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1. Introduction. Given q, a power of a prime p, denote by F the finite
field GF(q) of order q and, for a given positive integer n, by E its extension
GF(qn) of degree n. A primitive element of E is a generator of the cyclic
group E∗. Additively too, the extension E is cyclic when viewed as an FG-
module, G being the Galois group of E over F , and a generator is called a
free element of E over F . The core result linking additive and multiplicative
structure—the primitive normal basis theorem—is that there exists α ∈ E,
simultaneously primitive and free over F . Existence of such an element for
every extension was demonstrated by Lenstra and Schoof [9] (completing
work by Carlitz ([1], [2]) and Davenport [7]). A computer-free proof of the
primitive normal basis theorem is given in [6].

The result of the primitive normal basis theorem has been extended by
Cohen and Hachenberger in two directions. In [4], it was shown that, given
an arbitrary non-zero element a ∈ F , there exists a primitive element ω
of E, free over F , such that ω has (E,F )-trace a in F , i.e. TrE/F (w) :=∑n−1

i=0 ω
qi = a. Further, in [5] it was shown that, given an arbitrary prim-

itive element b of F , there exists a primitive element ω of E, free over F ,
with (E,F )-norm b in F , i.e. NE/F (w) :=

∏n−1
i=1 ω

qi = ω(qn−1)/(q−1)

= b.
In [5], Cohen and Hachenberger posed the following question, known as

the PFNT problem. (A similar description of the above problems would be
as PFT, PFN respectively.)

Problem 1.1. Given a finite extension E/F of Galois fields, a primitive
element b in F and a non-zero element a in F , does there exist a primitive
element w ∈ E, free over F , whose (E,F )-norm and trace equal b and a
respectively? If so for each pair (a, b), then the pair (q, n) corresponding to
E/F is called a PFNT-pair.
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In [3], Cohen showed (Theorem 1.1) that, for n ≥ 5, every pair (q, n) is
a PFNT-pair.

Theorem 1.2. Let q be a prime power and n ≥ 5 an integer. Then
(q, n) is a PFNT-pair.

Note that, since w is effectively specified by its trace and norm for n ≤ 2,
we may suppose n ≥ 3 for the problem to be meaningful. Since resolving
the PFNT problem in the affirmative is equivalent to demonstrating the
existence of a primitive free polynomial of degree n with two coefficients
fixed, the cases with n small (i.e. n = 3, 4) are clearly the most challenging to
tackle since the corresponding polynomials have fewest “degrees of freedom”.
In [3] it was suggested that the n = 4 case was soluble in principle by the
methods outlined in the paper, whereas it might be impractical to expect any
progress on the n = 3 case. In what follows, we solve the PFNT problem for
n = 4, by identifying sets of elements whose cardinalities can be estimated
with particular accuracy and using a sieving technique (on both the additive
and multiplicative parts) designed to exploit these new estimates.

Theorem 1.3. Let q be a prime power and n ≥ 4 an integer. Then (q, n)
is a PFNT-pair.

The basic technique ([5]) of expressing the number of elements with the
desired properties in terms of Gauss sums over E yields, if applied directly,
estimates in terms of the numbers of prime factors of qn− 1 and irreducible
factors of xn − 1. This establishes the result for large n but is inadequate
when n is small. In [3], use of a sieve on both the additive and multiplica-
tive parts produces an expression in terms of the numbers of prime (resp.
irreducible) factors of divisors of qn − 1 (resp. xn − 1), which are estimated
as previously; this approach is more successful in dealing with small n but
remains inappropriate for n < 5. The novel aspects of the approach to the
PFNT problem which we take in this paper are our exploitation of the id-
iosyncrasies of the situation when n = 4, and the use of “external” results
to estimate appropriate quantities (i.e. we no longer depend exclusively on
the estimates derived from the initial Gauss sum formulation).

It transpires that when applying the sieve in the n = 4 case, it is sufficient
to consider only linear factors of xn− 1; specialising to the linear case when
deriving the estimates allows improved precision (an extra G1 term can be
extracted and properties of additive characters with linear F -order can be
used). Results from [8] provide estimates for the multiplicative quantities in
the sieve which show an improvement, by a factor of q1/2, on the estimates
from Gauss sums obtained from [3]. The structure of the problem and the
nature of our estimates then determine the optimal sieving approach, which
is to treat the additive and multiplicative parts separately within the sieve,
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and to take the linear factors of xn − 1 individually. Applying this general
strategy with a degree of flexibility (varying the choice of multiplicative
divisors in the sieve and using some simplifying approximations which are
once again specific to the n = 4 case) establishes the result for all odd
q, with three exceptions. Finally, the exceptions are dealt with using the
computer package MAPLE. For q a power of 2, the PFNT property follows
from a solution of the non-zero PNT problem (in the obvious sense). This
is treated in the final section: here there are two further values of q which
must be dealt with numerically.

2. Preliminaries. We begin by making some reductions to the problem,
and formulating the basic theory. The account will be as self-contained as
possible, but to avoid excessive repetition, reference will be made to earlier
work where appropriate.

By Proposition 4.1 of [5], which states that (q, n) is a PFNT-pair when-
ever q − 1 divides n, we may assume that q > 2. In fact, in the n = 4
case, this proposition establishes the result for q = 2, 3 and 5; so with the
exception of q = 4 we may assume q ≥ 7.

From now on, suppose that a, b ∈ F , with a 6= 0 and b a primitive
element, are given.

Let m = m(q, n) be the greatest divisor of qn−1 that is relatively prime
to q− 1 (so in particular m

∣∣ qn−1
(q−1)(n,q−1) . In [3] it was demonstrated that, if

w ∈ E has (E,F )-norm b, then to guarantee that w is primitive it suffices
to show that w is m-free in E (i.e. that w = vd, where v ∈ E and d |m,
implies d = 1).

Analogously for the additive part: let M = M(q, n) be the monic divisor
of xn − 1 (over F ) of maximal degree that is prime to x − 1. So M =
(xn − 1)/(xp

l − 1) where n = n0p
l, p = charF and p -n0. It was shown in

[3] that, if w ∈ E has (non-zero) (E,F )-trace a, then to guarantee that w
is free over F it suffices to show that w is M -free in E (i.e. that w = hσ(v),
where v ∈ E and h is an F -divisor of M , implies h = 1).

Define N(t, T ) to be the number of elements of E which

(i) are t-free (t ∈ Z, t |m),
(ii) are T -free (T (x) ∈ F [x], T |xn − 1),

(iii) have norm b,
(iv) have trace a.

Write π(t, T ) for q(q − 1)N(t, T ).
We begin by expressing the characteristic functions of the four subsets

of E (or E∗) defined by the conditions (i)–(iv) in terms of characters on E
or F .

We suppose throughout that t |m, T |xn − 1.
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I. The set of w ∈ E∗ with NE/F (w) = b. The characteristic function of
the subset of E∗ comprising elements with norm b is

1
q − 1

∑

ν∈F̂ ∗
ν(N(w)b−1),

where F̂ ∗ denotes the group of multiplicative characters of F ∗, and NE/F is
abbreviated to N .

II. The set of w ∈ E∗ with TrE/F (w) = a. The characteristic function
of the subset of E comprising elements with trace a is

1
q

∑

c∈F
λ(c(Tr(w)− a)),

where λ is the canonical additive character of F and TrE/F is abbreviated
to Tr.

III. The set of w ∈ E∗ that are t-free. The characteristic function for
the subset of t-free elements (t |m) of E∗ is

θ(t)
�

d|t
ηd(w), w ∈ E∗,

where θ(t) = φ(t)/t, ηd denotes a character of order d (d |m) in Ê∗ and,
using the notation introduced in [3], the integral notation is shorthand for
a weighted sum:

�

d|t
ηd :=

∑

d|t

µ(d)
φ(d)

∑

(d)

ηd.

IV. The set of w ∈ E that are T -free over F . The characteristic function
of the set of T -free elements of E takes the form

Θ(T )
�

D|T
χδD(w), w ∈ E,

where Θ(T ) = Φ(T )/T , χ is the canonical additive character on E and, as
defined in [3], {χδD : δD ∈ ∆D} (where χδ(w) := χ(δw), w ∈ E) is the set
of all additive characters of E of order D (D |xn − 1). Again, the integral
notation represents a weighted sum:

�

D|T
χδD :=

∑

D|T

µ(D)
Φ(D)

∑

(δD)

χδD .

