
ACTA ARITHMETICA

167.3 (2015)

Modular case of Levinson’s theorem

by

Damien Bernard (Clermont-Ferrand)

Contents

1. Introduction and overview of the results . . . . . . . . . . . . . . . . . . . . . . . . . 201

2. Review of L-functions of primitive cusp forms . . . . . . . . . . . . . . . . . . . . . . 205

3. Mollified second moment of L-functions of modular forms . . . . . . . . . . . . . . 206

3.1. Evaluation of off-diagonal terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.1.1. Initial lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.1.2. Shifted convolution sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

3.2. Evaluation of diagonal terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.2.1. Initial lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.2.2. Estimation of ID1
f (α, β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4. Effective proportion of zeros on the critical line . . . . . . . . . . . . . . . . . . . . . 229

5. Non-mollified second integral moment . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.1. Diagonal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.2. Conjecture of Conrey, Farmer, Keating, Rubinstein and Snaith . . . . . . . . 234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

1. Introduction and overview of the results. Nowadays, we know
that more than 41% of the non-trivial zeros of the Riemann zeta function
lie on the critical line [BCY11], [Fen12]. This is the best of a sequence of
results about the percentage of zeros ρ satisfying <ρ = 1/2.

Historically, Selberg [Sel42] was the first one to show that this propor-
tion is not zero without quantifying it. According to Titchmarsh [Tit86,
Sect. 10.9], it was calculated later on in Min’s dissertation that the pro-
portion obtained by Selberg’s method is very small. One may refer to the
introduction of [Ste07, p. 8] for numerical values. In 1974, Levinson [Lev74]
succeeded in proving that at least one-third of the non-trivial zeros lie on
the critical line, by perturbing the Riemann zeta function by a linear combi-
nation of its derivatives. A significant improvement, due to Conrey [Con89],
increased this proportion to more than two-fifths. In order to do this, he
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improves the general result of [BCHB85] on the asymptotic behaviour of
the mollified second moment of the Riemann zeta function, when the coef-
ficients of the mollifier are essentially given by the Möbius function, which
allows him to work with a longer mollifier than Levinson’s one. From this
last result of Conrey and using a two-part mollifier, Bui, Conrey and Young
[BCY11] proved that 41% of the non-trivial zeros ρ satisfy <ρ = 1/2.

Since the Riemann zeta function is an L-function of degree one, it is
rather natural to generalise these results to L-functions of higher degrees.
For instance, Hafner has extended Selberg’s result to L-functions of degree
two. More precisely, if f is a holomorphic cusp form of even weight and
full level or an even Maaß form of full level, let Nf (T ) (resp. Nf,0(T )) be
the number of non-trivial zeros ρ (resp. on the critical line) of L(f, s) with
0 < =ρ ≤ T . Hafner [Haf83], [Haf87] proved that there exists a positive num-
ber A such that Nf,0(T )>ANf (T ) for large T. Rezvyakova [Rez10] adapted
[Haf83] to L-functions attached to automorphic cusp forms for congruence
subgroups. Nevertheless, they do not give any explicit value for A, but by
analogy with the Riemann zeta function case this constant should probably
be close to zero.

In [Far94], Farmer applied Levinson’s method to L-functions of a holo-
morphic cusp form f of even weight and full level, and succeeded in deter-
mining the asymptotic behaviour of the mollified integral second moment of
L(f, s) when the mollifier is a Dirichlet polynomial of length less than T 1/6−ε.
From this result, Farmer obtained explicit lower bounds for the proportion
of simple zeros of the jth derivative (j ≥ 1) of the completed L-function of
L(f, s) which are on the critical line. Unfortunately, the length of the molli-
fier is too small to exhibit an explicit positive proportion of simple zeros on
the critical line for L(f, s) itself. Nevertheless, even though Farmer did not
remark it, his result proves that at least 1.65% of the zeros of L(f, s) satisfy
<s = 1/2 (see Section 4).

In this paper, we exhibit a positive proportion of zeros which lie on the
critical line for L-functions of holomorphic primitive cusp forms. To get this
result, we study the asymptotic behaviour of the smooth mollified second
moment of L(f, s) following the method developed in [You10]. We choose a
mollifier ψ, defined on page 206, which is a Dirichlet polynomial of length
T ν of the shape

ψ(s) =
∑
n≤T ν

µf (n)

ns+1/2−σ0
P

(
ln(M/n)

lnM

)
with M = T ν , σ0 = 1/2−R/lnT where R is a positive real number. More-
over, we introduce a smooth function w compactly supported in [T/4, 2T ]
with some conditions on its derivatives (see (9a)–(9c)). We prove the follow-
ing theorem.
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Theorem 1. Let f be a holomorphic primitive cusp form of even weight,
square-free level and trivial character. If 0 < ν < 1−2θ

4+2θ and if α, β are

complex numbers satisfying α, β � L−1 with |α+ β| � L−1, then

(1)

∞�

−∞
w(t)L(f, 1/2 + α+ it)L(f, 1/2 + β − it)|ψ(σ0 + it)|2 dt

= ŵ(0)c(α, β) +O(T (lnL)4/L)

where

(2) c(α, β)

= 1 +
1

ν

1− T−2(α+β)

(α+ β) lnT

d2

dxdy

[
M−βx−αy

1�

0

P (x+ u)P (y + u) du
]∣∣∣
x=y=0

and where θ = 7/64 is the exponent in the approximation towards the
Ramanujan–Petersson–Selberg conjecture (see (19)).

Corollary 1. Let f be a holomorphic primitive cusp form of even
weight, square-free level and trivial character. At least 2.97% of the non-
trivial zeros of L(f, s) lie on the critical line <s = 1/2. Assuming the Selberg
conjecture, one can improve this percentage to 6.93%. In other words,

lim inf
T→∞

Nf,0(T )

Nf (T )
≥
{

0.0297 unconditionally,

0.0693 under the Selberg conjecture.

