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On the divisor problem:
Moments of A(z) over short intervals

by

WERNER GEORG NOWAK (Wien)

1. Introduction. Let as usual d(n) denote the number of (positive)
divisors of the positive integer n. The classical Dirichlet divisor problem is
concerned with estimates for the remainder term A(z) in the asymptotic
formula
(1.1) D(z):=> d(n) =zlogz + (2y — )z + A(x),

n<z
where x is a large real variable and + is the Euler-Mascheroni constant. The
sharpest upper bound published to date () is due to M. Huxley [5] and
reads

(1.2) A(x) = 022/ (log ) 461/140),

(For a survey of the history of the problem, the reader is referred to the

monograph of E. Krétzel [8].) Concerning lower bounds, the best results
read (?)

(13)  Ax) = 24 (24 (log )/ (loglog ) Ho8 9/ exp(—cylogTog log )
(c>0),
due to J. L. Hafner [3], and
(1.4) A(z) = 2_(2Y* exp(c' (loglog z) /4 (log log log ) ~3/%)) (¢’ > 0),
established by Corrddi and Katai [2]. Most experts believe that in fact
A(z) = O(z1/4+e)

for every € > 0. In favour of this conjecture, there is the classic mean-square
2000 Mathematics Subject Classification: Primary 11N37.

() Actually, M. Huxley has meanwhile further improved this estimate, essentially
replacing the exponent 23/73 = 0.315068... by 131/416 = 0.3149038... The author is

indebted to Professor Huxley for sending him a copy of his unpublished manuscript.
(2) Cft., e.g., [8] for the notations O, 2, <, and =, used throughout the paper.

[329]
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asymptotics (®)

0 (6(3/2))"
1.5 A?) dt = 2= T? + O(T(log T)*).
(15) f(aw)?a = Sy 17+ 0T log 7))
This precise form of the error term was achieved by E. Preissmann [10],
thus improving the estimate of K. C. Tong [12] who had the log-exponent 5
instead of 4. Only rather recently, K.-M. Tsang [13] found asymptotics for
the third and fourth power moments (*). He proved that

T

(1'6) S(A(t2))3 dt — 4?)% T5/2 + O(T33/14+5)
1

where

b S dmd@dm

e el (mnk)3/4
NN
= 2 |M9(2‘ d(r2q)d(s*q)d((r + s)2q) (rs(r + s))~%/2,
q,r,s=1

u(+) being the Mobius function, and

T
(1.7) faw) e = 3;;4 9 4 O(T67/%+)
with N

4= 3 d(m)d(n)d(k)d(1)

(mnkl)3/4

m,n,k,l=1

Vmy/n=Vk+V1
We remark parenthetically that R. Heath-Brown [4] showed that the
limits
T

. 1 2\\m
A :%51100<W (a@?) dt)
1
exist for m = 1,...,9. However, as Heath-Brown himself states, his argu-

ment is not able to decide if A,, > 0 for 2 < m < 9. In fact, A; = 0, by the

(‘3) In the context of integral means, we find it convenient to use ¢t = \/z as a basic
variable. If we imagine D(z) as the number of lattice points under a hyperbola, then ¢ is
a length parameter of the configuration. Changing the variable and integrating by parts,
it is trivial to transform our asymptotics into the shape used in the literature cited, and
vice versa.

(4) It is very interesting to read Tsang’s interpretation of what his results, in particular
the third moment asymptotics, reveal about the qualitative behaviour of A(z).
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very old result of Voronoi [14] that
T
V(A@?) — 1/4) dt = O(T"/?).
1

2. Formulation of results. It is the aim of the present paper to point
out that the “on average regular behaviour” of A(z), as displayed by the
asymptotics cited, can be observed already if taking the respective means
over much shorter intervals. In fact, it will be sufficient to average over
[T — A(T), T + A(T)], where for the quadratic case, A(T) has to grow just
faster than (log7')?, while for the third and fourth power moments, A(T)
must be at least of order 7% with 6 > 1/2.

