On a problem of R. C. Baker

by

R. NAIR (Liverpool)

1. Introduction. For a real number y, let $\langle y\rangle$ denote its fractional part. We will use L to denote the collection of Lebesgue integrable functions on $[0,1)$ and M to denote the bounded measurable functions on $[0,1)$. Let \mathcal{A} be a collection of Lebesgue measurable functions on the interval $[0,1)$. Following [B], [M] we say that a strictly increasing sequence $\left(a_{k}\right)_{k=1}^{\infty}$ of natural numbers is an $\widehat{\mathcal{A}}$ sequence if for each f in \mathcal{A} we have

$$
\lim _{k \rightarrow \infty} \frac{1}{a_{k}} \sum_{j=1}^{a_{k}} f\left(\left\langle x+j / a_{k}\right\rangle\right)=\int_{0}^{1} f(t) d t
$$

almost everywhere with respect to Lebesgue measure. We say that $\left(a_{k}\right)_{k=1}^{\infty}$ is an \mathcal{A}^{*} sequence if for each f in \mathcal{A},

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(\left\langle a_{k} x\right\rangle\right)=\int_{0}^{1} f(t) d t
$$

almost everywhere with respect to Lebesgue measure. Examples of sequences that are both \widehat{M} and M^{*} appear in $[\mathrm{B}],[\mathrm{M}]$, though the study of each class has an independent history going back to $[\mathrm{J}]$ and $[\mathrm{K}]$ respectively. See also $[\mathrm{E}],[\mathrm{S}]$. In this paper, in answer to a question raised in [B], we show that $a_{k}=2^{2^{k}}$ is an \widehat{L} sequence but not an M^{*} sequence. Evidently $\widehat{L} \subseteq \widehat{M}$.

As is often the case in this subject a statement's verification is straightforward given that we have isolated the right general principle, and difficult without it. To show that $a_{n}=2^{2^{k}}$ is an \widehat{L} sequence, we recall B. Jessen's theorem [J].

Theorem A. Suppose that $\left(a_{k}\right)_{k=1}^{\infty}$ is a strictly increasing sequence of natural numbers such that a_{k} divides a_{k+1} for each k. Suppose also that f

[^0]is a Lebesgue integrable function on $[0,1)$. Then
$$
\lim _{k \rightarrow \infty} \frac{1}{a_{k}} \sum_{j=1}^{a_{k}} f\left(\left\langle x+j / a_{k}\right\rangle\right)=\int_{0}^{1} f(t) d t
$$
almost everywhere with respect to Lebesgue measure.
It is worthwhile to note that Jessen's theorem is a consequence of J. L. Doob's decreasing martingale theorem [D]. We now show that $a_{k}=2^{2^{k}}$ is not an M^{*} sequence. Let $\left(\mu_{N}\right)_{N=1}^{\infty}$ denote a sequence of probability measures on the integers. We call the sequence $\left(\mu_{N}\right)_{N=1}^{\infty}$ dissipative if
$$
\lim _{N \rightarrow \infty} \mu_{N}(k)=0 \quad \text { for all integers } k
$$

Suppose that we have a set X, a σ-algebra \mathcal{B} of its subsets, and a measure μ on X which is measurable with respect to \mathcal{B}. Suppose that T is map from X to itself. For A in \mathcal{B} set $T^{-1} A=\{x: T x \in A\}$. We call the map T measurable if $T^{-1} A$ is in \mathcal{B} when A is; and we call it measure preserving if $\mu\left(T^{-1} A\right)=\mu(A)$ for all A in \mathcal{B}. We call the quadruple (X, \mathcal{B}, μ, T) a dynamical system if it is measurable and measure preserving. A dynamical system (X, \mathcal{B}, μ, T) is called ergodic if $\mu\left(A \triangle T^{-1} A\right)=0$ implies that $\mu(A)$ is either zero or one. Here for two sets A and B we have used $A \triangle B$ to denote their symmetric difference.

For a sequence $\left(\mu_{N}\right)_{N=1}^{\infty}$ of probability measures on the integers and f in $L^{1}(X, \mathcal{B}, \mu)$,

$$
\left(\mu_{N} f\right)(x)=\sum_{k=-\infty}^{\infty} \mu_{N}(k) f\left(T^{k} x\right) \quad(N=1,2, \ldots)
$$

Given $\delta>0$, a sequence of probability measures $\left(\mu_{N}\right)_{N=1}^{\infty}$ is called δ sweeping out if for all ergodic dynamical systems (X, \mathcal{B}, μ, T) and all $\varepsilon>0$ there exists E in \mathcal{B} such that $\mu(E) \leq \varepsilon$ and

$$
\limsup _{N \rightarrow \infty} \mu_{N} I_{E}(x) \geq \delta
$$

μ-almost everywhere. Here I_{E} denotes the indicator function of the set E.
We need the following theorem proved in [Ro].
Theorem B. Suppose that $S=\left(b_{k}\right)_{k=1}^{\infty}$ is a sequence of integers with

$$
\inf _{k \geq 1} \frac{b_{k+1}}{b_{k}}>1
$$

and that each measure $\mu_{N}(N=1,2, \ldots)$ has support contained in S. Then $\left(\mu_{N}\right)_{N=1}^{\infty}$ is δ-sweeping out for some $\delta>0$.