Remark 1. As Heath-Brown [HB79] and Selberg pointed out, the study
of the second mollified moment allows one to obtain a lower bound for the
proportion of simple non-trivial zeros lying on the critical line. Unfortu-
nately, in our case, the length of the mollifier is too small to get a positive
proportion of simple zeros satisfying the Riemann hypothesis. We plan to
get back to this issue in the near future.

The method we use can also be applied to determine the asymptotic
behaviour of the smooth second moment of L(f, s) close to the critical line.

Theorem 2. Let f be a holomorphic primitive cusp form of even weight,
square-free level N and trivial character. If α, β are complex numbers satis-
fying α, β � L−1, then

∞�

−∞
w(t)L(f, 1/2 + α+ it)L(f, 1/2 + β − it) dt = af

∞�

−∞
w(t) ln t dt

+

[
bf + af ln

(√
N

2π

)]
ŵ(0) +O

(
|α+ β|T (lnT )2 + T 1/2+θ+ε

)
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with

af =
12N

π2ν(N)
L(Sym2 f, 1),

bf =
12N

π2ν(N)
L(Sym2 f, 1)

(
L′(Sym2 f, 1)

L(Sym2 f, 1)
+ γ +

∑
p|N

ln p

p+ 1
− 2ζ ′(2)

ζ(2)

)
,

ν(N) = N
∏
p|N

(
1 +

1

p

)
.

Remark 2. Our result is non-trivial only in the case |α+β| = o(1/lnT ),
and furthermore we need |α + β| = o(1/ln2 T ) to ensure that the term of
order T is significant.

Corollary 2. Let f be a holomorphic primitive cusp form of even
weight, square-free level N and trivial character. Then

∞�

−∞
w(t)|L(f, 1/2 + it)|2 dt =

∞�

−∞
w(t)

[
af ln

(
t
√
N

2π

)
+ bf

]
dt

+O(T 1/2+θ+ε).

Remark 3. This corollary is in agreement with the conjecture in
[CFK+05] about integral moments of L-functions (see Section 5.2).

In [Zha05], Zhang succeeded in determining the main term of this integral
second moment of L(f, s) (without the smooth function w) on the critical
line. Thanks to Corollary 2, we improve his result with the following more
precise asymptotic expansion. When f is a holomorphic cusp form of even
weight for the full modular group, we can also refer to [Goo82] where a
similar asymptotic expansion is given.

Corollary 3. Let f be a holomorphic primitive cusp form of even
weight, square-free level N and trivial character. Then

T�

0

|L(f, 1/2 + it)|2 dt = afT lnT +

[
bf + af ln

(√
N

2πe

)]
T +O(T/lnT ).

Notation. If f and g are some functions of the real variable, then
f(x) �A g(x) or f(x) = OA(g(x)) mean that |f(x)| is smaller than a con-
stant, which only depends on A, times |g(x)| for large x. Similarly, f � g
means f(x)� g(x) and g(x)� f(x).

From the Riemann zeta function ζ, we define, for any positive square-free
integer N ,

ζ(N)(s) =
∏
p|N

(
1− 1

ps

)
ζ(s).
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2. Review of L-functions of primitive cusp forms. For this sec-
tion, we may refer to [IK04, Chap. 14]. Throughout this paper, f denotes a
holomorphic primitive cusp form of even weight k and square-free level N .
The Fourier expansion of f at the cusp ∞ is given by

f(z) =
∑
n≥1

λf (n)n(k−1)/2e2iπnz

for every complex number z in the upper half-plane with the arithmetic
normalisation λf (1) = 1. The Fourier coefficients λf (n) satisfy the multi-
plicative relations

λf (n)λf (m) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)
,(3)

λf (mn) =
∑

d|(m,n)
(d,N)=1

µ(d)λf

(
m

d

)
λf

(
n

d

)
,(4)

for all positive integers m and n. Since λf (1) 6= 0, we may define the convo-
lution inverse (µf (n)) of the sequence (λf (n)). This is an arithmetic multi-
plicative function which satisfies, for every prime number p,

µf (1) = 1, µf (p) = −λf (p),
(5)

µf (p2) = λf (p)2 − λf (p2) =

{
1 if p - N,
0 if p |N,

µf (pj) = 0 if j ≥ 3.(6)

We consider

L(f, s) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
+ χ0(p)

1

p2s

)−1
=
∏
p

(
1−

αf (p)

ps

)−1(
1−

βf (p)

ps

)−1
,

which is an absolutely convergent and non-vanishing Dirichlet series, an
Euler product on <s > 1, where χ0 denotes the trivial character modulo N
and αf (p), βf (p) are the complex roots of the equation X2 − λf (p)X + χ0(p)
= 0. Moreover, the function

Λ(f, s) =

(√
N

2π

)s
Γ

(
s+

k − 1

2

)
L(f, s) = L∞(f, s)L(f, s)

is the completed L-function of L(f, s). It can be extended to a holomorphic
function on C and satisfies the functional equation

Λ(f, s) = ε(f)Λ(f, 1− s)
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where ε(f) = ±1. We remark that, by the duplication formula for the gamma
function, the local factor at infinity can be written as

L∞(f, s) =

(
2k

8π

)1/2(√N
π

)s
Γ

(
s

2
+
k − 1

4

)
Γ

(
s

2
+
k + 1

4

)
.(7)

3. Mollified second moment of L-functions of modular forms.
This section contains the proof of Theorem 1. We define the sequence (µf (n))
to be the convolution inverse of (λf (n))n≥1, and we define a mollifier ψ by

ψ(s) =
∑
n≤M

µf (n)

ns+1/2−σ0
P

(
ln(M/n)

lnM

)
(8)

with M = T ν , σ0 = 1/2−R/lnT where R is a positive real number and P
is a real polynomial satisfying P (0) = 0, P (1) = 1. In addition, we choose a
function w : R→ R which satisfies

w is smooth,(9a)

w is compactly supported with supp w ⊂ [T/4, 2T ],(9b)

w(j)(t)�j ∆
−j for each j ≥ 0, where ∆ = T/L and L = lnT.(9c)

For convenience, we set

If (α, β) =

∞�

−∞
w(t)L(f, 1/2 + α+ it)L(f, 1/2 + β − it)|ψ(σ0 + it)|2 dt.

