On a problem of R. C. Baker

by

R. NAIR (Liverpool)

1. Introduction. For a real number y, let $\langle y \rangle$ denote its fractional part. We will use L to denote the collection of Lebesgue integrable functions on [0,1) and M to denote the bounded measurable functions on [0,1). Let \mathcal{A} be a collection of Lebesgue measurable functions on the interval [0,1). Following [B], [M] we say that a strictly increasing sequence $(a_k)_{k=1}^{\infty}$ of natural numbers is an $\widehat{\mathcal{A}}$ sequence if for each f in \mathcal{A} we have

$$\lim_{k \to \infty} \frac{1}{a_k} \sum_{j=1}^{a_k} f(\langle x+j/a_k \rangle) = \int_0^1 f(t) dt$$

almost everywhere with respect to Lebesgue measure. We say that $(a_k)_{k=1}^{\infty}$ is an \mathcal{A}^* sequence if for each f in \mathcal{A} ,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(\langle a_k x \rangle) = \int_{0}^{1} f(t) dt$$

almost everywhere with respect to Lebesgue measure. Examples of sequences that are both \widehat{M} and M^* appear in [B], [M], though the study of each class has an independent history going back to [J] and [K] respectively. See also [E], [S]. In this paper, in answer to a question raised in [B], we show that $a_k = 2^{2^k}$ is an \widehat{L} sequence but not an M^* sequence. Evidently $\widehat{L} \subseteq \widehat{M}$.

As is often the case in this subject a statement's verification is straightforward given that we have isolated the right general principle, and difficult without it. To show that $a_n = 2^{2^k}$ is an \widehat{L} sequence, we recall B. Jessen's theorem [J].

THEOREM A. Suppose that $(a_k)_{k=1}^{\infty}$ is a strictly increasing sequence of natural numbers such that a_k divides a_{k+1} for each k. Suppose also that f

²⁰⁰⁰ Mathematics Subject Classification: 11K06, 11K41, 26A42, 28D05.

 $Key\ words\ and\ phrases:$ Riemann sums, Lebesgue integrals, strong uniform distribution.

is a Lebesgue integrable function on [0, 1). Then

$$\lim_{k \to \infty} \frac{1}{a_k} \sum_{j=1}^{a_k} f(\langle x+j/a_k \rangle) = \int_0^1 f(t) dt$$

almost everywhere with respect to Lebesgue measure.

It is worthwhile to note that Jessen's theorem is a consequence of J. L. Doob's decreasing martingale theorem [D]. We now show that $a_k = 2^{2^k}$ is not an M^* sequence. Let $(\mu_N)_{N=1}^{\infty}$ denote a sequence of probability measures on the integers. We call the sequence $(\mu_N)_{N=1}^{\infty}$ dissipative if

$$\lim_{N \to \infty} \mu_N(k) = 0 \quad \text{for all integers } k.$$

Suppose that we have a set X, a σ -algebra \mathcal{B} of its subsets, and a measure μ on X which is measurable with respect to \mathcal{B} . Suppose that T is map from X to itself. For A in \mathcal{B} set $T^{-1}A = \{x : Tx \in A\}$. We call the map T measurable if $T^{-1}A$ is in \mathcal{B} when A is; and we call it measure preserving if $\mu(T^{-1}A) = \mu(A)$ for all A in \mathcal{B} . We call the quadruple (X, \mathcal{B}, μ, T) a dynamical system if it is measurable and measure preserving. A dynamical system (X, \mathcal{B}, μ, T) is called ergodic if $\mu(A \bigtriangleup T^{-1}A) = 0$ implies that $\mu(A)$ is either zero or one. Here for two sets A and B we have used $A \bigtriangleup B$ to denote their symmetric difference.

For a sequence $(\mu_N)_{N=1}^{\infty}$ of probability measures on the integers and f in $L^1(X, \mathcal{B}, \mu)$,

$$(\mu_N f)(x) = \sum_{k=-\infty}^{\infty} \mu_N(k) f(T^k x) \quad (N = 1, 2, \ldots).$$

Given $\delta > 0$, a sequence of probability measures $(\mu_N)_{N=1}^{\infty}$ is called δ sweeping out if for all ergodic dynamical systems (X, \mathcal{B}, μ, T) and all $\varepsilon > 0$ there exists E in \mathcal{B} such that $\mu(E) \leq \varepsilon$ and

$$\limsup_{N \to \infty} \mu_N I_E(x) \ge \delta$$

 μ -almost everywhere. Here I_E denotes the indicator function of the set E.