Using these characteristic functions, we derive the following expression
for π(t, T ):

(2.1) π(t, T ) = θ(t)Θ(T )
�

d|t

�

D|T

∑

ν∈F̂ ∗

∑

c∈F
ν(b)λ(ac)

∑

w∈E
(ηdν̃)(w)χ((δD+c)w)

where ν̃(w) = ν(N(w)) and χ(cw) = λ(cTr(w)) (cf. [3, (2.2)]).
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We shall now specialise to the case when n = 4. Observe that, if p |n,
then q = 2k where k ≥ 2; in this case M = 1 and the PFNT problem reduces
to the PNT problem (where the specified trace is non-zero). This takes a
simpler form than the PFNT problem due to the absence of an additive
component; we shall consider the p = 2 case in the final section. Hence in
the main part of the paper (in particular in those sections dealing with the
additive part of the problem) we may assume that p = charF -n, i.e. q is
odd. With n equal to 4 and q odd,

m

∣∣∣∣
(q + 1)(q2 + 1)

4
and M =

x4 − 1
x− 1

.

More precisely, if q ≡ 1 (mod 4), then

m =
(
q + 1

2

)(
q2 + 1

2

)
and M = (x+ 1)(x− i)(x+ i)

(where i ∈ F is such that i2 = −1); while if q ≡ 3 (mod 4), then

m

∣∣∣∣
(
q + 1

4

)(
q2 + 1

2

)
and M = (x+ 1)(x2 + 1).

Note that in both cases q2+1
2

∣∣m. Our strategy for proving the PFNT prob-
lem for n = 4 is to apply a sieving technique which treats the additive
and multiplicative parts separately. In the next two sections, we establish
estimates for π(1, L) (L a linear factor of M) and π(t, 1) (t |m).

3. Estimates for linear polynomial factors. In this section, we de-
rive estimates for the numberN(1, L) of L-free elements of E with prescribed
norm and trace, where L is a linear divisor of M . (We assume that q is an
odd prime power.)

For economy of calculation, it is in fact desirable to consider the differ-
ence between π(1, L) and θ(L)π(1, 1) (in some sense the “error term”). We
will prove the following lemma, whose bounds will play a key role in our
sieve. (As will be shown later, it is sufficient to obtain bounds for only those
factors of x4 − 1 which are linear over F .)

Lemma 3.1. (i) When q ≡ 1 (mod 4),

(3.1) |π(1, x+ 1) + π(1, x+ i) + π(1, x− i)− 3(1− 1/q)π(1, 1)|
< q3(3− 11/q)(1 + 1/

√
q).

(ii) When q ≡ 3 (mod 4),

|π(1, x+ 1)− (1− 1/q)π(1, 1)| ≤ q3(1− 3/q)(1 + 1/
√
q).(3.2)

These bounds represent an improvement by a factor of order q1/2 over
those derivable from Theorem 2.1 of [3].
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Denote by L a linear factor of M ; L may take the value x+ 1 or, in the
case when q ≡ 1 (mod 4), the values x± i.

First, we establish some results about δL. For a polynomial f(x), let fσ

denote the polynomial obtained from f by replacing xi by xq
i
.

Lemma 3.2. (i) If D |xn/k − 1 (k |n), then δD is a root of (xn/k − 1)σ,
i.e. δD ∈ GF(qn/k).

(ii) If D |xn/k + 1 (k |n), then δD is a root of (xn/k + 1)σ, i.e. δq
n/k

D =
−δD.

Proof. (i) Set R = qn/k. So for the canonical character χ1 of E, χ1(w) =
λ(TrRk/p(w)) (w ∈ E), where λ(x) = e2πix/p and TrGF(Rk)/GF(p) is abbrevi-
ated to TrRk/p. Let χ(w) = χδ(w) = λ(TrRk/p(δw)) and suppose δ ∈ GF(R),
so δR = δ. Then

χ(wR) = λ(TrRk/p(δw
R)) = λ(TrR/p(TrRk/R(δRwR)))

= λ(TrR/p(TrRk/R(δw))) = λ(TrRk/p(δw)) = χ(w).

Hence χ(wR−w) = 1 for all w ∈ E. So for any D |xn/k− 1, i.e. Dσ |xR−x,
χδ(Dσ(w)) = 1. Thus δ = δD for some D |xn/k−1. Letting δ vary in GF(R)
accounts for all R characters of order dividing xn/k − 1.

(ii) Suppose δ is a root of xq
n/k

+ x, so δR = −δ. Proceed as in part (i).

Lemma 3.3. Suppose q ≡ 1 (mod 4), and let i ∈ GF(q) be such that
i2 = −1.

(i) Let D = x+ i. Then (x− i)σ(δD) = 0, i.e. δqD = iδD.
(ii) Let D = x− i. Then (x+ i)σ(δD) = 0, i.e. δqD = −iδD.

Proof. (i) Suppose δq = iδ. Define χ(w) = χ1(δw) = λ(Trq4/p(δw)),
w ∈ E = Fq4 . Then

χ(wq + iw) = λ(Trq/p[Trq4/q(δ(w
q + iw))])

= λ(Trq/p[Trq4/q(−i((δw)q − δw))])

= λ(Trq/p[−iTrq4/q((δw)q − δw)]) = 1,

since Trq4/q((δw)q− δw) ≡ 0. So the F -order of χ is x+ i. This accounts for
all characters with F -order x+ i.

(ii) Replace i by −i in (i).

We are now ready to prove Lemma 3.1. Throughout this discussion,
Gn(ν) (where ν is a multiplicative character on F∗qn) will denote a Gauss
sum in F∗qn . We will use the notation Ja(ν1, . . . , νk) (where a ∈ F , ν1, . . . , νk
are multiplicative characters of F , k ∈ N) to denote the Jacobi sum
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∑

c1+...+ck=a

ν1(c1) . . . νk(ck).

For extra background material, the reader may consult texts such as [10].

Proof of Lemma 3.1. By equation (2.1), since Θ(L) = 1− 1/q,

(3.3) π(1, L)−Θ(L)π(1, 1)

= Θ(L)
(
− 1
q − 1

) ∑

ν∈F̂ ∗

∑

c∈F

∑

(δL)

ν(b)λ(ac)
∑

w∈E
ν̃(w)χ((δL + c)w),

where δL runs through all Φ(L) elements of ∆L (i.e. χδL runs through all
additive characters of E of order L). Separating the term for which c = 0,
we have

(3.4) π(1, L)−Θ(L)π(1, 1)

= − 1
q

( ∑

ν∈F̂ ∗

∑

(δL)

ν(b)
∑

w∈E
ν̃(w)χ(δLw)

+
∑

ν∈F̂ ∗

∑

c∈F ∗

∑

(δL)

ν(b)λ(ac)
∑

w∈E
ν̃(w)χ((δL + c)w)

)
.

For the first term on the right side of (3.4), using the fact that δL 6= 0,
replace w by w/δL to obtain

∑

ν∈F̂ ∗
ν(1/b)G4(ν̃)

∑

(δL)

ν̃(δL).

Since F ∗∆D = ∆D,
∑

(δL)

ν̃(δL) =
1

q − 1

∑

(δL)

∑

c∈F ∗
ν̃(cδL) =

1
q − 1

∑

(δL)

ν̃(δL)
( ∑

c∈F ∗
ν̃(c)

)

and the inner sum equals 0 unless ν∗ (:= ν̃|F ) is trivial, when it equals q−1.
Note that, for k ∈ F , ν∗(k) = ν̃(k) = ν(N(k)) = ν(k4), i.e. ν∗ = ν4. So the
first term of (3.4) can be simplified to

∑

ν∈F̂ ∗
ν4=ν1

∑

(δL)

ν(1/b)G4(ν̃)ν̃(δL).

For the second term on the right side of (3.4) (i.e. the part for which
c 6= 0), replace δL by cδL, then w by w/(c(δL + 1)) to get

∑

ν∈F̂ ∗
ν(1/b)G4(ν̃)

∑

(δL)

ν̃(δL + 1)
∑

c∈F ∗
λ(ac)ν̃(c).