THEOREM 1. For T a large real variable, suppose that T — A = A(T)
increases with T, satisfies 0 < A(T) < 1T, and

(log 7)°
2.1 = 0.
(2.1) T A(T) 0
Then, as T — oo,
T+A 4
1 2
(2.2) [ (a2 at~ 2—2C (33/ ) AT,
3 RANGE)
THEOREM 2. For T, A(T) as above, suppose in addition that
. A(T)
i S =i

exists (°), and for some gq > 0,

. T1/2+€0
(2.3) A T
Then, as T — oo,
T+A
3c3B(N)
2\\3 7, 9PN 30
(2.4) TSA(A(t ) dt ~ = AT,
with (%)
9 for A=0,
2.5 A) =
B {%<<1+A>5/2—<1—A>5/2> clse,

(%) Of course, if [T'— A, T+ A] is really a short interval, then X is 0. We state the result
for general A only to make possible an alternative approach to the asymptotics (1.6) and
(1.7). See Remark 2 below.

(%) Obviously, A — B()) is continuous at A = 0.
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and
T+A
(2.6) | At ~

T—-A

364
1674

(14 $X%)AT>.

REMARKS. 1. Of course, (2.2) follows from (1.5), if (stronger than (2.1))
A(T) grows faster than (logT)*. However, there is little hope to obtain
the full strength of Theorem 1 via a corresponding improvement of (1.5).
Similarly, (1.6), (1.7) imply (2.4), (2.6), resp., provided that A(T") grows at
least like T, 6 > 6/7, resp. § > 21/23. Compared to this, (2.3) is much less
stringent.

2. If we take, in particular, T" = %X, A= iX, the interval [T — A,
T + A] becomes [3X,X], and A\ = 1/3. Using (2.4), resp. (2.6) for X =
T, %T , iT, ... (with a new T'), and summing up the geometric series arising,
we reprove the asymptotics (1.6), resp. (1.7), though without obtaining an
error term. However, our analysis is somewhat simpler than Tsang’s.

3. Proof of Theorem 1. We start from the classic truncated Voronol
formula (see, e.g., Ivi¢ [7, p. 86, (3.17)])

Vit d(n) ( 7T>
3.1) A = —— —— cos( drty/n — — | + O(N~1/2¢1+e
31 A= Y5 3 Spes(amvi-F) vo )
(e >0),
where N < t? is any positive number. We apply this with ¢ € [T — A(T),
T + A(T)], A = A(T) as in Theorem 1, and N = N(T) < T? remaining at
our disposal. Clearly we may infer that

Vit

(3.2) At?) = > S(t) + O(VHR(t)]) + O(N /2T ),

with

Sit):= > %005(47#\/_ —Z>, R(t):= Y. %e(%\/ﬁ),
1<n<M M<n<N

where e(w) = €>™% as usual, and M is another large real parameter, inde-
pendent (7) of T'. We shall use further the simple fact that, for real functions
F, G defined on I (with an obvious brief notation),

N S vo((172) " (162) ") +o(c?).

I 1 I 1

(7) Ultimately, T will be sent to +o0o while M is kept fixed. We may thus imagine T’
to be of order much larger than M.
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First we estimate the mean-square of /% |R(t)|, claiming that
T+A
(3.4) | IVER(®)|?dt < T(logT)® + ATM /5= (e > 0).
T-A
To prove this, we employ a device which goes back to Huxley [6], and
was developed further by the author [9]. It is based on the Fejér kernel

o) = ()

By Jordan’s inequality, ¢(w) > 4/m2 for |w| < 1/2, and the Fourier trans-
form has the particularly simple shape

ly) = | (w)e(wy) dw = max(0,1 — [y|).

R
Thus we conclude that
T+A T+A 1/2
35 | WtRWPdt<T | |R@)[Pdt=2AT | |R(T +24w)|?dw
T—A T-A —1/2
1
5 w2 AT S |R(T + 2Aw)|*p(w) dw
R
1 d(m)d(n
—tear Y AW or(m - vm)EUAG - Vi)
2 (mn)3/
M<mn<N
d(m)d( ) d(m)
M<m,n<N M<m<N neN,
[Vr—vm|<1/(4A) lvVn—vm|<1/(44)

< 3 (e((mem))-o((A-5))

By (1.1), with the easy bound A(z) < z'/3logz (see Kritzel [8, p. 198,
Theorem 5.3]), it follows that, for arbitrary large reals X; < X =< Xo,

D(X,) — D(X,) < |X1 — Xs|log X + X'/31og X.
Therefore, the last line in (3. 5) is

<AT Z 3/2

M<m<N
<T Z logm+ AT Y om0t

1<m<N m>M
But this is just < the right hand side of (3.4), as asserted.

