)2 and l � y2. We use a dyadic
subdivision of the k-range, putting K = 2−j−2(y + δ)2, j = 1, 2, . . . Then

(4.3) Σ(δ, y)�
∑

K=2−j−2(y+δ)2

j=1,2,...

K−3/4y−3/2#(BK),

BK := {(k, l) ∈ N2
∗ : K < k ≤ 2K, |

√
k +
√
l − y| < δ}.

Writing ψ(w) = w − [w]− 1/2, [w] the greatest integer ≤ w, we get

#(BK) ≤
∑

K<k≤2K

([(y −
√
k + δ)2]− [(y −

√
k − δ)2])

�
∑

K<k≤2K

((y −
√
k + δ)2 − (y −

√
k − δ)2)

+
∑

±

∣∣∣
∑

K<k≤2K

ψ((y −
√
k ± δ)2)

∣∣∣.
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The first sum is of course � Kyδ. To bound the last sums, we note that

d2

du2 ((y −√u± δ)2) =
1
2

(y ± δ)u−3/2 � K−3/2y,

and use the simplest van der Corput estimate (see, e.g., Krätzel [8, p. 32,
Theorem 2.3]) to conclude that

#(BK)� Kyδ + min(K,K1/2y1/3 +K3/4y−1/2).

Using this in (4.3), we obtain

Σ(δ, y)�
∑

K=2−j−2(y+δ)2

j=1,2,...

(K1/4y−1/2δ+ min(K1/4y−3/2,K−1/4y−7/6+y−2)).

Summing up the geometric series involved, and observing that K1/4y−3/2 <
K−1/4y−7/6 iff K < y2/3, we establish the Lemma.

To start the proof of Theorem 2, we first estimate the fourth moment of√
t |R(t)|. The same argument which lead to (3.5) now gives

T+Λ�
T−Λ
|
√
tR(t)|4 dt� T 2

T+Λ�
T−Λ
|R(t)|4 dt = 2ΛT 2

1/2�
−1/2

|R(T + 2Λw)|4 dw

≤ 1
2
π2ΛT 2

�
R
|R(T + 2Λw)|4ϕ(w) dw

� ΛT 2
∑

M<m,n,k,l≤N
|√m+

√
n−
√
k−
√
l|<1/(4Λ)

d(m)d(n)d(k)d(l)
(mnkl)3/4

� ΛT 2
∑

M<m,n≤N
(mn)−3/4+εΣ(1/(4Λ),

√
m+

√
n).

By our Lemma, this is

� ΛT 2
∑

M<m,n≤N
(mn)−3/4+ε

(
1
Λ

+ (
√
m+

√
n)−4/3

)

� T 2
∑

1≤m,n≤N
(mn)−3/4+ε + ΛT 2

∑

m,n>M

(mn)−13/12+ε.

Altogether we get, recalling (4.1),

(4.4)
T+Λ�
T−Λ
|
√
tR(t)|4 dt� Λ1/5T 12/5+ε′ + ΛT 2M−1/6+ε′

for any ε′ > 0.
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It remains to evaluate the fourth moment of
√
t

π
√

2
S(t). By the elementary

formula

cos(a) cos(b) cos(c) cos(d) =
1
8

∑

±
cos(a± b± c± d),

it follows that

S(t)4 =
3
8
S3 +

3
8
S4(t) +

1
2
S5(t) +

1
8
S6(t),

where

S3 :=
∑

1≤m,n,k,l≤M√
m+
√
n=
√
k+
√
l

d(m)d(n)d(k)d(l)
(mnkl)3/4

,

S4(t) :=
∑

1≤m,n,k,l≤M√
m+
√
n6=
√
k+
√
l

d(m)d(n)d(k)d(l)
(mnkl)3/4

cos(4πt(
√
m+

√
n−
√
k −
√
l)),

S5(t) :=
∑

1≤m,n,k,l≤M

d(m)d(n)d(k)d(l)
(mnkl)3/4

sin(4πt(
√
m+

√
n+
√
k −
√
l)),

S6(t) := −
∑

1≤m,n,k,l≤M

d(m)d(n)d(k)d(l)
(mnkl)3/4

cos(4πt(
√
m+

√
n+
√
k +
√
l)).

