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1. Introduction. For a real number y, let 〈y〉 denote its fractional part.
We will use L to denote the collection of Lebesgue integrable functions on
[0, 1) and M to denote the bounded measurable functions on [0, 1). Let
A be a collection of Lebesgue measurable functions on the interval [0, 1).
Following [B], [M] we say that a strictly increasing sequence (ak)∞k=1 of
natural numbers is an Â sequence if for each f in A we have

lim
k→∞

1
ak

ak∑

j=1

f(〈x+ j/ak〉) =
1�
0

f(t) dt

almost everywhere with respect to Lebesgue measure. We say that (ak)∞k=1
is an A∗ sequence if for each f in A,

lim
N→∞

1
N

N∑

k=1

f(〈akx〉) =
1�
0

f(t) dt

almost everywhere with respect to Lebesgue measure. Examples of sequences
that are both M̂ and M∗ appear in [B], [M], though the study of each class
has an independent history going back to [J] and [K] respectively. See also
[E], [S]. In this paper, in answer to a question raised in [B], we show that
ak = 22k is an L̂ sequence but not an M∗ sequence. Evidently L̂ ⊆ M̂ .

As is often the case in this subject a statement’s verification is straight-
forward given that we have isolated the right general principle, and difficult
without it. To show that an = 22k is an L̂ sequence, we recall B. Jessen’s
theorem [J].

Theorem A. Suppose that (ak)∞k=1 is a strictly increasing sequence of
natural numbers such that ak divides ak+1 for each k. Suppose also that f
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is a Lebesgue integrable function on [0, 1). Then

lim
k→∞

1
ak

ak∑

j=1

f(〈x+ j/ak〉) =
1�
0

f(t) dt

almost everywhere with respect to Lebesgue measure.

It is worthwhile to note that Jessen’s theorem is a consequence of J. L.
Doob’s decreasing martingale theorem [D]. We now show that ak = 22k is
not anM∗ sequence. Let (µN )∞N=1 denote a sequence of probability measures
on the integers. We call the sequence (µN )∞N=1 dissipative if

lim
N→∞

µN (k) = 0 for all integers k.

Suppose that we have a set X, a σ-algebra B of its subsets, and a measure
µ on X which is measurable with respect to B. Suppose that T is map from
X to itself. For A in B set T−1A = {x : Tx ∈ A}. We call the map T
measurable if T−1A is in B when A is; and we call it measure preserving
if µ(T−1A) = µ(A) for all A in B. We call the quadruple (X,B, µ, T ) a
dynamical system if it is measurable and measure preserving. A dynamical
system (X,B, µ, T ) is called ergodic if µ(A4 T−1A) = 0 implies that µ(A)
is either zero or one. Here for two sets A and B we have used A 4 B to
denote their symmetric difference.

For a sequence (µN )∞N=1 of probability measures on the integers and f
in L1(X,B, µ),

(µNf)(x) =
∞∑

k=−∞
µN (k)f(T kx) (N = 1, 2, . . .).

Given δ > 0, a sequence of probability measures (µN )∞N=1 is called δ-
sweeping out if for all ergodic dynamical systems (X,B, µ, T ) and all ε > 0
there exists E in B such that µ(E) ≤ ε and

lim sup
N→∞

µNIE(x) ≥ δ

µ-almost everywhere. Here IE denotes the indicator function of the set E.
We need the following theorem proved in [Ro].

Theorem B. Suppose that S = (bk)∞k=1 is a sequence of integers with

inf
k≥1

bk+1

bk
> 1,

and that each measure µN (N = 1, 2, . . .) has support contained in S. Then
(µN )∞N=1 is δ-sweeping out for some δ > 0.

We use this theorem by applying it to the setting where

bk = 2k (k = 1, 2, . . .),
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µN =
1
N

N∑

k=1

δbk (N = 1, 2, . . .)

for delta measures δa defined by

δa(A) =
{

1 if a ∈ A,

0 if a 6∈ A,

defined on the integers, X = [0, 1), B is the Lebesgue σ-algebra, µ is
Lebesgue measure on [0, 1) and the map T is defined by Tx = 〈2x〉. The fact
that T both preserves Lebesgue measure on [0, 1) and is ergodic is proved in
[W]. For a Lebesgue measurable set A let |A| denote its Lebesgue measure.
The upshot of this is that there exists δ > 0 such that for any ε > 0, there
exists a Lebesgue measurable set E contained in [0, 1) such that |E| < ε and

lim sup
N→∞

1
N

N∑

k=1

IE(〈22kx〉) ≥ δ > 0

almost everywhere with respect to Lebesgue measure.
Thus of course ak = 22k (k = 1, 2, . . .) is not an M∗ sequence. It would

be interesting to know if we could choose δ = 1. Evidently in the previ-
ous argument Lebesgue measurable can be replaced by Borel measurable
everywhere.