<\/_

logm + m'/3 log m>
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We proceed to evaluate the mean-square of (v/t/(7v/2))S(t). Let S(t)? =
Sl (t) + SQ (t) with

Sit):= Y Cifg/); cos? <4mt\/ﬁ - %)

1<m<M

So(t) = 1<mz ; amfs(m) cos (47Tt\/_— —> cos (47rt\/_— %)
S

Using the elementary facts that, for arbitrary positive reals A, B,

T+A .
AT +O(T/A fA=RB

S tCOS<At_E>COS<Bt—E>dt:{ +0(T/4) 1 ’
4 4 O(T/|A— B|) if A+ B,

T—A
we obtain
T+A
1 1 T
_ £S1( = AT + 0O
2 S 1 Z 3 2 ( ( >>
2m T—A 2m <m<M / \/m
1 C4( /2) 1
= AT 4+ O(ATM Y2+ + O(T
and
T+A
d(m)d(n)
| tS(tydt<T < Bi(M)T.
m#n
Here and throughout, B;(M), j = 1,2,..., denote positive numbers de-

pending only on M. Thus, altogether,

i 21 ¢E/
(3.6) TSA<7“/S( )> dt = 5 8 AT

+ O(ATM Y242y £ O(B,(M)T).

For the present context, we choose N = N(T) = T2. Using (3.2), (3.4),
and (3.6) in (3.3), we arrive at
T+A

oz 1 ¢Y(3/2)
T§A(A(t )Pt = B
+ O(((AT)1/2—|- B2(M)T1/2)(T1/2(10gT)3/2+ (AT)I/QM—1/12+5+A1/2T5))
+ O(T(log T)34 AT M ~1/6%= 1 AT?#).

AT + O(ATM~Y*€) 4 O(B,(M)T)
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Hence, in view of our condition (2.1),

T+A

2\)\2 1 <4(3/2> —1/12+¢
ﬁT§A(A(t )Pt = o 6 < M~Y12He

lim sup
T—o0

Since M can be chosen arbitrarily large, this completes the proof of Theo-
rem 1.

4. Proof of Theorem 2

4.1. The fourth power moment. Proof of (2.6). Again we start from the
decomposition (3.2), but with

(4.1) N = N(T) = T*° A%/,

A = A(T) satisfying the conditions of Theorem 2. Instead of (3.3) we now
use the fact that, for real functions F, G,

(4.2) §(F+G)4 _ §F4 +O<<§F4)3/4(§G4)1/4) +O<§G4).

This is immediate by Holder’s inequality. Furthermore, we shall need the
following technical tool.

LEMMA. Let 0 < d <1, and y a large real variable. Then
2Oy = Y ()T < sy,

(k,l)eN?
VE+VI-y|<d

the implied constant being absolute.

Proof. By symmetry, it suffices to estimate the corresponding sum re-
stricted to k < [. This implies that k < 1(y+0)? and [ < y*. We use a dyadic
subdivision of the k-range, putting K =27772(y +6)?, j = 1,2,... Then

(4.3) ey < Y, KyTPa(By),

K=27772(y+6)*
j=1,2,...

By :={(k,) e N : K < k < 2K, [Vk+ VI —y| <6}
Writing 1 (w) = w — [w] — 1/2, [w] the greatest integer < w, we get

#Br)< > (y—VE+6)? — [y~ Vk—6)>2)

K<k<2K

< Y (y=VE+6)*—(y—VEk—9)?)

K<k<2K

D IR (TERE ol

+ K<k<2K
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The first sum is of course <« Kyd. To bound the last sums, we note that
d2
du?

and use the simplest van der Corput estimate (see, e.g., Krétzel [8, p. 32,

Theorem 2.3]) to conclude that

#(Br) < Kys + min(K, K/2y'/3 + K3/4y=1/2),
Using this in (4.3), we obtain

1
(y = Vu£0)?) = 5 (y £ 0)u/? < K2,

2((5,1/) < Z (K1/4y71/26_i_min(Kl/zlny/Q’K71/4y77/6+y72)).
K=2"9"2(y45)>
j=1,2,...
Summing up the geometric series involved, and observing that K1/4y—3/2 <
K—1Y4~7/6 iff K < y?/3, we establish the Lemma.
To start the proof of Theorem 2, we first estimate the fourth moment of
Vt|R(t)|. The same argument which lead to (3.5) now gives

T+A T+A 1/2
| WiRW[Ydat <T? | [Rt)|*dt =24T% | |R(T + 24w)|* dw
T—A T—A —-1/2
< % T2AT? | |R(T + 24w)[*p(w) duw
R
< AT? 3 d(m)d(n)d(k)d(l)

3/4
M<m,mn,k,I<N (’I’)’L’I’Lk’l) /
[vm+v/n—VEk—V1|<1/(4A)

<AT? " (mn)¥AED(1/(44), Vm+ V).