Consider the inner sum
∑

c∈F ∗ λ(ac)ν̃(c). In the case when ν4 = ν1, this
reduces to a sum over additive characters of F , while for ν4 6= ν1, a Gauss
sum over F is obtained. Thus the second term of (3.4) may be expanded as
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−
∑

ν∈F̂ ∗
ν4=ν1

ν(1/b)G4(ν̃)
∑

(δL)

ν̃(δL + 1)

+
∑

ν∈F̂ ∗
ν4 6=ν1

ν∗(a)ν(1/b)G4(ν̃)G1(ν∗)
∑

(δL)

ν̃(δL + 1).

Hence,

(3.5) π(1, L)−Θ(L)π(1, 1)

= − 1
q

( ∑

ν∈F̂ ∗
ν4 6=ν1

ν(a4/b)G4(ν̃)G1(ν∗)
(∑

(δL)

ν̃(δL + 1)
)

+
∑

ν∈F̂ ∗
ν4=ν1
ν 6=η1

ν(1/b)G4(ν̃)
∑

(δL)

(ν̃(δL)− ν̃(δL + 1))
)

=
1
q

( ∑

ν∈F̂ ∗
ν4 6=ν1

∑

(δL)

ν(a4/b)ν(N(δL + 1))G1(ν4)G4
1(ν)

+
∑

ν∈F̂ ∗
ν4=ν1
ν 6=ν1

ν(1/b)G4
1(ν)

∑

(δL)

[ν(N(δL))− ν(N(δL + 1))]
)

since G4(ν̃) = −G4
1(ν) by the Davenport–Hasse Theorem ([10, Theorem

5.14]).
We shall consider the various specific values that may be taken by L in

(3.5); we begin by assuming that L = x+1. By Lemma 3.2, δqL = −δL. Hence
δ2
L = c, where c is a non-square in F . Indeed, {δL} = {±√c: c a non-square

in F}, a set of cardinality q − 1 as required. Moreover, {δL} = {1/δL}.
Hence N(δL) = c2, while N(1 + δL) = (1 + δL)(1 + δqL)(1 + δq

2

L )(1 + δq
3

L ) =
(1 + δL)2(1− δL)2 = (1− c)2.

Writing ν2 for the quadratic character on F , we have

π(1, x+ 1)− (1− 1/q)π(1, 1)

=
1
q

( ∑

ν∈F̂ ∗
ν4 6=ν1

ν(a4/b)G1(ν4)G4
1(ν)

∑

c∈F ∗
(1− ν2(c))ν((1− c)2)

+
∑

ν∈F ∗
ν4=ν1
ν 6=ν1

ν(1/b)G4
1(ν)

∑

c∈F ∗
(1− ν2(c))(ν(c2)− ν((1− c)2))

)

=
1
q
{S1 + S2}, say.
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The quadratic character satisfies the condition “ν4 = ν1, ν 6= ν1”, but
contributes zero to S2. In particular, when q ≡ 3 (mod 4), there are no
further contributions, whence S2 = 0.

In the case when q ≡ 1 (mod 4), there are also two characters of degree 4,
which (may) give non-zero contributions. Thus

S2 = −
∑

ν∈F̂ ∗
ord ν=4

ν(1/b)G4
1(ν)

( ∑

c∈F̂ ∗
(1− ν2(c))(1 + ν2

4(1− c))
)
,

since only non-square c ∈ F ∗ contribute to the inner sum. The latter has
the form∑

c∈F ∗
(1− ν2(c) + ν2

4(1− c)− ν2(c)ν2
4(1− c))

= (q − 1)−
∑

c∈F ∗
ν2(c) +

∑

c∈F ∗
ν2(1− c)−

∑

c∈F ∗
ν2(c)ν2(1− c)

= (q − 1)− 0 + (0− 1)− J1(ν2, ν2) = (q − 1)− 1− (−1) = q − 1.

Thus

S2 = −(q − 1)
∑

ν∈F ∗
ord ν=4

ν(1/b)G4
1(ν),(3.6)

i.e. |S2| ≤ 2q2(q − 1) and hence q−1|S2| ≤ 2q(q − 1) when q ≡ 1 (mod 4).
Next, consider S1:

S1 =
∑

ν∈F̂ ∗
ν4 6=ν1

ν(a4/b)G1(ν4)G4
1(ν)

∑

c∈F ∗
(1− ν2(c))ν(1− c)2.(3.7)

The inner sum of (3.7) has the following form (note that ν2 6= ν1, ν2):
∑

c∈F ∗
ν2(1− c)−

∑

c∈F ∗
ν2(c)ν2(1− c) = −1− J1(ν2, ν

2).

Since the Jacobi sum has absolute value
√
q, the inner sum has absolute

value at most 1 +
√
q. Hence

1
q
|S1| ≤

1
q

((q − 1)− e)√q q2(1 +
√
q) = q3

(
1− e+ 1

q

)(
1 +

1√
q

)
,

where e = gcd(q − 1, 4).
In conclusion, in the case q ≡ 3 (mod 4),

|π(1, x+ 1)− (1− 1/q)π(1, 1)| ≤ (q3 + q5/2)(1− 3/q),(3.8)

while in the case q ≡ 1 (mod 4),

(3.9) |π(1, x+ 1)− (1− 1/q)π(1, 1)|
≤ (q3 + q5/2)(1− 5/q) + 2q(q − 1) = q3(1− 3/q − 2/q2) + q5/2(1− 5/q).
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In particular, this establishes part (ii) of Lemma 3.1, i.e. the case when q ≡ 3
(mod 4).

In the case when q ≡ 1 (mod 4), there are two more linear factors to be
considered, namely L = x + i and L = x − i. Since these L are divisors of
x2 + 1, δq

2

L = −δL by Lemma 3.2; thus δ2
L ∈ F∗q2 but δ2

L 6∈ F∗q , and so δ4
L = c,

where c is a non-square in F . In fact, {δx−i} ∪ {δx+i} = {4th roots of c, c a
non-square in F}, a set of cardinality 2(q − 1).

In the case when L=x + i in (3.5), by Lemma 3.3, N(δL) = δLδ
q
Lδ

q2

L δ
q3

L

= δL(iδL)(−δL)(−iδL) = −δ4
L = −c and N(1 + δL) = (1 − δ2

L)(1 + δ2
L) =

1− δ4
L = 1− c. The same values are obtained when L = x− i. Denote x+ i

and x− i by L1 and L2 respectively. Then (3.5) yields

π(1, L1) + π(1, L2)− 2Θ(L)π(1, 1) =
2
q
{S1 + S2}

where

S1 :=
∑

ν∈F̂ ∗
ν4 6=ν1

ν(a4/b)G1(ν4)G4
1(ν)

∑

c∈F ∗
(1− ν2(c))ν(1− c),(3.10)

S2 :=
∑

ν∈F̂ ∗
ν4=ν1
ν 6=ν1

ν(1/b)G4
1(ν)

∑

c∈F ∗
[ν(−c)− ν(1− c)](1− ν2(c)).(3.11)

Consider S1. It may be written in the form

S1 =
∑

ν∈F̂ ∗
ν4 6=ν1

ν(a4/b)G1(ν4)G4
1(ν)σ1, say,

where σ1 :=
∑

c∈F ∗(1− ν2(c))ν(1− c). Then

σ1 =
∑

c∈F ∗
ν(1− c)−

∑

c∈F ∗
ν2(c)ν(1− c) = −1 + J1(ν2, ν).

As before, the Jacobi sum has absolute value
√
q. Thus

|S1| ≤ (q − 1− e)√q q2(1 +
√
q)

where e = gcd(q − 1, 4), i.e.
2
q
|S1| ≤ 2q3(1− 5/q)(1 + 1/

√
q).

Now consider S2 in (3.11). For a given ν with ν4 = ν1, ν 6= ν1, the inner
sum σ2 satisfies

σ2 =
∑

c∈F ∗
ν(−c)−

∑

c∈F ∗
ν(1− c)−

∑

c∈F ∗
ν(−c)ν2(c) +

∑

c∈F ∗
ν(1− c)ν2(c)

= 0− (−1)− J0(ν2, ν) + J1(ν2, ν) = 1− J0(ν2, ν) + J1(ν2, ν).
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If ν = ν2, then

σ2 = 1− J0(ν2, ν2) + J1(ν2, ν2) = 1− (q − 1) + (−1) = −(q − 1)

(using the fact that ν2(−1) = 1). If ν2 = ν2 (write ν = ν4, since ν must be
one of the two characters of order 4), then

σ2 = 1− J0(ν2, ν4) + J1(ν2, ν4) = 1− 0 + J1(ν2, ν4).