To study the asymptotic behaviour of If (α, β), we need an explicit ex-
pression for L(f, s) with 0 ≤ <s ≤ 1. In Lemma 1, we get an exact formula,
also called the “approximate functional equation”, which gives an expression
for L(f, s + it)L(f, s − it) with s in the critical strip where we cannot use
the Dirichlet series. Thanks to this new relation, we may split If (α, β) into
a diagonal term (without oscillation) and an off-diagonal term (with oscilla-
tion). The off-diagonal contribution is bounded in Section 3.1, whereas the
diagonal term is estimated in Section 3.2.

Lemma 1. Let G be any entire function which decays rapidly in vertical
strips, even and normalised by G(0) = 1. Then for any complex numbers
α, β such that 0 ≤ |<α|, |<β| ≤ 1/2, we have

L(f, 1/2 + α+ it)L(f, 1/2 + β − it)

=
∑∑
m,n≥1

λf (m)λf (n)

m1/2+αn1/2+β

(
m

n

)−it
Vα,β(mn, t)

+Xα,β,t

∑∑
m,n≥1

λf (m)λf (n)

m1/2−βn1/2−α

(
m

n

)−it
V−β,−α(mn, t)
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where

gα,β(s, t) =
L∞(f, 1/2 + α+ s+ it)L∞(f, 1/2 + β + s− it)

L∞(f, 1/2 + α+ it)L∞(f, 1/2 + β − it)
,(10)

Vα,β(x, t) =
1

2iπ

�

(1)

G(s)

s
gα,β(s, t)x−s ds,(11)

Xα,β,t =
L∞(f, 1/2− α− it)L∞(f, 1/2− β + it)

L∞(f, 1/2 + α+ it)L∞(f, 1/2 + β − it)
.

We do not give the proof of this lemma, which is essentially the same as
in [IK04, Theorem 5.3]. Nevertheless, it will be useful to have good approx-
imations of Xα,β,t, gα,β(s, t) and Vα,β(x, t).

Lemma 2. For large t and for s� tε in any vertical strip, we have

Xα,β,t =

(
t
√
N

2π

)−2(α+β)(
1 +

i(α2 − β2)
t

+O

(
1

t2

))
,(12)

gα,β(s, t) =

(
t
√
N

2π

)2s(
1 +O

(
|s2|
t

))
.(13)

In addition, for each integer j ≥ 0 and for all real A > 0, we have

tj
∂j

∂tj
Vα,β(x, t)�A,j

(
1 +
|x|
t2

)−A
.(14)

Proof. We may write

Xα,β,t =

(√
N

2π

)−2(α+β)Γ (k/2− α− it)Γ (k/2− β + it)

Γ (k/2 + α+ it)Γ (k/2 + β − it)
,

gα,β(s, t) =

(√
N

2π

)2sΓ (k/2 + α+ s+ it)Γ (k/2 + β + s− it)
Γ (k/2 + α+ it)Γ (k/2 + β − it)

.

Then the first part of the lemma is a consequence of the following Stirling
formula with s = σ + iτ in any vertical strip:

Γ (s) =
√

2π |τ |σ−1/2e−
π
2
|τ |ei(τ ln |τ |−τ+

π
2
(σ−1/2) sgn(τ))

×
(

1− i(σ − 1/2)2 − 1/12

2τ
+O

(
1

τ2

))
.

We refer to [Ten95, Corollaire 0.13]. To prove (14), we move the integration
line to <s = A far to the right and by (13), we obtain the desired bound if
t2 � x. In the case x� t2, the result follows easily from trivial bounds.

Thanks to the above functional equation, we may split If (α, β) as a
sum of diagonal terms and off-diagonal terms. More precisely, opening the
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mollifier ψ, we may write

(15) If (α, β) =
∑
a,b≤M

µf (a)µf (b)√
ab

P

(
ln(M/a)

lnM

)
P

(
ln(M/b)

lnM

)
× [ID1

a,b (α, β) + ID2
a,b (α, β) + IND1

a,b (α, β) + IND2
a,b (α, β)]

with

ID1
a,b (α, β) =

∑
am=bn

λf (m)λf (n)

m1/2+αn1/2+β

∞�

−∞
w(t)Vα,β(mn, t) dt,

ID2
a,b (α, β) =

∑
am=bn

λf (m)λf (n)

m1/2−βn1/2−α

∞�

−∞
w(t)Xα,β,tV−β,−α(mn, t) dt,

IND1
a,b (α, β) =

∑
am6=bn

λf (m)λf (n)

m1/2+αn1/2+β

∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt,

IND2
a,b (α, β) =

∑
am 6=bn

λf (m)λf (n)

mn1/2−βn1/2−α

∞�

−∞
w(t)Xα,β,t

(
am

bn

)−it
V−β,−α(mn, t) dt.

3.1. Evaluation of off-diagonal terms. In this part, we evaluate the
size of off-diagonal terms. More precisely, we prove the following proposition.

Proposition 1. If 0 < ν < 1−2θ
4+2θ and if α, β are complex numbers

satisfying α, β � L−1 then there exists ε > 0 such that∑
a,b≤M

µf (a)µf (b)√
ab

P

(
ln(M/a)

lnM

)
P

(
ln(M/b)

lnM

)
[IND1
a,b (α, β) + IND2

a,b (α, β)]

� T 1−ε.