M<mn<N

By our Lemma, this is

<A 3 ) (G )

M<mmn<N
<<T2 Z (mn)73/4+5+AT2 Z (mn)713/12+a.

1<m,n<N m,n>M
Altogether we get, recalling (4.1),

T+A
(4.4) | VIR dt < AVSTY2/5+ 4 AT2p—1/0+
T—A

for any &' > 0.
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It remains to evaluate the fourth moment of ﬂ—\\//gS (t). By the elementary
formula

cos(a) cos(b) cos(c) cos(d) = é Z cos(a+b+c+d),
+

lt fOHO\mS ‘ha‘
S() _S _54() _55() _SG()
‘[: = 3 + t —|— t —|— t s

where
d(m)d(n)d(k)d(l)
53 = Z (mnkl)3/4
1<m,n,k,lI<M
Vm/n=vk+V1
Sa(t) == Z d(m()iglsf)gjid(l) cos(4mt(v/m 4+ v/n — Vi — V1)),
SRRV

Ssy:= S AWDoY,

1<m,n,k,l<M (mnkl)3/4
d(m)d(n)d(k)d(l
Se(t)=— > (m)d(n)d(k)d(D) i+ v+ VE + VD).
(mnkl)3/4
1<m,n,k,lI<M
Tsang [13, (3.6)] already proved that
S3 = cq+ O(M 1),

on the basis of Besicovitch’s [1] result that the square roots of square-free
numbers are linearly independent over the rationals. Consequently,

T+A 4
t 1
(4.5) | ( vt > % Sydt = —> (/1T2 + §A3>c4 L O(AT2 MY/,

o2 \mV2 1674
Furthermore, by the second mean-value theorem,
T+A
d(m)d(n)d(k)d(l
| 284t dt < T* 3y y im) (n)d(k)d(l)
T-A 1<m,n,k,lI<M (mnkl) / ’\/m + \/7 - \/E - \/Z|
Vmyn#EVEHVI
< Bs(M)T?,
T+A
d(m)d(n)d(k)d(l)
t285(t) dt =
TSA 1<m7n27;7l<M (mnkl)3/4
Vmyn+VEk#EVT
T+A

x| sin(ant(vm + Vo + Vk - V1)) dt

T—-A



338 W. G. Nowak

< T? 3 d(m)d(n)d(k)d(l)
1<m,n,k <M (mnkl)3/4/m + /i + Vk — V|
VA VEAVT

< B4(M)T2’

T+A

JSF t2S6(t) dt < T? Z d(m)d(n)d(k)d(l)

=4 1<m,n,k,l<M (mnkl)3/4|\/m+\/ﬁ+\/%+\/z‘

< Bs(M)T?.

Thus, altogether,

(4.6) ij(ﬂ—@ S(t)>4dt _ 16?;4 (AT2 + §A3>C4

+ O(AT2M~Y/4+2) 4 O(Bg(M)T?).
Combining (3.2), (4.1), (4.4), and (4.6), we get, in view of (4.2),

T+A
| aw)ta=
T—A

3
1674

(AT2 + %A?)) cs + O(AT?M~YV/4+2) L O(Bg(M)T?)

+ O((A3/4T3/2 + B7(M)T3/2)(A1/20T3/5+8/ + A1/4T1/2M71/24+£'))
+ O<A1/5T12/5+e’ + ATQM*1/6+€/).
Therefore, by condition (2.3),

1 T+A 3 L/ A 9
AT? S (A(t2))4 dt — 1672 Cq (1 + g (T) >‘ < M—1/24+5 '
T—A

Since M can be chosen arbitrarily large, this completes the proof of (2.6).

lim sup
T—o0

4.2. The third power moment. Proof of (2.4). Actually, it will be rather
simple to deduce the result for the third power from the estimates on the
second and fourth power means already established. Looking back at (3.2),
we put

(4.7) H(t) := n_\\//ii S(t), R*(t):= A(t?) — H(t),
and define, for j = 2,3, 4,
T+A T+A
Hy:= | H@tydt, Rj:= | [R*(t)]dt.
Tr-A T—A

The choice (4.1) is still valid. Then it is immediate from (3.2) and (3.4),
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resp. (4.4), that
Ry < T(logT)? + ATM YT 4 A3/576/5+2¢
R, < A1/5T12/5+a/ + AT2M71/7,
with €,&’ > 0 as small as we want. Furthermore, by (3.6), resp. (4.6),
Hy < AT + B{(M)T, Hy < AT? + Bg(M)T>.