Once again, |σ2| ≤ 1 +
√
q. Hence

S2 = ν2(1/b)G4
1(ν2)[−(q − 1)] +

∑

ν∈F ∗
ord ν=4

ν(1/b)G4
1(ν)(1 + J1(ν2, ν))(3.12)

= q2(q − 1) +
∑

ν∈F ∗
ord ν=4

ν(1/b)G4
1(ν)(1 + J1(ν2, ν)),

since b is primitive and hence a non-square, and G4
1(ν2) = q2. Thus

|S2| ≤ q2(q − 1) + 2q2(1 +
√
q) = q3(1 + 1/

√
q)2(3.13)

and so
2
q
|S2| ≤ 2q2(1 + 1/

√
q)2.

Hence,

(3.14) |π(1, L1) + π(1, L2)− 2(1− 1/q)π(1, 1)|
≤ 2q3(1− 4/q + 1/q2) + 2q5/2(1− 3/q).

Combining (3.9) and (3.14) proves Lemma 3.1(i) as follows:

|π(1, x+ 1) + π(1, x+ i) + π(1, x− i)− 3(1− 1/q)π(1, 1)|
< (q3 + q5/2)(1− 5/q) + 2q(q − 1) + 2q3(1− 4/q + 1/q2) + 2q5/2(1− 3/q)

= (q3 + q5/2)(3− 11/q) = q3(3− 11/q)(1 + 1/
√
q).

4. Estimates for integer factors. In this section we obtain new esti-
mates for the number N(t, 1) of t-free elements of E with prescribed norm
and trace, where t ∈ N is a divisor of m. We improve upon the estimates of
[3] by applying some deep results of Katz arising from the study of Soto–
Andrade sums [8].

Lemma 4.1 ([8, Theorem 4]). Suppose that n ≥ 2. Then
∣∣∣∣N(1, 1)− qn − 1

q(q − 1)

∣∣∣∣ ≤ nq(n−2)/2,(4.1)

i.e.
|π(1, 1)− (qn − 1)| ≤ n(1− 1/q)q(n+2)/2.(4.2)
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In particular, for n = 4, Lemma 4.1 has the form

|π(1, 1)− (q4 − 1)| ≤ 4(1− 1/q)q3.

Note that this is an improvement, by a factor of approximately q1/2/4, on
the estimate

|π(1, 1)− q4| ≤ (1− (e+ 1)/q)q7/2,

obtained from Corollary 2.2 of [3].
Next, we estimate N(t, 1) where t |m, t > 1.

Lemma 4.2 ([8, Corollary of Theorem 3 bis]). Let η be a character of E
of order d, where d |m, d > 1. Set

M(η) =
∑

x∈E
N(x)=b
Tr(x)=a

η(x).

In the special cases when ηq−1 is trivial , or when n is odd , n is prime
to p, ηq−1 has exact order n, the characters ηq

i−1 are all distinct for i =
0, . . . , n− 1 and dn = nnb,

|M(η)− q(n−1)/2| ≤ nq(n−2)/2.

Otherwise, in the general case,

|M(η)| ≤ nq(n−2)/2.

Note that the general case of this lemma is applicable when n = 4 to all
ηd ∈ F̂ ∗ (d |m), since (d, q − 1) = 1 for all such d by the definition of m.

Corollary 4.3. Let t |m, t > 1 and t0 | t, t0 ≥ 1. Then
∣∣∣∣π(t, 1)− θ(t)

θ(t0)
π(t0, 1)

∣∣∣∣ ≤ θ(t)n(W (t)−W (t0))(1− 1/q)q(n+2)/2.(4.3)

Proof. By definition,

N(t, 1) = θ(t)
∑

w∈E
N(w)=b
Tr(w)=a

�

d|t
ηd(w) = θ(t)

�

d|t
M(ηd),

and so

N(t, 1)− θ(t)
θ(t0)

N(t0, 1) = θ(t)
�

d|t
d-t0

M(ηd).

By Lemma 4.2,
∣∣∣∣N(t, 1)− θ(t)

θ(t0)
N(t0, 1)

∣∣∣∣ ≤ θ(t)(W (t)−W (t0))nq(n−2)/2
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and hence∣∣∣∣π(t, 1)− θ(t)
θ(t0)

π(t0, 1)
∣∣∣∣ ≤ θ(t)n(W (t)−W (t0))(1− 1/q)q(n+2)/2.

In particular, for n = 4,∣∣∣∣π(t, 1)− θ(t)
θ(t0)

π(t0, 1)
∣∣∣∣ ≤ 4θ(t)(W (t)−W (t0))(1− 1/q)q3.(4.4)

5. The proof for general prime powers. Having established bounds
for π(1, L) (L |M , L linear) and π(t, 1) (t |m), as the next step, we develop
a sieving technique.

We shall use the basic sieving inequality introduced in Theorem 3.1 of [3].
Let d |m and f |xn − 1. Then (di, fi) (i = 1, . . . , r for r ∈ N) will be called
complementary divisor pairs with common divisor pair (d0, f0) if the primes
in lcm{d1, . . . , dr} are precisely those in d, the irreducibles in lcm{f1, . . . , fr}
are precisely those in f , and for any distinct pair (i, j), the primes and
irreducibles in gcd(di, dj) and gcd(fi, fj) are precisely those in d0 and f0
respectively. Observe that the value of π(d, f) will depend only on which
“atoms” (primes/irreducibles) are present in d and f , not on the power to
which the atoms occur.

Lemma 5.1 (Sieving inequality). For divisors d of m and f of xn−1, let
{(d1, f1), . . . , (dr, fr)} be complementary divisor pairs of (d, f) with common
divisor (d0, f0). Then

π(d, f) ≥
r∑

i=1

π(di, fi)− (r − 1)π(d0, f0).(5.1)

The following lemma allows us to make a simplification in the case when
q ≡ 3 (mod 4).

Lemma 5.2. For q ≡ 3 (mod 4),

N

(
m,

x4 − 1
x− 1

)
= N(m,x+ 1).

Proof. Suppose that α is both m-free and x+ 1-free, but not x4−1
x−1 -free.

(Note that in this case x2 + 1 is irreducible over F .) Then α = βq
2

+ β, and
hence αq

2
= α, i.e. αq

2−1 = 1. This implies that α = γq
2+1 for some γ ∈ E,

an evident contradiction since α is m-free. Observe that the norm/trace
restrictions do not affect the argument here.

The following are sufficient conditions for (q, 4) to be a PFNT-pair.

Lemma 5.3. (i) When q ≡ 1 (mod 4), (q, 4) is a PFNT-pair if
(5.2) π(1, 1)(θ(m)− 3/q)

> 4θ(m)(W (m)− 1)(1− 1/q)q3 + (3− 11/q)q3 + (3− 11/q)q5/2.
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(ii) When q ≡ 3 (mod 4), (q, 4) is a PFNT-pair if

(5.3) π(1, 1)(θ(m)− 1/q)

≥ 4θ(m)(W (m)− 1)(1− 1/q)q3 + (1 + 1/
√
q)(1− 3/q)q3.

Proof. (i) Apply the sieve in the following form:
π(m,M) ≥ π(m, 1) + π(1, x+ 1) + π(1, x− i)(5.4)

+ π(1, x+ i)− 3π(1, 1).
Using the lower bounds for π(m, 1) and the π(1, Li) (i = 1, 2, 3) from in-
equalities (4.4) and (3.1), we see that π(m,M) > 0 whenever the stated
condition holds.

(ii) Apply the sieve in the form
π(m,M) ≥ π(m, 1) + π(1, x+ 1)− π(1, 1).(5.5)

As in the proof of part (i), the result follows using the lower bounds for
π(m, 1) and π(1, x+ 1) given by inequalities (4.4) and (3.2).

The following lemmas provide easy, but useful, lower bounds for θ(m)
and W (m).

Lemma 5.4. (i) For all odd r ∈ N (6= 1, 3, 9, 15, 21, 105),

θ(r) > 1/r1/6.

(ii) Let q be an odd prime power , and let m be the greatest divisor of
q4 − 1 coprime to q − 1. Then

θ(m) > 1/
√
q.

Proof. (i) Exploit the multiplicativity of the function r1/6θ(r) by break-
ing r (not one of the exceptions) into coprime factors % of the following types
and applying the result to each factor.