We need the following theorem proved in [Ro].

THEOREM B. Suppose that $S = (b_k)_{k=1}^{\infty}$ is a sequence of integers with

$$\inf_{k\ge 1}\frac{b_{k+1}}{b_k}>1,$$

and that each measure μ_N (N = 1, 2, ...) has support contained in S. Then $(\mu_N)_{N=1}^{\infty}$ is δ -sweeping out for some $\delta > 0$.

We use this theorem by applying it to the setting where

$$b_k = 2^k$$
 $(k = 1, 2, \ldots),$

A problem of R. C. Baker

$$\mu_N = \frac{1}{N} \sum_{k=1}^N \delta_{b_k} \quad (N = 1, 2, \ldots)$$

for delta measures δ_a defined by

$$\delta_a(A) = \begin{cases} 1 & \text{if } a \in A, \\ 0 & \text{if } a \notin A, \end{cases}$$

defined on the integers, X = [0, 1), \mathcal{B} is the Lebesgue σ -algebra, μ is Lebesgue measure on [0, 1) and the map T is defined by $Tx = \langle 2x \rangle$. The fact that T both preserves Lebesgue measure on [0, 1) and is ergodic is proved in [W]. For a Lebesgue measurable set A let |A| denote its Lebesgue measure. The upshot of this is that there exists $\delta > 0$ such that for any $\varepsilon > 0$, there exists a Lebesgue measurable set E contained in [0, 1) such that $|E| < \varepsilon$ and

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} I_E(\langle 2^{2^k} x \rangle) \ge \delta > 0$$

almost everywhere with respect to Lebesgue measure.

Thus of course $a_k = 2^{2^k}$ (k = 1, 2, ...) is not an M^* sequence. It would be interesting to know if we could choose $\delta = 1$. Evidently in the previous argument Lebesgue measurable can be replaced by Borel measurable everywhere.

Plainly for any strictly increasing sequence $(c_k)_{k=1}^{\infty}$ of natural numbers, the sequence $a_k = 2^{c_k}$ (k = 1, 2, ...) is an \widehat{L} sequence. Given p in $[1, \infty)$ it is possible to give strictly increasing sequences $(c_k)_{k=1}^{\infty}$ of integers such that $a_k = 2^{c_k}$ (k = 1, 2, ...) is in $(L^p)^*$ but not in $(L^q)^*$ for any q < p. Here L^p denotes the space of Lebesgue measurable functions on [0, 1) whose pth powers are Lebesgue integrable. This observation relies on a result of K. Reinhold-Larsson [RL].

THEOREM C. Given p in $[1, \infty)$, there exists a strictly increasing sequence $(c_k)_{k=1}^{\infty}$ of natural numbers such that for every dynamical system (X, \mathcal{B}, μ, T) and every function f in $L^p(X, \mathcal{B}, \mu)$ there exists $C_p > 0$ such that if

$$Mf(x) = \Big| \sup_{N \ge 1} \sum_{k=1}^{N} f(T^{c_k} x) \Big|,$$

then

$$\mu(\{x \in X : Mf(x) > \alpha\}) \le \frac{C_p}{\alpha^p} \|f\|_p$$

where

$$||f||_p = \left(\int_X |f|^p(x) \, d\mu\right)^{1/p}.$$

Also if $1 \leq q < p$ then there exists f in $L^q(X, \mathcal{B}, \mu)$ such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(T^{c_k} x)$$

does not have a finite limit for almost all x with respect to μ .

Choosing X = [0, 1), \mathcal{B} to be the Lebesgue σ -algebra, μ the Lebesgue measure and $Tx = \langle 2x \rangle$ and using Theorem C as before shows that $a_k = 2^{c_k}$ (k = 1, 2, ...) does not belong to $(L^q)^*$. To show that $(2^{c_k})_{k=1}^{\infty}$ is in $(L^p)^*$ we need to show that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(\langle 2^{c_k} x \rangle) = \int_{0}^{1} f(t) dt$$

almost everywhere with respect to Lebesgue measure. By a classical theorem of H. Weyl [Wy] this is known for continuous functions on [0, 1). Suppose that $(f_n)_{n=1}^{\infty}$ is a sequence of continuous functions on [0, 1) converging to fin L^p norm. This means that there exists a subsequence $(n_k)_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} \int_{0}^{1} |f - f_{n_k}|^p(x) \, dx < \infty,$$