Plainly for any strictly increasing sequence (ck)∞k=1 of natural numbers,
the sequence ak = 2ck (k = 1, 2, . . .) is an L̂ sequence. Given p in [1,∞)
it is possible to give strictly increasing sequences (ck)∞k=1 of integers such
that ak = 2ck (k = 1, 2, . . .) is in (Lp)∗ but not in (Lq)∗ for any q < p.
Here Lp denotes the space of Lebesgue measurable functions on [0, 1) whose
pth powers are Lebesgue integrable. This observation relies on a result of
K. Reinhold-Larsson [RL].

Theorem C. Given p in [1,∞), there exists a strictly increasing se-
quence (ck)∞k=1 of natural numbers such that for every dynamical system
(X,B, µ, T ) and every function f in Lp(X,B, µ) there exists Cp > 0 such
that if

Mf(x) =
∣∣∣ sup
N≥1

N∑

k=1

f(T ckx)
∣∣∣,

then

µ({x ∈ X : Mf(x) > α}) ≤ Cp
αp
‖f‖p

where

‖f‖p =
( �
X

|f |p(x) dµ
)1/p

.
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Also if 1 ≤ q < p then there exists f in Lq(X,B, µ) such that

lim
N→∞

1
N

N∑

k=1

f(T ckx)

does not have a finite limit for almost all x with respect to µ.

Choosing X = [0, 1), B to be the Lebesgue σ-algebra, µ the Lebesgue
measure and Tx = 〈2x〉 and using Theorem C as before shows that ak = 2ck

(k = 1, 2, . . .) does not belong to (Lq)∗. To show that (2ck)∞k=1 is in (Lp)∗

we need to show that

lim
N→∞

1
N

N∑

k=1

f(〈2ckx〉) =
1�
0

f(t) dt

almost everywhere with respect to Lebesgue measure. By a classical theorem
of H. Weyl [Wy] this is known for continuous functions on [0, 1). Suppose
that (fn)∞n=1 is a sequence of continuous functions on [0, 1) converging to f
in Lp norm. This means that there exists a subsequence (nk)∞k=1 such that

∞∑

k=1

1�
0

|f − fnk |p(x) dx <∞,

which implies that
∞∑

k=1

|f − fnk |p(x) <∞

almost everywhere with respect to Lebesgue measure on [0, 1). Thus for
every ε > 0, there exists a sequence of functions (fε,k)∞k=1 such that

‖f − fε,k‖pp ≤ ε2k

and fε,k tends to f as k tends to infinity almost everywhere with respect to
Lebesgue measure on [0, 1). Notice that

M(f + g) ≤M(f) +M(g).

Let
Eε,k := {x ∈ [0, 1) : M(f − fε,k)(x) > εk/p}

and note from Theorem C that

µ(Eε,k) ≤ Cp
(

1
ε

)k �
Eε,k

|f − fε,k|p(x) dx ≤ Cp
(

1
ε

)k
ε2k = Cpε

k.

Let aN (f, x) denote 1
N

∑N
l=1 f(〈2clx〉). Now

aN (f, x) = aN (f − fε,kx) + aN (fε,k, x).
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This means that
∣∣∣aN (f, x)−

1�
0

f(t) dt
∣∣∣ ≤ |aN (f − fε,k, x)|+

∣∣∣aN (fε,k, x)−
1�
0

f(t) dt
∣∣∣

almost everywhere with respect to Lebesgue measure on [0, 1). Thus

lim sup
N→∞

∣∣∣aN (f, x)−
1�
0

f(t) dt
∣∣∣

≤ lim sup
N→∞

|aN (f − fε,k, x)|+
∣∣∣

1�
0

(f − fε,k)(t) dt
∣∣∣,

which is

≤M(f − fε,k)(x) +
1�
0

|f − fε,k|(t) dt.

Therefore as N tends to infinity we know that aN (f, x) tends to � 1
0 f(t) dt

for all x in Eε =
⋃∞
n=1 Eε,n. Let Bε be the null set off which fε,k tends to f

as k →∞. This means that

λ(Eε ∪Bε) ≤
∞∑

n=1

λ(Eε,k) ≤ Cp
∞∑

k=1

εk =
Cpε

1− ε .

Letting ε tend to zero shows that (2ck)∞k=1 is in (Lp)∗ for finite p.
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