• % = pk (p ≥ 5, k ≥ 1). Since x− x5/6 − 1 > 0 for x ≥ 5, it follows that

θ(%) = θ(p) = 1− 1
p
>

1
p1/6

≥ 1
%1/6

.

• % = 3k (k ≥ 3). Then

θ(%) = θ(3) =
2
3
>

1√
3

=
1

271/6
≥ 1
%1/6

.

• % = 9pk (k ≥ 1) or % = 3pk (k ≥ 2), with p ≥ 5. Then

θ(%) =
2
3

(
1− 1

p

)
≥ 8

15
>

1
451/6

≥ 1
%1/6

.

• % = 3p (p > 11). Then

θ(p) =
2
3

(
1− 1

p

)
≥ 20

33
>

1
331/6

≥ 1
%1/6

.

(ii) Since 4m < (q4 − 1)/(q − 1) < (q + 1)3, q > 41/3m1/3 − 1 and so
q ≥ m1/3 for all q. Hence,

√
q ≥ m1/6, i.e. 1/

√
q ≤ 1/m1/6. From part (i),
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θ(m) > 1/m1/6 ≥ 1/
√
q. (Observe that, because q2+1

2

∣∣m, m is not one of
the exceptional values in (i).)

Lemma 5.5 ([6, Lemma 3.3]). For any positive integer m,

W (m) ≤ cmm1/4,(5.6)
where cm = 2s/(p1 . . . ps)1/4, and p1, . . . , ps are the distinct primes less than
16 which divide m. In particular , for all m ∈ N, cm < 4.9, and for all odd
m, cm < 2.891 < 2.9.

(The proof is obvious using multiplicativity.)

Proposition 5.6. Let q ≡ 1 (mod 4) be a prime power. Then (q, 4) is
a PFNT-pair for all q ≥ 6217.

Proof. By Lemma 5.3,
(5.7) π(1, 1)(θ(m)− 3/q)

> 4θ(m)(W (m)− 1)(1− 1/q)q3 + (3− 11/q)q3 + (3− 11/q)q5/2.

Then by Lemma 4.1, π(m,M) > 0 if
(5.8) θ(m)(q4 − 4W (m)(1− 1/q)q3 − 1)

> q3(6 + 1/q − 12/q2) + q5/2(3− 11/q)− 3/q.
By Lemma 5.5, W (m)≤cmq/(41/4(q−1)1/4), where cm<2.9 since m is odd.
Set d := 43/4cm; then 4W (m) ≤ dq/(q − 1)1/4 and so 4W (m)((q − 1)/q)q3

≤ d(q−1)3/4q3. Using this result and the second part of Lemma 5.4, π(m,M)
> 0 certainly if

(5.9)
1√
q
{q4 − d(q − 1)3/4q3 − 1}

> q3(6 + 1/q − 12/q2) + q5/2(3− 11/q) + 3/q,
i.e. if
(5.10) q > d(q − 1)3/4 +

√
q (6 + 1/q − 12/q2) + (3− 11/q) + 1/q3.

Take cm = 2.891 and set d = 8.2 in inequality (5.10). Then (5.10) holds for
all q ≥ 6217; the largest prime power q ≡ 1 (mod 4) for which the inequality
fails is q = 6197.

Proposition 5.7. Let q ≡ 3 (mod 4) be a prime power. Then (q, 4) is
a PFNT-pair for all q ≥ 2659.

Proof. By Lemma 5.3, π(m,M) > 0 if
(5.11) π(1, 1)(θ(m)− 1/q)

≥ 4θ(m)(W (m)− 1)(1− 1/q)q3 + (1 + 1/
√
q)(1− 3/q)q3.

Then by Lemma 4.1, π(m,M) > 0 if
(5.12) θ(m){q4 − 4W (m)(1− 1/q)q3 − 1}

≥ q3(2− 7/q + 4/q2) + (1− 3/q)− 1/q,
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i.e. certainly if

q ≥ d(q − 1)3/4 +
√
q (2− 7/q + 4/q2) + (1− 3/q) + 1/q3,(5.13)

where in this case d := 45/8cm, since 8 | (q + 1)(q2 + 1) and so W (m) ≤
cmq/(81/4(q − 1)1/4). Take cm = 2.9 and d = 6.90 in (5.13). Then inequality
(5.13) holds for q ≥ 2659; the largest prime power q ≡ 3 (mod 4) for which
the inequality fails is q = 2647.

5.1. Sieving with atomic divisors. In order to establish the result for
smaller prime powers q, we will use the following sufficient conditions, which
arise from the application of the sieve with atomic divisors.

In order to simplify notation, from this point onwards we shall adopt the
convention that all unmarked summation signs have index i running from
i = 1 to s.

Lemma 5.8. Let s denote the number of distinct prime factors of m.
Then the following are sufficient conditions for (q, 4) to be a PFNT-pair.

(i) When q ≡ 1 (mod 4),

q ≥
(3 + 4s)− 11+4s

q − 4
(
1− 1

q

)∑ 1
pi

+ 1√
q

(
3− 11

q

)

1−∑ 1
pi
− 3

q

(5.14)

+ 4
(

1− 1
q

)
+

1
q3 .

(ii) When q ≡ 3 (mod 4),

q ≥
(1 + 4s)− 3+4s

q − 4
(
1− 1

q

)∑ 1
pi

+ 1√
q

(
1− 3

q

)

1−∑ 1
pi
− 1

q

(5.15)

+ 4
(

1− 1
q

)
+

1
q3 .

Proof. (i) Let m = pα1
1 . . . pαss , where p1, . . . , ps are distinct primes and

s ∈ N (recall that the values of the αi will be irrelevant here). Apply the
sieve in the form

π(m,M) ≥ π(p1, 1) + . . .+ π(ps, 1) + π(1, x+ 1)(5.16)

+ π(1, x+ i) + π(1, x− i)− (s+ 2)π(1, 1).

Using the results of inequalities (3.1) and (4.4), π(m,M) > 0 if

(5.17) π(1, 1)
(

1−
∑ 1

pi
− 3
q

)
− q3

(
3− 11

q

)

− q5/2
(

3− 11
q

)
− 4q3

(
1− 1

q

)∑(
1− 1

pi

)
≥ 0,
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i.e. if

(5.18) π(1, 1) ≥
q3
(
(3 + 4s)− 11+4s

q − 4
(
1− 1

q

)∑ 1
pi

)
+ q5/2

(
3− 11

q

)

1−∑ 1
pi
− 3

q

and so, using Lemma 4.1, certainly if

q ≥
(3 + 4s)− 11+4s

q − 4
(
1− 1

q

)∑ 1
pi

+ 1√
q

(
3− 11

q

)

1−∑ 1
pi
− 3

q

(5.19)

+ 4
(

1− 1
q

)
+

1
q3 .

(ii) Let m = pα1
1 . . . pαss . Then, applying the sieve with atomic divisors,

π(m,x+ 1) ≥ π(p1, 1) + . . .+ π(ps, 1) + π(1, x+ 1)− sπ(1, 1).(5.20)
Using the results of inequalities (3.2) and (4.4), π(m,M) > 0 if

(5.21) π(1, 1)
(

1−
∑ 1

pi
− 1
q

)
− q3

(
1− 3

q

)(
1 +

1√
q

)

− 4q3
(

1− 1
q

)∑(
1− 1

pi

)
≥ 0,

i.e. if

(5.22) π(1, 1) ≥
q3
(
(1 + 4s)− 3+4s

q − 4
(
1− 1

q

)∑ 1
pi

)
+ q5/2

(
1− 3

q

)

1−∑ 1
pi
− 1

q

,

and so, using Lemma 4.1, certainly if

q ≥
(1 + 4s)− 3+4s

q − 4
(
1− 1

q

)∑ 1
pi

+ 1√
q

(
1− 3

q

)

1−∑ 1
pi
− 1

q

(5.23)

+ 4
(

1− 1
q

)
+

1
q3 .

This completes the proof.

Observe that the inequalities of Lemma 5.8 are meaningful only when the
denominator 1−∑ 1/pi− 3/q is greater than 0; in particular it is necessary
to have

∑
1/pi < 1. Note that, taking {p1, p2, p3, . . .} to be the odd primes

{3, 5, 7, . . .}, we have
∑s

i=1 1/pi > 1 for s ≥ 9. Hence this approach is
practical only for those q for which m has fewer than 9 distinct prime factors.
All prime powers q which are congruent to 1 modulo 4 and less than 6217
have s < 9; in fact, with the exception of q = 2309 and q = 5813 (s = 7)
and q = 4217 and q = 6089 (s = 8), all have s ≤ 6. Note that s ≥ 2 for all
relevant q in this case. All prime powers q ≡ 3 (mod 4) such that q ≤ 2659
have s ≤ 6. There are 2 values of q with s = 1, q = 3 and q = 7; however
the q = 3 case has already been dealt with.