Therefore, by (4.7) and Cauchy’s inequality,

T+A
48) | (A(*)*dt — Hy < (HyRp)'/? + (HaRy)'? + (RoRy)'/?
T—A

< (AV2T 4 By(M)T)(TV?(log T)3/2 + AV2TV/2f=1/14 | g3/103/5+<)
+(AV2TY? o BQ(M)TI/Q)(A1/10T6/5+EI AV
+ (TY2(log T)¥/2 + AV2TY/2p=1/14 | g3/103/5+<)
% (A1/10T6/5+e’ +Al/2TM*1/14).

It remains to evaluate Hs. To do this, we may closely follow Tsang [13], even
with a bit of simplification. By the elementary identity

cos(a) cos(b) cos(c) = i Z cos(a £b+c),
-

it follows that
3

S(1)° = N

3 1
S7 + 2 Sg(t) + 1 So(t),

with
d(m)d(n)d(k)
(mnk)3/4 7

S7 = Z

1<mmn,k<M

o =vE
Sg(t) = Z M Cos<4ﬂ't(\/ﬁ—|— \/_ — \/E) — %)7

1<m,n,k<M (mnk)3/4
JmViEVE
So(t) := Z d(m)d(n)d(k) cos (47rt(\/r_n +Vn+VE) - %)

3/4
1<mn,k<M <mnk) /

By the analysis between formulae (2.11) and (2.12) of [13], T'sang has proved
(again on the basis of Besicovitch’s theorem [1]) that, in our notation,

S7 =c3+ O(prrs).
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Furthermore, by the second mean-value theorem,

T+A

Cotsa e d(m)d(n)d(h)
oA Lemens (mnk)PA/m /= V|
Vimty/n#EVE
< Bio(M)T3/?,
T§/‘ 131280 (¢) dt < T/? Z d(m)d(n)d(k)
_— | < h<M (mnk)3/4|/m + /n + VE|

< By (M)T3/2,

Therefore, altogether,

T+A ﬁ
m=§ (2

3
= S(t) | dt
3 (550)
I3(T) + O(AT3/2M~1F%) 4 O(Byo(M)T?/?),

o 303
1673

where I3(T) := S;J_rﬁ t3/2 dt. Combining this with (4.8) and recalling condi-
tion (2.3), we conclude that

T+A

. 3cs I3(T) _
- 2\\3 _ 3 3 1/14
(4.9) hjr}lj;p AT/ TSA(A(t )7 dt 1623 AT3/2 <M .
An easy calculation shows that
. I3(T)

as defined by (2.5). Since in (4.9), M is again arbitrary, the proof of (2.4) is
thereby complete.

5. Concluding remark. When discussing the Dirichlet divisor prob-
lem, one immediately thinks of its “twin”, the Gaussian circle problem. Let
r(n) denote the number of ways to write n > 0 as a sum of two squares; then
the “lattice point discrepancy” P(x) = > ., <, 7(n) — 7z satisfies upper
and lower estimates quite similar to those quoted for A(z) in the introduc-
tion. (See again Krétzel’s monograph [8].) Concerning results analogous to
those established above, an asymptotic formula for S;fﬁ(P(F))z dt is con-
tained in the author’s paper [9] where the case of a general planar domain
with smooth boundary of nonzero curvature is discussed. Furthermore, the

direct analogue of Theorem 2 can be deduced, for P(x), by the very same
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proof, starting from the formula

P(t2) = —ﬁ Z @ cos (47rt\/ﬁ—|— %) + O(N71/2t1+5)

3/4
n
1<n<N

(>0, N <t?).

This in turn follows on classic lines (cf. Ivi¢ [7], or Titchmarsh [11]), if we
replace the generating function (2(s) of d(n) by the Dedekind zeta-function

Cagi)(s).
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