which implies that

$$\sum_{k=1}^{\infty} |f - f_{n_k}|^p(x) < \infty$$

almost everywhere with respect to Lebesgue measure on [0, 1). Thus for every $\varepsilon > 0$, there exists a sequence of functions $(f_{\varepsilon,k})_{k=1}^{\infty}$ such that

$$\|f - f_{\varepsilon,k}\|_p^p \le \varepsilon^{2k}$$

and $f_{\varepsilon,k}$ tends to f as k tends to infinity almost everywhere with respect to Lebesgue measure on [0, 1). Notice that

$$M(f+g) \le M(f) + M(g).$$

Let

$$E_{\varepsilon,k} := \{ x \in [0,1) : M(f - f_{\varepsilon,k})(x) > \varepsilon^{k/p} \}$$

and note from Theorem C that

$$\mu(E_{\varepsilon,k}) \le C_p \left(\frac{1}{\varepsilon}\right)^k \int\limits_{E_{\varepsilon,k}} |f - f_{\varepsilon,k}|^p(x) \, dx \le C_p \left(\frac{1}{\varepsilon}\right)^k \varepsilon^{2k} = C_p \varepsilon^k.$$

Let $a_N(f, x)$ denote $\frac{1}{N} \sum_{l=1}^N f(\langle 2^{c_l} x \rangle)$. Now $a_N(f, x) = a_N(f - f_{\varepsilon,k}x) + a_N(f_{\varepsilon,k}, x).$ This means that

$$\left|a_N(f,x) - \int_0^1 f(t) \, dt\right| \le \left|a_N(f - f_{\varepsilon,k}, x)\right| + \left|a_N(f_{\varepsilon,k}, x) - \int_0^1 f(t) \, dt\right|$$

almost everywhere with respect to Lebesgue measure on [0, 1). Thus

$$\begin{split} \limsup_{N \to \infty} \left| a_N(f, x) - \int_0^1 f(t) \, dt \right| \\ & \leq \limsup_{N \to \infty} \left| a_N(f - f_{\varepsilon, k}, x) \right| + \left| \int_0^1 (f - f_{\varepsilon, k})(t) \, dt \right| \end{split}$$

which is

$$\leq M(f - f_{\varepsilon,k})(x) + \int_{0}^{1} |f - f_{\varepsilon,k}|(t) dt$$

Therefore as N tends to infinity we know that $a_N(f, x)$ tends to $\int_0^1 f(t) dt$ for all x in $E_{\varepsilon} = \bigcup_{n=1}^{\infty} E_{\varepsilon,n}$. Let B_{ε} be the null set off which $f_{\varepsilon,k}$ tends to f as $k \to \infty$. This means that

$$\lambda(E_{\varepsilon} \cup B_{\varepsilon}) \le \sum_{n=1}^{\infty} \lambda(E_{\varepsilon,k}) \le C_p \sum_{k=1}^{\infty} \varepsilon^k = \frac{C_p \varepsilon}{1-\varepsilon}.$$

Letting ε tend to zero shows that $(2^{c_k})_{k=1}^{\infty}$ is in $(L^p)^*$ for finite p.

References

- [B] R. C. Baker, *Riemann sums and Lebesgue integrals*, Quart. J. Math. Oxford Ser.
 (2) 27 (1976), 191–198.
- [D] J. L. Doob, Stochastic Processes, Wiley, 1953.
- [E] P. Erdős, On the strong law of large numbers, Trans. Amer. Math. Soc. 67 (1949), 51–56.
- B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. (2) 35 (1934), 248–251.
- [K] A. Khinchin, Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math.
 Z. 18 (1923), 289–306.
- [M] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. 21 (1970), 540–556.
- $\begin{array}{ll} [RL] & \text{K. Reinhold-Larsson, Discrepancy of behaviour of perturbed sequences in L^{p} spaces,} \\ & \text{Proc. Amer. Math. Soc. 120 (1994), 865-874.} \end{array}$
- [Ro] J. Rosenblatt, Universally bad sequences in ergodic theory, in: Almost Everywhere Convergence II, Academic Press, 1991, 227–245.
- R. Salem, Sur les sommes Riemanniennes des fonctions sommables, Mat. Tidsskr. B. 1948, 60–62.
- [W] P. Walters, Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, 1981.

R. Nair

[Wy] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.

Mathematical Sciences University of Liverpool Liverpool L69 7ZL, U.K. E-mail: nair@liverpool.ac.uk

> Received on 12.4.2002 and in revised form on 17.9.2002

(4258)

348