Proposition 5.9. Let q ≡ 1 (mod 4), q ≤ 6197, q 6∈ {9, 13, 17, 29}.
Then (q, 4) is a PFNT-pair.
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Proof. First, observe that
∑

1/pi ≥ 2/q, since
∑ 1

pi
≥ 2
q + 1

+
2

q2 + 1
= 2
(

1
q

+
q − 1

q(q + 1)(q2 + 1)

)
.

If we use this lower bound in Lemma 5.8, the desired result holds if

q ≥
(3 + 4s)− 19+4s

q + 8
q2 + 3√

q − 11
q3/2

1−∑ 1
pi
− 3

q

+ 4
(

1− 1
q

)
+

1
q3 .(5.24)

An upper bound is required for
∑

1/pi, say
∑

1/pi ≤ K(q) for some func-
tion K. In general, to simplify calculations, the crude estimate

s∑

i=1

1
pi
≤

s∑

j=1

1
p[j + 1]

(5.25)

will be used, where p[n] is the nth prime (n ∈ N). (More precise values may
be taken in specific cases.)

Observe that the desired result certainly holds when

q ≥
(3 + 4s) + 3√

q + 8
q2

1−∑ 1
p[i] − 3

q

+ 4 +
1
q3 ,(5.26)

and, for fixed s, the function of q on the right side of (5.26) clearly decreases
as q increases. Hence to prove for a given s that the result is true for q ≥ q0,
with some q0 ∈ N, it is sufficient to show that inequality (5.26) holds for
q = q0. (Observe that for individual q, the more precise inequality (5.24) is
to be preferred.)

The smallest prime power q ≡ 1 (mod 4) with s = 6 is q = 853. The
basic estimate (5.25) yields

∑ 1
pi
≤ 1

3
+

1
5

+
1
7

+
1
11

+
1
13

+
1
17

< 0.90285;

inequality (5.26) holds for q = 853 (right-hand side of (5.26) equals 293.46)
and hence for all q ≥ 853. In the s = 5 case, the smallest relevant q is
q = 173; taking

∑ 1
pi
≤ 1

3
+

1
5

+
1
7

+
1
11

+
1
13

< 0.84403

shows that the result holds for q = 173 (173 > 171.56) and thus for all
q ≥ 173. The first values of q for which s = 4 are q = 73, 89, 109, 113, . . . ;
however the smallest of these q for which inequality (5.26) holds in view of

∑ 1
pi
≤ 1

3
+

1
5

+
1
7

+
1
11

< 0.76710

is q = 109 (109 > 97.92). Clearly a more precise estimate is required for∑
1/pi than that of equation (5.25). For q = 73, the prime factors of m are

{5, 13, 37, 41}; the use of the exact value
∑ 1

pi
=

1
5

+
1
13

+
1
37

+
1
41

< 0.32835
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yields inequality (5.24) (with the right side equal to 33.85). For q = 89, m
has prime factors {3, 5, 17, 233} and, using the exact value of

∑
1/pi, we

find that the right side of inequality (5.24) has value 55.10. So the result
holds in all cases when s = 4.

When s = 3, inequality (5.26) holds with approximation (5.25) for
q ≥ 61, i.e. for all prime powers q ≡ 1 (mod 4) with the exception of q ∈
{13, 17, 29, 37, 41, 53}. The use of exact values of

∑
1/pi in (5.24) proves the

result for q = 53 (primes {3, 5, 281} divide m), q = 41 (primes {3, 7, 29}) and
q = 37 (primes {5, 19, 137}). For the remaining 3 values of q, even the use of
exact values in inequality (5.14) fails; clearly another approach is required
here.

For s = 2, inequality (5.26) with estimate (5.25) holds for all q ≥ 35,
leaving only the exceptions q = {9, 25}. Use of the exact value

∑
1/pi =

1/13 + 1/313 < 0.08012 establishes the result for q = 25. However, for
q = 9 (primes {5, 41}), even the use of exact values in inequality (5.14) fails
(9 < 22.30).

Lastly, consider the 4 values of q less than 6217 with s > 6. When s = 7,
use of the estimate

∑ 1
pi
≤ 1

3
+

1
5

+
1
7

+
1
11

+
1
13

+
1
17

+
1
19

< 0.95548

in inequality (5.26) shows that the result holds for q = 2309 (right side of
inequality has value 722.69) and hence for q = 5813 also. For s = 8, exact
values are required. For q = 4217 (prime factors of m are {3, 5, 13, 19, 29, 37,
53, 89}), ∑ 1/pi < 0.75451, and the right side of inequality (5.24) takes
value 147.12 < 4217. For q = 6089 (primes {3, 5, 7, 13, 29, 61, 97, 241}), use
of the exact value

∑
1/pi < 0.81845 yields the result (right side < 194).

Hence the desired result has been established for all q ≡ 1 (mod 4) with
the exception of q ∈ {9, 13, 17, 29}.

Proposition 5.10. Let q ≡ 3 (mod 4), q ≤ 2659, q 6∈ {7, 11, 23, 47, 83}.
Then (q, 4) is a PFNT-pair.

Proof. First observe that, except in the case when s = 1 (q = 7) (which
will be treated separately),

∑
1/pi > 4/q − 2/q2, since

∑ 1
pi
≥ 2
q2 + 1

+
4

q + 1
=

4
q
− 2
q2 +

2
q2

(
2q2 − q + 1

(q + 1)(q2 + 1)

)
.

So 4(1− 1/q)
∑

1/pi may be replaced by 16/q − 24/q2 + 8/q3; then clearly
π(m,M) > 0 whenever

q ≥
(1 + 4s)− 19+4s

q + 24
q2 + 1√

q − 3
q3/2

1−∑ 1
pi
− 1

q

+ 4
(

1− 1
q

)
+

1
q3 .(5.27)
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A sufficient condition with an obviously decreasing function on the right-
hand side is given by: π(m,M) > 0 whenever

q ≥
(1 + 4s) + 1√

q + 24
q2

1−∑ 1
pi
− 1

q

+ 4 +
1
q3 .(5.28)

As in the proof of Proposition 5.9, the
∑

1/pi term in the denominator
will usually be replaced by the upper bound given by inequality (5.25). Once
again, to prove for a given s that the result is true for q ≥ q0, it is sufficient
to prove that inequality (5.28) holds for q = q0.

When s = 6, the smallest relevant q is 659. Use of the estimate
∑ 1

pi
≤ 1

3
+

1
5

+
1
7

+
1
11

+
1
13

+
1
17

< 0.90285

in inequality (5.28) proves the desired result for q = 659 (659 > 286.74) and
thus for all q ≥ 659.

The smallest prime powers q≡3 (mod 4) with s=5 are {83, 307, 419, . . .};
however the first such q for which inequality (5.28) holds with approximation
(5.25) is q = 307. To deal with q = 83, more precise estimates are required.
The prime factors of m when q = 83 are {3, 5, 7, 13, 53}; however, even using
the exact value ∑ 1

pi
=

1
3

+
1
5

+
1
7

+
1
13

+
1
53

< 0.77198

in inequality (5.15) is insufficient to prove the result (83 < 86.27).
For s = 4, the first few q ≡ 3 (mod 4) are {47, 167, 179, . . .}; inequality

(5.28) holds with the approximation
∑ 1

pi
≤ 1

3
+

1
5

+
1
7

+
1
11

< 0.76710

for all such q except for q = 47 (47 < 81.42). For q = 47 (primes dividing
m = {3, 5, 13, 17}), use of the exact value

∑ 1
pi

=
1
3

+
1
5

+
1
13

+
1
17

< 0.66908

in inequality (5.15) just fails (47 < 49.49).
When s = 3, inequality (5.27) holds with approximation (5.25) for values

of q ≥ 48; since the first few q with s = 3 are {23, 27, 43, 59, . . .}, this leaves
q = {23, 27, 43} still to be dealt with. Use of exact values of

∑
1/pi in

inequality (5.27) proves the result for q = 43 (primes {5, 11, 37} divide m)
and q = 27 (primes {5, 7, 73}). However, for q = 23 (primes {3, 5, 53}), even
use of the exact value∑ 1

pi
=

1
3

+
1
5

+
1
53

< 0.55221

in inequality (5.15) fails (23 < 29.59).
When s = 2 the first few values of q are {11, 19, 31, 71, . . .}; inequality

(5.28) with estimate (5.25) holds for all except q = {11, 19}. For q = 19
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(primes {5, 181}), use of the exact value 1/5 + 1/181 < 0.20553 in (5.27)
establishes the result; however for q = 11 (primes {3, 61}), even use of exact
values in (5.15) fails (11 < 16.06).