The main tool of the proof of this proposition is a theorem about shifted
convolution sums on average.

3.1.1. Initial lemmas. In order to prove the previous proposition, we
begin by getting rid of some harmless terms occurring in the definition of

IND1
a,b (α, β).

Lemma 3. Let ε > 0, 0 < γ < 1, let α, β � L−1 be complex numbers
and let a, b ≤ T ν be positive integers. Then, for all real A > 0,

(16) IND1
a,b (α, β)

=
∑

am6=bn
mn�T 2+ε

|am
bn
−1|�T−γ

λf (m)λf (n)

m1/2+αn1/2+β

∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt+O(T−A).
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Proof. Firstly, by (14) with j = 0, for all real A > 0 we get
∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt�A T

(
T 2

mn

)A
.

As a consequence, for A > 1/2, since |λf (n)| ≤ τ(n)� nε and α, β � L−1,
we may write∑

am 6=bn
mn>T 2+ε

λf (m)λf (n)

m1/2+αn1/2+β

∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt

� T 1+2A
∑

mn>T 2+ε

τ(m)τ(n)

m1/2+A+<αn1/2+A+<β

� T 1+2A
∑

h>T 2+ε

1

h1/2+A−ε
� T 2−Aε � T−A.

Then, using (14) for each integer j and since w(j)(t) � ∆−j , for all real
A > 0 we have, uniformly with respect to x,

∂j

∂tj
[w(t)Vα,β(x, t)]� ∆−j

(
T 2

|x|

)A
.

Hence, if am 6= bn, after j integrations by parts we get
∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt

=
1(

i ln am
bn

)j ∞�
−∞

(
am

bn

)−it ∂j
∂tj

[w(t)Vα,β(x, t)] dt� T

∆j
∣∣ln am

bn

∣∣j
(
T 2

mn

)A
.

Therefore, with A = 1/2 + max {<α,<β} + δ and δ > 0, using the lower
bound x/2 ≤ ln(1 + x) for 0 < x < 1, we have∑

am6=bn
|am
bn
−1|>T−γ

λf (m)λf (n)

m1/2+αn1/2+β

∞�

−∞
w(t)

(
am

bn

)−it
Vα,β(mn, t) dt

� T 1+2A+jγ

∆j

∑
m,n≥1

τ(m)τ(n)

m1/2+<α+An1/2+<β+A
.

Since γ < 1, the result follows easily by choosing j large.

We introduce a dyadic partition of unity for sums over m and n. We fix
an arbitrary smooth function ρ : ]0,∞[ → R, compactly supported in [1, 2]
and with ∞∑

`=−∞
ρ(2−`/2x) = 1
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(see [Har03, Section 5]). For each integer `, we define

ρ`(x) = ρ(x/A`) with A` = 2`/2T γ .

In order to study the asymptotic behaviour of IND1
a,b (α, β), we define

(17) Fh;`1,`2(x, y)

=
a1/2+αb1/2+β

x1/2+αy1/2+β

∞�

−∞
w(t)

(
1 +

h

y

)−it
Vα,β

(
xy

ab
, t

)
dt× ρ`1(x)ρ`2(y).

Lemma 4. Let ε > 0, 0 < γ < 1, let α, β � L−1 be complex numbers
and let a, b ≤ T ν be positive integers. Then, for all real A > 0,

(18) IND1
a,b (α, β)

=
∑

A`1A`2�abT
2+ε

A`1�A`2
A`1 ,A`2�T

γ

∑
0<|h|�T−γ

√
A`1A`2

∑
am−bn=h

λf (m)λf (n)Fh;`1,`2(am, bn)+O(T−A).

Proof. For convenience, we define

H(x, y) =
a1/2+αb1/2+β

x1/2+αy1/2+β

∞�

−∞
w(t)

(
x

y

)−it
Vα,β

(
xy

ab
, t

)
dt.

From the previous lemma and using the partition of unity, we may write

IND1
a,b (α, β)

=
∑
`1,`2

∑
h6=0

∑
am−bn=h
mn�T 2+ε

|am
bn
−1|�T−γ

λf (m)λf (n)H(am, bn)ρ`1(am)ρ`2(bn) +O(T−A).

First, if |h| ≥
√
A`1A`2 T

−γ then

max

{∣∣∣∣ambn −1

∣∣∣∣, ∣∣∣∣ bnam−1

∣∣∣∣}2

≥
∣∣∣∣ambn −1

∣∣∣∣ ∣∣∣∣ bnam−1

∣∣∣∣ =
h2

ambn
� h2

A`1A`2
≥ T−2γ .

Secondly, if |`1 − `2| ≥ 3, for instance if `1 − `2 ≥ 3, then

am

bn
− 1 ≥ 2(`1−`2)/2

2
− 1 ≥

√
2− 1� 1.

Therefore we may assume A`1 � A`2 . Thirdly, if A`2 ≤ T γ then∣∣∣∣ambn − 1

∣∣∣∣ =
h

bn
≥ h

2A`2
� T−γ .

Thus we may assume A`2 ≥ T γ and, in the same way, A`1 ≥ T γ . Finally,
since am− bn = h, we get H(am, bn)ρ`1(am)ρ`2(bn) = Fh;`1,`2(am, bn).
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3.1.2. Shifted convolution sums. The core of the proof of our theorem
is the following bound, which is a generalisation of [Blo05, Theorem 2], for
shifted convolution sums on average. We define θ to be the exponent in the
Ramanujan–Petersson conjecture, which claims

|λ(n)| ≤ τ(n)nθ(19)

for eigenvalues λ(n) of the Hecke operator Tn acting on the space of weight
0 Maaß cusp forms of level N .