We use this theorem by applying it to the setting where

$$
b_{k}=2^{k} \quad(k=1,2, \ldots)
$$

$$
\mu_{N}=\frac{1}{N} \sum_{k=1}^{N} \delta_{b_{k}} \quad(N=1,2, \ldots)
$$

for delta measures δ_{a} defined by

$$
\delta_{a}(A)= \begin{cases}1 & \text { if } a \in A \\ 0 & \text { if } a \notin A\end{cases}
$$

defined on the integers, $X=[0,1), \mathcal{B}$ is the Lebesgue σ-algebra, μ is Lebesgue measure on $[0,1)$ and the map T is defined by $T x=\langle 2 x\rangle$. The fact that T both preserves Lebesgue measure on $[0,1)$ and is ergodic is proved in [W]. For a Lebesgue measurable set A let $|A|$ denote its Lebesgue measure. The upshot of this is that there exists $\delta>0$ such that for any $\varepsilon>0$, there exists a Lebesgue measurable set E contained in $[0,1)$ such that $|E|<\varepsilon$ and

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} I_{E}\left(\left\langle 2^{2^{k}} x\right\rangle\right) \geq \delta>0
$$

almost everywhere with respect to Lebesgue measure.
Thus of course $a_{k}=2^{2^{k}}(k=1,2, \ldots)$ is not an M^{*} sequence. It would be interesting to know if we could choose $\delta=1$. Evidently in the previous argument Lebesgue measurable can be replaced by Borel measurable everywhere.

Plainly for any strictly increasing sequence $\left(c_{k}\right)_{k=1}^{\infty}$ of natural numbers, the sequence $a_{k}=2^{c_{k}}(k=1,2, \ldots)$ is an \widehat{L} sequence. Given p in $[1, \infty)$ it is possible to give strictly increasing sequences $\left(c_{k}\right)_{k=1}^{\infty}$ of integers such that $a_{k}=2^{c_{k}}(k=1,2, \ldots)$ is in $\left(L^{p}\right)^{*}$ but not in $\left(L^{q}\right)^{*}$ for any $q<p$. Here L^{p} denotes the space of Lebesgue measurable functions on $[0,1)$ whose p th powers are Lebesgue integrable. This observation relies on a result of K. Reinhold-Larsson [RL].

Theorem C. Given p in $[1, \infty)$, there exists a strictly increasing sequence $\left(c_{k}\right)_{k=1}^{\infty}$ of natural numbers such that for every dynamical system (X, \mathcal{B}, μ, T) and every function f in $L^{p}(X, \mathcal{B}, \mu)$ there exists $C_{p}>0$ such that if

$$
M f(x)=\left|\sup _{N \geq 1} \sum_{k=1}^{N} f\left(T^{c_{k}} x\right)\right|
$$

then

$$
\mu(\{x \in X: M f(x)>\alpha\}) \leq \frac{C_{p}}{\alpha^{p}}\|f\|_{p}
$$

where

$$
\|f\|_{p}=\left(\int_{X}|f|^{p}(x) d \mu\right)^{1 / p}
$$

Also if $1 \leq q<p$ then there exists f in $L^{q}(X, \mathcal{B}, \mu)$ such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{c_{k}} x\right)
$$

does not have a finite limit for almost all x with respect to μ.
Choosing $X=[0,1), \mathcal{B}$ to be the Lebesgue σ-algebra, μ the Lebesgue measure and $T x=\langle 2 x\rangle$ and using Theorem C as before shows that $a_{k}=2^{c_{k}}$ $(k=1,2, \ldots)$ does not belong to $\left(L^{q}\right)^{*}$. To show that $\left(2^{c_{k}}\right)_{k=1}^{\infty}$ is in $\left(L^{p}\right)^{*}$ we need to show that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(\left\langle 2^{c_{k}} x\right\rangle\right)=\int_{0}^{1} f(t) d t
$$

almost everywhere with respect to Lebesgue measure. By a classical theorem of H. Weyl [Wy] this is known for continuous functions on $[0,1)$. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of continuous functions on $[0,1)$ converging to f in L^{p} norm. This means that there exists a subsequence $\left(n_{k}\right)_{k=1}^{\infty}$ such that