Returning to the s = 1 case mentioned earlier, the only prime power
q ≡ 3 (mod 4), q > 3, with s = 1 is q = 7 (m = 25). If we set 1/pi = 1/5
in inequality (5.15), the inequality fails (7 < 8.86), suggesting that another
approach is appropriate in this case.

Thus the result has been established for all prime powers q ≡ 3 (mod 4)
with the exception of q ∈ {7, 11, 23, 47, 83}.

6. The proof for some special prime powers. In this section, we
employ various devices to prove the result for odd q by theoretical means in
as many cases as possible.

6.1. The case when 1
2(q2 + 1) is prime. The following simplification ap-

plies for odd q whenever (q2 + 1)/2 is prime.

Lemma 6.1. Let q be an odd prime power. Suppose that m0 := (q2 + 1)/2
is prime. Then

N(m,x4 − 1) = N(m/m0, x
4 − 1).

In particular , N(m,x4 − 1) = N((q + 1)/2, x4 − 1) if q ≡ 1 (mod 4).

Proof. Suppose α ∈ E is both m/m0-free and x4 − 1-free, but α = βm0 .
Then α2 ∈ GF(q2), whence αq

2
= γα, where γ2 = 1, γ ∈ GF(q2). However,

this means that either (x2 − 1)σ(α) = 0 or (x2 + 1)σ(α) = 0, in both cases
contradicting the fact that α is x4 − 1-free.

Applying Lemma 6.1 establishes the result for q=29 (primes {3, 5, 421});
using inequality (5.14), 29 > 28.01. Note incidentally that in the case q = 9,
we may replace N(5 · 41,M) by N(5,M).

6.2. The case when 15 |m. In this section, we increase the precision of
the sieve in a special case, namely when 15 |m.

In the original derivation of the sieving inequality (see [3] for details),
the following (fairly crude) estimate is used: if p1 and p2 are primes di-
viding m, then the number of elements of E which are “either p1-free or
p2-free” is bounded above by N(1, 1). However, it is clear that this up-
per bound can be replaced by N(1, 1) − R(p1p2) where R(p1p2) is the
set of p1p2th powers in E. Thus the sieving inequality may be adjusted
by the addition of a R(p1p2) term to the right-hand side. This approach
may of course be generalised to more than one pair of primes; however
for our purposes it suffices to consider the pair of primes p1 = 3,
p2 = 5.
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Lemma 6.2. Let q ≡ 3 (mod 4) be a prime power such that 15 |m. Then
(q, 4) is a PFNT-pair if

q ≥
(
4s− 3

5

)
− 4s+7/5

q − 4
(
1− 1

q

)∑s
i=3

1
pi

+ 1√
q

(
1− 3

q

)

8
15 −

∑s
i=3

1
pi
− 1

q

(6.1)

+ 4
(

1− 1
q

)
+

1
q3 .

Proof. Denote by R(r) the set of rth powers in E (r ∈ N), and here set
%(r) := q(q− 1)R(r). A more precise sieving inequality than that of Lemma
5.1 is given by the following:

π(m,M) ≥ π(3, 1) + π(5, 1) +
s∑

i=3

π(pi, 1) + %(15) + π(x+ 1)− sπ(1, 1)

= [π(3, 1)− θ(3)π(1, 1)] + [π(5, 1)− θ(5)π(1, 1)]

+
∑

i

[π(pi, 1)− θ(pi)π(1, 1)] +
[
%(15)− 1

15
π(1, 1)

]

+ [π(1, x+ 1)− θ(x+ 1)π(1, 1)] +
[

8
15
−

s∑

i=3

1
pi
− 1
q

]
π(1, 1).

Using the bounds of Katz, each character sum involving a cubic charac-
ter occurs with coefficient −1/3 + 1/15 = −4/15 in the above, and so the
contribution to the total from cubic characters is bounded absolutely by
8
15 · 4q(q− 1), rather than 2

3 · 4q(q− 1) as previously. Similarly, the contribu-
tion from quintic sums is also bounded by 8

15 · 4q(q− 1), and sums involving
characters of order 15 contribute another 8

15 · 4q(q − 10) term. Hence the
bounds contributed by

|π(3, 1)− θ(3)π(1, 1)|+ |π(5, 1)− θ(5)π(1, 1)|+
∣∣%(15)− 1

15π(1, 1)
∣∣

are 24
15 · 4q(q − 1)q3, instead of 22

15 · 4q(q − 1)q3. Then we may replace (5.15)
by

q ≥
(
4s− 3

5

)
− 4s+7/5

q − 4
(
1− 1

q

)∑s
i=3

1
pi

+ 1√
q

(
1− 3

q

)

8
15 −

∑s
i=3

1
pi
− 1

q

(6.2)

+ 4
(

1− 1
q

)
+

1
q3 .

By means of this lemma, the result is established for q = 83 (83 > 68.44)
and q = 47 (47 > 42.80).

6.3. The use of the Cohen bound. When q is small, it is preferable in
some cases to use the bounds of Cohen ([3]) to estimate integer factors rather
than those of Katz ([8]).
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Lemma 6.3. Let q ≡ 3 (mod 4) be a prime power. Then (q, 4) is a PFNT-
pair if

q ≥
(
1 + 2s−3

q

)
+
√
q
(
s− 3s−1

q − 3
q2

)
−√q

(∑ 1
pi

)(
1− 3

q + 2
q3/2

)

1−∑ 1
pi
− 1

q

(6.3)

+
√
q

(
1− 3

q

)
.

Proof. Analogous to the proof of Proposition 5.10, but with the bounds
of [8] replaced by those of [3] to estimate integer factors. Hence 4(1 − 1/q)
is replaced by

√
q (1− (e+ 1)/q+ e/q3/2) (this latter bound may be derived

from Theorem 3.2 of [3]), and Katz’s bound |π(1, 1)−(q4−1)| < 4(1−1/q)q3

is replaced by Cohen’s bound |π(1, 1)− q4| ≤ q7/2(1− (e+ 1)/q).

Through this lemma, the result is established for q = 7 (7 > 3.39) and
q = 11 (11 > 5.46).

6.4. The case when q = 9. In order to establish the result in the case
when q = 9, we derive more precise versions of the bounds in Sections 3 and
4 for this special case. Write q = q2

0, so that q0 = 3. Consider the expression
for S2 given by equation (3.6). Since, for ν ∈ F̂ ∗ occurring in the sum,
ord ν = 4 = q0 +1, Stickelberger’s Theorem (see [10, Theorem 5.16]) applies
to give G1(ν4) (= G1(ν4)) = −3 (where ν4 denotes one of the two characters
of order 4). Hence

S2 = −8 · 81(ν4(1/b) + ν4(1/b)) = 0,
since b is a non-square and so ν4(1/b) = ±i. Thus the bound of inequality
(3.9) may be replaced, for q = 9, by∣∣∣∣π(1, x+ 1)−

(
1− 1

q

)
π(1, 1)

∣∣∣∣ ≤
1
q
|S1| ≤

16
3
q2.(6.4)

Next, consider S2 as defined in equation (3.12). Again, G4
1(ν4) = 81, while

1 + J1(ν2, ν2) = 1 +
G1(ν2)G1(ν4)
G1(ν2ν4)

= 1 +
G1(ν2)G1(ν4)

G1(ν4)
(6.5)

= 1 +G1(ν2) = 4
since G1(ν4) = G1(ν4) = −3, as before. So

S2 = q2(q − 1) + 4 · 81(ν4(1/b) + ν4(1/b)) = q2(q − 1).
Hence
(6.6) |π(1, L1) + π(1, L2)− 2(1− 1/q)π(1, 1)− 2(1− 1/q)q2|

≤ 2
q
|S1| =

32
3
q2.