Theorem 3. Let `1, `2, H and h1 be positive integers. Let M1, M2, P1,
P2 be real numbers greater than 1. Let {gh} be a family of smooth functions

supported in [M1, 2M1] × [M2, 2M2] with ‖g(ij)h ‖∞ �i,j (P1/M1)
i(P2/M2)

j

for all i, j ≥ 0. Let (a(h)) be a sequence of complex numbers such that

a(h) 6= 0 ⇒ h ≤ H, h1 |h and (h1, h/h1) = 1.

If `1M1 � `2M2 � A and if there exists ε > 0 such that

H � A

max{P1, P2}2
1

(`1`2M1M2P1P2)ε
(20)

then, for all real ε > 0,

H∑
h=1

a(h)
∑

m1,m2≥1
`1m1−`2m2=h

λf (m1)λf (m2)gh(m1,m2)

�A1/2hθ1‖a‖2(P1+P2)
3/2

[√
P1+P2+

(
A

max{P1,P2}

)θ(
1+

√
(h1, `1`2)H

h1`1`2

)]
× (`1`2M1M2P1P2H)ε.

Proof. The proof is a direct generalisation of the proof of [Blo05, Theo-
rem 2], so we only give an outline. We set

Σ(`1, `2, H, a) =
H∑
h=1

a(h)
∑

m1,m2≥1
`1m1−`2m2=h

λf (m1)λf (m2)gh(m1,m2).

We also set∆ = min{P1/(`1M1), P2/(`2M2)}, letQ ≥ 1/∆ be a large param-
eter and set δ = 1/Q, so that δ ≤ ∆. Let φ be a smooth function compactly
supported in [−∆−1, ∆−1] with φ(0) = 1 and such that j ‖φ(j)‖∞ �j ∆

j

for all integers. Then we define

Wh(x, y) = gh(x, y)φ(`1x− `2y − h).

In addition, we introduce another smooth function w : R → R compactly
supported in [Q, 2Q] and such that ‖w(j)‖∞ �j Q

−j . If ϕ denotes Euler’s
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phi function, let

Λ =
∑

q≡0 [N`1`2]

w(q)ϕ(q) � Q2

N`1`2
.

As a result, we can rewrite

Σ(`1, `2, H, a)

=

H∑
h=1

a(h)

1�

0

∑
m1,m2≥1

λf (m1)λf (m2)e(`1m1α)e(−`2m2α)Wh(m1,m2)e(−hα) dα.

By Jutila’s circle method (see [Blo05, Lemma 3.1]), we build an approxi-
mation Ĩ to the characteristic function on [0, 1], which splits the α-integral
into two parts, according to whether α is in a minor arc or a major arc.
We easily estimate the contribution of the minor arcs using our bound for
the L2([0, 1])-norm of 1− Ĩ, and we can write the contribution of the major
arcs as

1

2δΛ

H∑
h=1

a(h)
∑

q≡0 [N`1`2]

w(q)
∑∗

d(q)

δ�

−δ

∑
m1,m2≥1

λf (m1)λf (m2)

× e
(
`1m1

(
d

q
+ η

))
e

(
−`2m2

(
d

q
+ η

))
Wh(m1,m2)e

(
−h
(
d

q
+ η

))
dη.

We transform short sums of exponentials into long sums of exponentials by
means of a Voronöı summation formula (see [Blo05, Lemma 2.2] or [KMV02,
Appendix A]). If S(m,n; q) denotes the classical Kloosterman sum, the ma-
jor arcs contribution becomes

1

2δΛ

H∑
h=1

a(h)
∑

q≡0 [N`1`2]

w(q)

δ�

−δ
e(−ηh)

×
∑

m1,m2≥1
λf (m1)λf (m2)S(−h, `2m2 − `1m1; q)Gq,h,η(m1,m2) dη

where

Gq,h,η(x1, x2) =
4π2`1`2
q2

∞�

0

∞�

0

Wh(t1, t2)e(`1t1η − `2t2η)

× Jk−1
(

4π`1
√
x1t1

q

)
Jk−1

(
4π`2
√
x2t2

q

)
dt1 dt2.

We split this sum according to the value of `2m2 − `1m1. The diagonal
contribution when `1m1 = `2m2 is easily bounded. It remains to estimate
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the off-diagonal contribution when `2m2 6= `1m1, which can be rewritten as

π`1`2
2Λ

δ�

−δ

∞�

0

∞�

0

H∑
h=1

aη,t1,t2(h)
∑
r 6=0

∑
1≤m1≤M1
1≤m2≤M2

`2m2−`1m1=r

λf (m1)λf (m2)

×
∑

q≡0 [N`1`2]

S(−h, r; q)
q

Φt1,t2

(
4π
√
h|r|
q

;m1,m2, r, h

)
dt1 dt2 dη

where

aη,t1,t2(h) = a(h)e(−ηh)Wh(t1, t2)e(`1t1η − `2t2η),

Φt1,t2(x;m1,m2, r, h) =
Qx√
h|r|

Jk−1

(
x`1
√
m1t1√
h|r|

)
Jk−1

(
x`2
√
m2t2√
h|r|

)
× w

(
4π
√
h|r|
x

)
w1(h)

and

M1 =
Q2P 2

1 k
2

`21M1
(`1`2M1M2P1P2)

ε, M2 =
Q2P 2

2 k
2

`22M2
(`1`2M1M2P1P2)

ε.

The asymptotic behaviour of Gq,h,η allows us to restrict the sums over m1

and m2 to m1 ≤ M1 and m2 ≤ M2. Applying the Kuznetsov trace for-
mula (see [Blo05, Lemma 2.4] or [DI83, Theorem 1]), we decompose this
off-diagonal term as a sum of three terms: the contribution of the discrete
spectrum, of the continuous spectrum and of the holomorphic cusp forms.
All of them will be evaluated by means of large sieve inequalities (see [Blo05,
Lemma 2.5] or [DI83, Theorem 2]). In the discrete spectrum, there may be
exceptional eigenvalues even though Selberg’s conjecture predicts that they
do not exist. We prove that the contribution of the non-exceptional eigen-
values, called the real spectrum, is bounded by

A1/2‖a‖2hθ1(P1 + P2)
3/2

(√
P1 + P2 +

√
H(h1, `1`2)

h1`1`2

)
Qε

whereas we bound the contribution of the exceptional eigenvalues by

A1/2+θhθ1‖a‖2(P1 + P2)
3/2−θ

(
1 +

√
H(h1, `1`2)

h1`1`2

)
Qε.