Tsang [13, (3.6)] already proved that

S3 = c4 +O(M−1/4+ε),

on the basis of Besicovitch’s [1] result that the square roots of square-free
numbers are linearly independent over the rationals. Consequently,

(4.5)
T+Λ�
T−Λ

( √
t

π
√

2

)4 3
8
S3 dt =

3
16π4

(
ΛT 2 +

1
3
Λ3
)
c4 +O(ΛT 2M−1/4+ε).

Furthermore, by the second mean-value theorem,
T+Λ�
T−Λ

t2S4(t) dt� T 2
∑

1≤m,n,k,l≤M√
m+
√
n6=
√
k+
√
l

d(m)d(n)d(k)d(l)

(mnkl)3/4|√m+
√
n−
√
k −
√
l|

� B3(M)T 2,
T+Λ�
T−Λ

t2S5(t) dt =
∑

1≤m,n,k,l≤M√
m+
√
n+
√
k 6=
√
l

d(m)d(n)d(k)d(l)
(mnkl)3/4

×
T+Λ�
T−Λ

t2 sin(4πt(
√
m+

√
n+
√
k −
√
l)) dt
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� T 2
∑

1≤m,n,k,l≤M√
m+
√
n+
√
k 6=
√
l

d(m)d(n)d(k)d(l)

(mnkl)3/4|√m+
√
n+
√
k −
√
l|

� B4(M)T 2,
T+Λ�
T−Λ

t2S6(t) dt� T 2
∑

1≤m,n,k,l≤M

d(m)d(n)d(k)d(l)

(mnkl)3/4|√m+
√
n+
√
k +
√
l|

� B5(M)T 2.

Thus, altogether,

T+Λ�
T−Λ

( √
t

π
√

2
S(t)

)4

dt =
3

16π4

(
ΛT 2 +

1
3
Λ3
)
c4(4.6)

+O(ΛT 2M−1/4+ε) +O(B6(M)T 2).

Combining (3.2), (4.1), (4.4), and (4.6), we get, in view of (4.2),

T+Λ�
T−Λ

(∆(t2))4 dt =
3

16π4

(
ΛT 2 +

1
3
Λ3
)
c4 +O(ΛT 2M−1/4+ε) +O(B6(M)T 2)

+O((Λ3/4T 3/2 +B7(M)T 3/2)(Λ1/20T 3/5+ε′ + Λ1/4T 1/2M−1/24+ε′))

+O(Λ1/5T 12/5+ε′ + ΛT 2M−1/6+ε′).

Therefore, by condition (2.3),

lim sup
T→∞

∣∣∣∣
1

ΛT 2

T+Λ�
T−Λ

(∆(t2))4 dt− 3
16π4 c4

(
1 +

1
3

(
Λ

T

)2)∣∣∣∣�M−1/24+ε′ .

Since M can be chosen arbitrarily large, this completes the proof of (2.6).

4.2. The third power moment. Proof of (2.4). Actually, it will be rather
simple to deduce the result for the third power from the estimates on the
second and fourth power means already established. Looking back at (3.2),
we put

(4.7) H(t) :=

√
t

π
√

2
S(t), R∗(t) := ∆(t2)−H(t),

and define, for j = 2, 3, 4,

Hj :=
T+Λ�
T−Λ

H(t)j dt, Rj :=
T+Λ�
T−Λ
|R∗(t)|j dt.

The choice (4.1) is still valid. Then it is immediate from (3.2) and (3.4),
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resp. (4.4), that

R2 � T (log T )3 + ΛTM−1/7 + Λ3/5T 6/5+2ε,

R4 � Λ1/5T 12/5+ε′ + ΛT 2M−1/7,

with ε, ε′ > 0 as small as we want. Furthermore, by (3.6), resp. (4.6),

H2 � ΛT +B1(M)T, H4 � ΛT 2 +B6(M)T 2.