For the multiplicative part of the sieve, we employ the Cohen bound in
preference to the Katz bound; then

|π(1, 1)− q4| ≤ 12q2(6.7)
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and
∣∣π(5, 1)− 4

5 π(1, 1)
∣∣ ≤ 4

5 · 16q2.(6.8)

Applying the sieve in the form (5.4) with the bounds derived above yields
the following (recall that, by Lemma 6.1, we may take m = 5):

π(5,M) ≥ q2
{(

1− 1
5
− 3
q

)
(q2 − 12)−

(
64
5

+
16
3

+
32
3

)
+ 2
(

1− 1
q

)}

= q2
(

7
15
· 69− 144

5
+

16
9

)
≥ 5.178q2 > 0.

6.5. The case when direct computation is required. To deal with the
remaining cases (q = 13, 17 and 23), we use the computer package MAPLE
(version 6). The field E is searched explicitly for elements satisfying the
PFNT problem; in all cases, the desired result holds without exception.

As an illustration, we display the relevant quartic polynomials for the
smallest case, i.e. when q = 13. The following simplification shows that 12
polynomials will suffice (compared to the expected 12 · φ(12) = 48).

Lemma 6.4. Let q = 13. Suppose that there exist free, primitive α ∈ E
such that TrE/F (α) = a and NE/F (α) = b for all pairs (a, b) where a ∈
{1, 2, 4} and b ∈ {2, 6, 7, 11}. Then there exist free, primitive α ∈ E such
that TrE/F (α) = a and NE/F (α) = b for all pairs (a, b) where a is a non-zero
element of F and b is a primitive element of F .

Proof. The result follows upon observing that F ∗ = {j, 2j, 4j : j ∈ F,
j4 = 1}, and that TrE/F (jγ) = jTrE/F (γ), NE/F (jγ) = j4NE/F (γ) for all
γ ∈ E, j ∈ F .

The following table lists twelve quartic polynomials over F = GF(13)
whose roots α ∈ E = GF(134) are primitive and free with norm and trace
equal to b and a respectively.

(a, b) Relevant PFNT quartic

(1, 2) x4 − x3 + 3x2 + 2

(1, 6) x4 − x3 + 11x2 − 10x+ 6

(1, 7) x4 − x3 + 10x2 − 6x+ 7

(1, 11) x4 − x3 + 5x2 − 4x+ 11

(2, 2) x4 − 2x3 + x2 − 11x+ 2

(2, 6) x4 − 2x3 + 8x2 − 2x+ 6

(a, b) Relevant PFNT quartic

(2, 7) x4 − 2x3 + 11x2 − 9x+ 7

(2, 11) x4 − 2x3 − x+ 11

(4, 2) x4 − 4x3 + 8x2 − 10x+ 2

(4, 6) x4 − 4x3 + 9x2 − 11x+ 6

(4, 7) x4 − 4x3 + 6x2 + 7

(4, 11) x4 − 4x3 + 4x2 − 7x+ 11

7. The non-zero PNT problem for fields of even order. Recall
that, in the case when charF = 2, the PFNT problem reduces to the non-
zero PNT problem. Hence, to establish the result, it suffices to show that
π(m, 1) > 0.
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The following simplification applies in the case when q2 + 1 is prime.

Lemma 7.1. Let q = 2k, k ∈ N. Suppose that q2 + 1 is prime. Then

N(m, 1) = N(q + 1, 1),

where N(t, 1) (t |m) is the number of t-free elements of E with trace and
norm equal to a and b respectively (a, b ∈ F , a 6= 0, b primitive).

Proof. In this case, m = (q+1)(q2 +1). Suppose that α ∈ E is q+1-free,
with Tr(α) = a, N(α) = b, but α = βq

2+1. Then α ∈ GF(q2), i.e. αq
2

= α.
Hence, TrE/F (α) = α + αq + αq

2
+ αq

3
= 2(α + αq), which equals 0 since

charF = 2—a contradiction as a 6= 0.

Proposition 7.2. Suppose q = 2k (k ∈ N, k 6= 3, 5). Then (q, 4) is a
PFNT-pair.

Proof. We may assume that either k = 2, k = 4 or k ≥ 6.
As a first step, apply the bounds of Lemma 4.1 and Corollary 4.3 directly,

without sieving. Then

π(m, 1) ≥ θ(m){(q4 − 1)− 4(1− 1/q)q3} − 4θ(m)(W (m)− 1)(1− 1/q)q3,

and so π(m, 1) > 0 whenever

q > 4W (m)(1− 1/q) + 1/q3.(7.1)

Using the approximation of Lemma 5.5 for W (m), (q, 4) is a PFNT-pair
whenever

q > 4cm(q − 1)3/4 + 1/q3,(7.2)

where cm = 2.9. This inequality holds for integers q ≥ 18106, and so estab-
lishes the result for q = 2k, k ≥ 15.

To deal with the smaller powers, apply the sieve with atomic divisors.
Let m = pα1

1 . . . pαss . For all q = 2k with 2 ≤ k ≤ 14, s ≤ 6. Using the results
of Corollary 4.3 shows that π(m, 1) > 0 whenever

π(1, 1)
{

1−
∑ 1

pi

}
− 4
(

1− 1
q

)
q3
∑(

1− 1
pi

)
> 0.

By Lemma 4.1, π(m, 1) > 0 if

q > 4
(

1− 1
q

)(
1 +

∑(
1− 1

pi

)

1−∑ 1
pi

)
+

1
q3 .(7.3)

The desired result certainly holds when

q > Cs, where Cs := 4
(

2 +
s− 1

1−∑ 1
p[i+1]

)
+

1
64
.

Clearly Cs is a constant for fixed s, and increases as s increases (1 ≤ s ≤ 9).
Since C6 < 213.9 < 28, the result holds for q = 2k, k ≥ 8. The result is
established for k = 7 (s = 5) since 27 > 110.6 > C5; for k = 6 (s = 4) since
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26 > 59.6 > C4; and for k = 4 (s = 2) using exact values in inequality (7.3)
(m = 17 · 257, 24 > 11.51).

By Lemma 7.1, when q = 4 we may replace N(5 ·17, 1) by N(5, 1). Using
the bounds of Cohen, we find that generally

π(m, 1) ≥ θ(m)π(1, 1)− q7/2(1− 2/q + 1/q3/2)θ(m)(W (m)− 1)

≥ θ(m)(q4 − q7/2(1− 2/q)− q7/2(1− 2/q + 1/q3/2)(W (m)− 1)).

Hence, in the case when q = 4,

π(5, 1) ≥ 4
5

(
44 − 47/2

(
1− 1

2

)
− 47/2

(
1− 1

2
+

1
43/2

))
=

29

5

(
2− 9

8

)
> 0,

and this establishes the desired result.

7.1. Computational strategy for remaining cases. To deal with the re-
maining cases (q = 8 and 32), we use the computer package MAPLE (ver-
sion 6) to search the field E for m-free elements with norms and traces
equal to the required values. The following lemma allows us to simplify our
computational strategy.

Lemma 7.3. Let q = 2k be such that q − 1 is a Mersenne prime. Let
a, b ∈ F (a 6= 0, b primitive) be given. Denote by Zα,β(m) the number of
elements w ∈ E which are m-free and have TrE/F (w) = α, NE/F (w) = β
(α, β ∈ F ). Suppose

Z1,b(m) > 0 ∀b ∈ F ∗.
Then (q, 4) is a PNT-pair.

Proof. To prove that (q, 4) is a PNT-pair, we must show that N(m, 1) >
0, i.e. that Za,b(m) > 0 for all a, b ∈ F , a 6= 0, b 6= 0, 1. We prove the
(stronger) result

Za,b(m) > 0 ∀a, b ∈ F ∗.
If a = 1, there is nothing to prove. Otherwise, set b∗ := b/a4 ∈ F ∗. Since
Z1,b∗(m) > 0, there exists an element ζ ∈ E such that ζ is m-free, TrE/F (ζ)
= 1, and NE/F (ζ) = b∗. Then α := aζ is also m-free, and has TrE/F (α) = a
and NE/F (α) = b.

The use of Lemma 7.3 reduces the number of necessary tests from
(q − 1)(q − 2) (testing each pair (a, b), b primitive) to q − 1 (testing each
pair (1, b), b non-zero). This improves economy and speed of computation.
In both cases, the desired result holds without exception.
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