In addition, we show that the contributions of the continuous spectrum and
of the holomorphic cusp forms are bounded by

A1/2‖a‖2(P1 + P2)
3/2

(√
P1 + P2 +

√
H(h1, `1`2)

h1`1`2

)
Qε,
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which is smaller than the estimate of the real spectrum. The result follows
easily from the last three estimates.

Remark 4. In [Blo05], a factor
(
LM
HP

)θ
appears, which could become(

A
H(P1+P2)

)θ
in our theorem, and which comes from the contribution of pos-

sibly exceptional eigenvalues in the discrete spectrum. However, we only find(
A

P1+P2

)θ
.

Let us determine the required bounds for the test function in our case.

Lemma 5. Let α, β � L−1 be complex numbers and let σ be any positive
real number. For all non-negative integers i and j, we have

xiyj
∂i+jFh;`1,`2
∂xi∂yj

(x, y)�i,j

(
a

A`1

)1/2+<α+σ( b

A`2

)1/2+<β+σ
T 1+2σ(lnT )j ,

and the implicit constant does not depend on h.

Proof. Let P0(Y ) = 1 and Pj(Y ) =
∏j−1
`=0(Y − `) for j ≥ 1. Let <s =

σ > 0. Then

yj
∂j

∂yj

( �

R

w(t)(1 + h/y)−itgα,β(s, t) dt
)

=
�

R

w(t)gα,β(s, t)(1 + h/y)−itQj(t) dt

=
�

R

(1 + h/y)−it

[i ln(1 + h/y)]j
∂j

∂tj
[w(t)gα,β(s, t)Qj(t)] dt

where Qj(t) =
∑j

r=0

(
j
r

)
Pr(it)Pj−r(−it)(1 + h/y)−(j−r). Since

Q
(r)
j (t)�

∣∣∣∣ h/y

1 + h/y

∣∣∣∣jtj−r for r ≤ j

and ∂r

∂tr [w(t)gα,β(s, t)]� T 2σ∆−r, we get

∂j

∂tj
[w(t)gα,β(s, t)Qj(t)]�s,j T

2σ

∣∣∣∣ h/y

1 + h/y

∣∣∣∣j(lnT )j

and the implicit constant depends polynomially on s. Since h/y � T−γ in
our range of summation, we have

yj
∂j

∂yj

( �

R

w(t)(1 + h/y)−itgα,β(s, t) dt

)
�s,j T

1+2σ(lnT )j(21)
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and the implicit constant does not depend on h. Writing

Fh;`1,`2(x, y) =

ρ`1(x)ρ`2(y)

2iπ

�

(σ)

G(s)

s

(
a

x

)1/2+α+s( b
y

)1/2+β+s �
R

w(t)

(
1+

h

y

)−it
gα,β(s, t) dt ds,

the result follows easily from the Leibniz formula and the bound (21).

Remark 5. The trivial bound for shifted convolution sums, namely tak-
ing absolute values and applying the Ramanujan–Petersson bound on aver-
age, is given, for all ε > 0, by∑

`1m1−`2m2=h

λf (m1)λf (m2)gh(m1,m2)�ε min{M1,M2}(M1M2)
ε.(22)

The trivial bound (22) and Lemma 5 imply the following corollary.

Corollary 4. For all ε > 0, we have

IND1
a,b (α, β)�ε min{a, b}T 1+ε.

Remark 6. This trivial bound of IND1
a,b (α, β) fails to prove Proposition 1.

In other words, taking care of the oscillations of the Hecke eigenvalues is
required. First, we apply the following bound, proved by Blomer [Blo04], for
shifted convolution sums.

Theorem 4 (Blomer [Blo04]). Let ε > 0, and let `1, `2 and h be
positive integers. Let M1, M2, P1 and P2 be real numbers greater than 1.
Let gh be a smooth function supported in [M1, 2M1] × [M2, 2M2] such that

‖g(ij)h ‖∞ �i,j (P1/M1)
i(P2/M2)

j for all i, j ≥ 0. Then∑
`1m1−`2m2=h

λf (m1)λf (m2)gh(m1,m2)�ε,P1,P2,N,k (`1M1 + `2M2)
1/2+θ+ε.

This bound is uniform in `1, `2, h, and the dependence on P1, P2, N and k
is polynomial.

Remark 7. Remembering the trivial bound (22), this theorem agrees
with the square-root cancellation philosophy.

Theorem 4 and Lemma 5 imply the following proposition, which gives a
first admissible bound, and which will be improved in Proposition 3.

Proposition 2. Let α, β � L−1 be complex numbers and a, b be positive
integers. For all ε > 0, we have

IND1
a,b (α, β)�ε (ab)3/4+θ/2T 1/2+θ+ε.



216 D. Bernard

Proof. By Theorem 4, Lemma 5 gives∑
am−bn=h

λf (m)λf (n)Fh;`1,`2(am, bn)

�
(

a

A`1

)1/2+<α+σ( b

A`2

)1/2+<β+σ
T 1+2σ(lnT )κ(A`1 +A`2)1/2+θ+ε

where κ is a constant. Thus, thanks to Lemma 4 and with 1/2 + θ + ε −
<α−<β − 2σ > 0, we get

IND1
a,b (α, β)

� T 1−γ+2σ(lnT )κ

×
∑

A`1A`2�abT
2+ε

A`1�A`2
A`1 ,A`2�T

γ

(
a

A`1

)1/2+<α+σ( b

A`2

)1/2+<β+σ√
A`1A`2(A`1 +A`2)1/2+θ+ε

� T 1−γ+2σ(ab)1/2+σ(lnT )κ
∑

T γ�A`1�
√
ab T 1+ε/2

A
1/2+θ+ε−<α−<β−2σ
`1

� T 1−γT 1/2+θ+ε(ab)3/4+θ/2
∑

T γ�A`1�
√
ab T 1+ε/2

1.