Therefore, by (4.7) and Cauchy’s inequality,

(4.8)
T+Λ�
T−Λ

(∆(t2))3 dt−H3 � (H4R2)1/2 + (H2R4)1/2 + (R2R4)1/2

� (Λ1/2T +B8(M)T )(T 1/2(log T )3/2 + Λ1/2T 1/2M−1/14 + Λ3/10T 3/5+ε)

+ (Λ1/2T 1/2 +B9(M)T 1/2)(Λ1/10T 6/5+ε′ + Λ1/2TM−1/14)

+ (T 1/2(log T )3/2 + Λ1/2T 1/2M−1/14 + Λ3/10T 3/5+ε)

× (Λ1/10T 6/5+ε′ + Λ1/2TM−1/14).

It remains to evaluate H3. To do this, we may closely follow Tsang [13], even
with a bit of simplification. By the elementary identity

cos(a) cos(b) cos(c) =
1
4

∑

±
cos(a± b± c),

it follows that

S(t)3 =
3

4
√

2
S7 +

3
4
S8(t) +

1
4
S9(t),

with

S7 :=
∑

1≤m,n,k≤M√
m+
√
n=
√
k

d(m)d(n)d(k)
(mnk)3/4

,

S8(t) :=
∑

1≤m,n,k≤M√
m+
√
n6=
√
k

d(m)d(n)d(k)
(mnk)3/4

cos
(

4πt(
√
m+

√
n−
√
k)− π

4

)
,

S9(t) :=
∑

1≤m,n,k≤M

d(m)d(n)d(k)
(mnk)3/4

cos
(

4πt(
√
m+

√
n+
√
k)− 3π

4

)
.

By the analysis between formulae (2.11) and (2.12) of [13], Tsang has proved
(again on the basis of Besicovitch’s theorem [1]) that, in our notation,

S7 = c3 +O(M−1+ε).
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Furthermore, by the second mean-value theorem,

T+Λ�
T−Λ

t3/2S8(t) dt� T 3/2
∑

1≤m,n,k≤M√
m+
√
n6=
√
k

d(m)d(n)d(k)

(mnk)3/4|√m+
√
n−
√
k|

� B10(M)T 3/2,
T+Λ�
T−Λ

t3/2S9(t) dt� T 3/2
∑

1≤m,n,k≤M

d(m)d(n)d(k)

(mnk)3/4|√m+
√
n+
√
k|

� B11(M)T 3/2.

Therefore, altogether,

H3 =
T+Λ�
T−Λ

( √
t

π
√

2
S(t)

)3

dt

=
3c3

16π3 I3(T ) +O(ΛT 3/2M−1+ε) +O(B12(M)T 3/2),

where I3(T ) := � T+Λ
T−Λ t

3/2 dt. Combining this with (4.8) and recalling condi-
tion (2.3), we conclude that

(4.9) lim sup
T→∞

∣∣∣∣
1

ΛT 3/2

T+Λ�
T−Λ

(∆(t2))3 dt− 3c3
16π3

I3(T )
ΛT 3/2

∣∣∣∣�M−1/14.

An easy calculation shows that

lim
T→∞

I3(T )
ΛT 3/2

= β(λ),

as defined by (2.5). Since in (4.9), M is again arbitrary, the proof of (2.4) is
thereby complete.

5. Concluding remark. When discussing the Dirichlet divisor prob-
lem, one immediately thinks of its “twin”, the Gaussian circle problem. Let
r(n) denote the number of ways to write n ≥ 0 as a sum of two squares; then
the “lattice point discrepancy” P (x) =

∑
0≤n≤x r(n) − πx satisfies upper

and lower estimates quite similar to those quoted for ∆(x) in the introduc-
tion. (See again Krätzel’s monograph [8].) Concerning results analogous to
those established above, an asymptotic formula for � T+Λ

T−Λ(P (t2))2 dt is con-
tained in the author’s paper [9] where the case of a general planar domain
with smooth boundary of nonzero curvature is discussed. Furthermore, the
direct analogue of Theorem 2 can be deduced, for P (x), by the very same
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proof, starting from the formula

P (t2) = −
√
t

π

∑

1≤n≤N

r(n)
n3/4

cos
(

4πt
√
n+

π

4

)
+O(N−1/2t1+ε)

(ε > 0, N � t2).

This in turn follows on classic lines (cf. Ivić [7], or Titchmarsh [11]), if we
replace the generating function ζ2(s) of d(n) by the Dedekind zeta-function
ζQ(i)(s).
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