$$
\sum_{k=1}^{\infty} \int_{0}^{1}\left|f-f_{n_{k}}\right|^{p}(x) d x<\infty
$$

which implies that

$$
\sum_{k=1}^{\infty}\left|f-f_{n_{k}}\right|^{p}(x)<\infty
$$

almost everywhere with respect to Lebesgue measure on $[0,1)$. Thus for every $\varepsilon>0$, there exists a sequence of functions $\left(f_{\varepsilon, k}\right)_{k=1}^{\infty}$ such that

$$
\left\|f-f_{\varepsilon, k}\right\|_{p}^{p} \leq \varepsilon^{2 k}
$$

and $f_{\varepsilon, k}$ tends to f as k tends to infinity almost everywhere with respect to Lebesgue measure on $[0,1)$. Notice that

$$
M(f+g) \leq M(f)+M(g)
$$

Let

$$
E_{\varepsilon, k}:=\left\{x \in[0,1): M\left(f-f_{\varepsilon, k}\right)(x)>\varepsilon^{k / p}\right\}
$$

and note from Theorem C that

$$
\mu\left(E_{\varepsilon, k}\right) \leq C_{p}\left(\frac{1}{\varepsilon}\right)^{k} \int_{E_{\varepsilon, k}}\left|f-f_{\varepsilon, k}\right|^{p}(x) d x \leq C_{p}\left(\frac{1}{\varepsilon}\right)^{k} \varepsilon^{2 k}=C_{p} \varepsilon^{k}
$$

Let $a_{N}(f, x)$ denote $\frac{1}{N} \sum_{l=1}^{N} f\left(\left\langle 2^{c_{l}} x\right\rangle\right)$. Now

$$
a_{N}(f, x)=a_{N}\left(f-f_{\varepsilon, k} x\right)+a_{N}\left(f_{\varepsilon, k}, x\right)
$$

This means that

$$
\left|a_{N}(f, x)-\int_{0}^{1} f(t) d t\right| \leq\left|a_{N}\left(f-f_{\varepsilon, k}, x\right)\right|+\left|a_{N}\left(f_{\varepsilon, k}, x\right)-\int_{0}^{1} f(t) d t\right|
$$

almost everywhere with respect to Lebesgue measure on $[0,1)$. Thus

$$
\begin{aligned}
& \limsup _{N \rightarrow \infty}\left|a_{N}(f, x)-\int_{0}^{1} f(t) d t\right| \\
& \quad \leq \limsup _{N \rightarrow \infty}\left|a_{N}\left(f-f_{\varepsilon, k}, x\right)\right|+\left|\int_{0}^{1}\left(f-f_{\varepsilon, k}\right)(t) d t\right|
\end{aligned}
$$

which is

$$
\leq M\left(f-f_{\varepsilon, k}\right)(x)+\int_{0}^{1}\left|f-f_{\varepsilon, k}\right|(t) d t
$$

Therefore as N tends to infinity we know that $a_{N}(f, x)$ tends to $\int_{0}^{1} f(t) d t$ for all x in $E_{\varepsilon}=\bigcup_{n=1}^{\infty} E_{\varepsilon, n}$. Let B_{ε} be the null set off which $f_{\varepsilon, k}$ tends to f as $k \rightarrow \infty$. This means that

$$
\lambda\left(E_{\varepsilon} \cup B_{\varepsilon}\right) \leq \sum_{n=1}^{\infty} \lambda\left(E_{\varepsilon, k}\right) \leq C_{p} \sum_{k=1}^{\infty} \varepsilon^{k}=\frac{C_{p} \varepsilon}{1-\varepsilon} .
$$

Letting ε tend to zero shows that $\left(2^{c_{k}}\right)_{k=1}^{\infty}$ is in $\left(L^{p}\right)^{*}$ for finite p.

References

[B] R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), 191-198.
[D] J. L. Doob, Stochastic Processes, Wiley, 1953.
[E] P. Erdős, On the strong law of large numbers, Trans. Amer. Math. Soc. 67 (1949), 51-56.
[J] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. (2) 35 (1934), 248-251.
[K] A. Khinchin, Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math. Z. 18 (1923), 289-306.
[M] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. 21 (1970), 540-556.
[RL] K. Reinhold-Larsson, Discrepancy of behaviour of perturbed sequences in L^{p} spaces, Proc. Amer. Math. Soc. 120 (1994), 865-874.
[Ro] J. Rosenblatt, Universally bad sequences in ergodic theory, in: Almost Everywhere Convergence II, Academic Press, 1991, 227-245.
[S] R. Salem, Sur les sommes Riemanniennes des fonctions sommables, Mat. Tidsskr. B. 1948, 60-62.
[W] P. Walters, Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, 1981.
[Wy] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Mathematical Sciences
University of Liverpool
Liverpool L69 7ZL, U.K.
E-mail: nair@liverpool.ac.uk

Received on 12.4.2002
and in revised form on 17.9.2002

[^0]: 2000 Mathematics Subject Classification: 11K06, 11K41, 26A42, 28D05.
 Key words and phrases: Riemann sums, Lebesgue integrals, strong uniform distribution.