Hence
∑

T γ�A`1�
√
ab T 1+ε/2 1 =

∑
1≤2`1/2�

√
ab T 1−γ+ε/2 1� lnT . Finally, the

result easily follows from the choice γ = 1− ε.

Remark 8. We are tempted to solve the shifted convolution problem
on average (over h) and to take care of the resulting additional oscillations
of the Hecke eigenvalues. For instance, using [Ric06, Theorem 6.3], one can
check that, for all ε > 0,

IND1
a,b (α, β)�ε (ab)3/4+θ/2T 3/2+θ+ε.

It turns out that this bound is not admissible. This is due to the fact that
the length of the h-sum is very small. That is why we need a bound for short
sums of shifted convolution sums, which is given by Theorem 3.

Proposition 3. Let α, β � L−1 be complex numbers and a, b be positive
integers. For all ε > 0, we have

IND1
a,b (α, β)�ε (ab)(1+θ)/2T 1/2+θ+ε.

Proof. We apply Theorem 3 with H = T−γ
√
A`1A`2 , h1 = 1 and

a(h) =

{
1 if h ≤ H,
0 otherwise.
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From Lemma 4, we get

IND1
a,b (α, β)�

∑
A`1A`2�abT

2+ε

A`1�A`2
A`1 ,A`2�T

γ

(
a

A`1

)1/2+<α+σ( b

A`2

)1/2+<β+σ
T 1+2σ+ε

√
A`1H

×
[√

lnT +

(
A`1
lnT

)θ(
1 +

√
H

ab

)]
� (ab)1/2+θT 1+2σ+ε−γ/2

∑
T γ�A`�

√
ab T 1+ε

A
θ−(<α+<β+2σ)
`

� (ab)(1+θ)/2T 1−γ/2+θ+ε.

Finally, the result follows for γ = 1− ε.

Corollary 5. Let α, β � L−1 be complex numbers and a, b be positive
integers. For all ε > 0, we have

IND2
a,b (α, β)�ε (ab)(1+θ)/2T 1/2+θ+ε.

Proof. Set

w1(t) = w(t)

(
t
√
N

2π

)−2(α+β)(
1 +

i(α2 − β2)
t

)
.

Thanks to (12), we may write

IND2
a,b (α, β) =

∑
am6=bn

λf (m)λf (n)

m1/2−βn1/2−α

∞�

−∞
w1(t)

(
am

bn

)−it
V−β,−α(mn, t) dt

+O

(
1

T

∑
mn�T 2+ε

|λf (m)λf (n)|
m1/2−<βn1/2−<α

)
.

The error term becomes O(T ε) and since w1 satisfies (9a)–(9c) we may apply
Proposition 3 up to replacing w by w1 and (α, β) by (−β,−α).

Proof of Proposition 1. Using Proposition 3 and Corollary 5, we trivially
bound the off-diagonal term by∑
a,b≤M

µf (a)µf (b)√
ab

P

(
ln(M/a)

lnM

)
P

(
ln(M/b)

lnM

)
[IND1
a,b (α, β) + IND2

a,b (α, β)]

� T 1/2+θ+ε
∑
a,b≤M

(ab)θ/2 � T 1/2+θ+εT ν(2+θ).

Thus, if ν < 1−2θ
4+2θ , the off-diagonal part of If (α, β) is bounded by T 1−ε.
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3.2. Evaluation of diagonal terms. For i = 1 or i = 2, let

(23) IDif (α, β) =
∑
a,b≤M

µf (a)µf (b)√
ab

P

(
ln(M/a)

lnM

)
P

(
ln(M/b)

lnM

)
IDia,b(α, β).

We consider the diagonal part IDf (α, β) of the mollified second moment.
Thus,

IDf (α, β) = ID1
f (α, β) + ID2

f (α, β).(24)

In this section, we prove the following proposition:

Proposition 4. Let 0 < ν < 1. For complex numbers α, β � L−1 such
that |α+ β| � L−1, we have

IDf (α, β) = ŵ(0)c(α, β) +O(T (lnL)4/L)

where c(α, β) is defined in (2).

3.2.1. Initial lemmas.

Lemma 6. Let Ωα,β be the set of vectors (u, v, s) in C3 satisfying
<u+ <v > −1/2,

<s > −1/4−<α/2−<β/2,
<u+ <s > −1/2−<α,
<v + <s > −1/2−<β.

Then ∑
a,b,m,n≥1
am=bn

µf (a)µf (b)λf (m)λf (n)

a1/2+vb1/2+um1/2+α+sn1/2+β+s

=
L(f × f, 1 + α+ β + 2s)L(f × f, 1 + u+ v)

L(f × f, 1 + α+ u+ s)L(f × f, 1 + β + v + s)
Aα,β(u, v, s)

whereAα,β(u, v, s) is given by an absolutely convergent Euler product on Ωα,β.

Proof. Set

P =
∑

a,b,m,n≥1
am=bn

µf (a)µf (b)λf (m)λf (n)

a1/2+vb1/2+um1/2+α+sn1/2+β+s
.

Using (4), for any prime number p such that p - N , we get∑
`≥0

λf (p`)λf (p`+1)

p`s
= λf (p)

∑
`≥0

λf (p`)2

p`s
− 1

ps

∑
`≥0

λf (p`+1)λf (p`)

p`s
,

∑
`≥0

λf (p`)λf (p`+2)

p`s
= λf (p2)

∑
`≥0

λf (p`)2

p`s
−
λf (p)

ps

∑
`≥0

λf (p`+1)λf (p`)

p`s
.
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Thus, we deduce∑
`≥0

λf (p`)λf (p`+1)

p`s
= λf (p)

(
1 +

1

ps

)−1∑
l≥0

λf (p`)2

p`s
,(25)

∑
`≥0

λf (p`)λf (p`+2)

p`s
=

(
1 +

1

ps

)−1(
λf (p2)− 1

ps

)∑
`≥0

λf (p`)2

p`s
.(26)

In addition, since

P =
∏
p

( ∑
`1,`2,`3,`4≥0
`1+`3=`2+`4

µf (p`1)µf (p`2)λf (p`3)λf (p`4)

p`1(1/2+v)p`2(1/2+u)p`3(1/2+α+s)p`4(1/2+β+s)

)
,

using (5) and (6) we get

P =
∏
p-N

[(
1 +

λf (p)2

p1+u+v
+

1

p2(1+u+v)

)∑
`≥0

λf (p`)2

p`(1+α+β+2s)

− λf (p)

(
1

p1+v+β+s
+

1

p1+u+α+s

)(
1 +

1

p1+u+v

)∑
`≥0

λf (p`)λf (p`+1)

p`(1+α+β+2s)

+

(
1

p2(1+v+β+s)
+

1

p2(1+u+α+s)

)∑
`≥0

λf (p`)λf (p`+2)

p`(1+α+β+2s)

]

×
∏
p|N

[(
1 +

λf (p)2

p1+u+v
−

λf (p)2

p1+α+u+s
−

λf (p)2

p1+β+v+s

)∑
`≥0

λf (p`)2

p`(1+α+β+2s)

]
.

Thus, it follows from (25) and (26) that

P=L(f × f, 1 + α+ β + 2s)
∏
p|N

[
1 +

λf (p)2

p1+u+v
−

λf (p)2

p1+α+u+s
−

λf (p)2

p1+β+v+s

]

×
∏
p-N

[(
1 +

λf (p)2

p1+u+v
+

1

p2(1+u+v)

)(
1− 1

p2(1+α+β+2s)

)
− λf (p)2

(
1− 1

p1+α+β+2s

)(
1

p1+v+β+s
+

1

p1+u+α+s

)(
1 +

1

p1+u+v

)
+

(
1− 1

p1+α+β+2s

)(
λf (p2)− 1

p1+α+β+2s

)(
1

p2(1+v+β+s)
+

1

p2(1+u+α+s)

)]
= L(f × f, 1 + α+ β + 2s)

×
∏
p

[
1 +

λf (p)2

p1+u+v
−

λf (p)2

p1+α+u+s
−

λf (p)2

p1+β+v+s
+ χ0(p)Ep

]
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where

Ep =
1

p2

[
1

p2(u+v)
− 1

p2(α+β+2s)
−
λf (p)2

ps

(
1

pu+α
+

1

pv+β

)(
1

pu+v
− 1

pα+β+2s

)
+
λf (p2)

p2s

(
1

p2(u+α)
+

1

p2(v+β)

)]
+

λf (p)2

p3+α+β+3s

[
1

pu+v

(
1

pu+α
+

1

pv+β

)
− 1

ps

(
1

p2(u+α)
+

1

p2(v+β)

)
− 1

pu+v+α+β+s

]
+

1

p4+2(α+β+2s)

[
1

p2(u+α+s)
+

1

p2(v+β+s)
− 1

p2(u+v)

]
.

Since the Rankin–Selberg L-function L(f × f, z) admits, for <z > 1, the
Euler product

L(f × f, z) =
∏
p

Lp(f × f, z)

with

Lp(f × f, z) =

(
1−

αf (p)2

pz

)−1(
1−

αf (p)βf (p)

pz

)−2(
1−

βf (p)2

pz

)−1
=

(
1−

λf (p)2

pz
+ χ0(p)

[
2 + λf (p)2

p2z
−
λf (p)2

p3z
+

1

p4z

])−1
,

we may write

1 +
λf (p)2

p1+u+v
−

λf (p)2

p1+α+u+s
−

λf (p)2

p1+β+v+s
+ χ0(p)Ep

=
Lp(f × f, 1 + u+ v)

Lp(f × f, 1 + u+ α+ s)Lp(f × f, 1 + v + β + s)
×[

1 +Lp(f × f, 1 +u+α+ s)Lp(f × f, 1 + v+β+ s)

8∑
r=2

∑
`

ar,`(p)

pr+Xr,`(u,v,α,β,s)

]
where the sum over ` is finite, Xr,` are linear forms in u, v, α, β, s, and ar,`(p)
are complex numbers with |ar,`(p)| � 1. As a result, we obtain

P =
L(f × f, 1 + α+ β + 2s)L(f × f, 1 + u+ v)

L(f × f, 1 + α+ u+ s)L(f × f, 1 + β + v + s)
Aα,β(u, v, s)

where

Aα,β(u, v, s) =
∏
p

[
1 +

∑
r,`

O

(
1

pr+Xr,`(<u,<v,<α,<β,<s)

)]
.

Then Aα,β(u, v, s) is an absolutely convergent Euler product in{<(α+ u+ s)
> −1}∩{<(β + v + s) > −1}∩

⋂
r,`{Xr,`(<u,<v,<α,<β,<s) > 1−r}. Mak-

ing explicit all the linear forms X2,`, we obtain {X2,`(<u,<v,<α,<β,<s) >
−1} = Ωα,β. Similarly, writing out all the linear forms Xr,`, we prove that
for (u, v, s) in Ωα,β we have Xr,`(<u,<v,<α,<β, s) > −r/2 ≥ 1 − r. As a
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result, Aα,β(u, v, s) is an absolutely convergent Euler product on Ωα,β and
defines a holomorphic function on Ωα,β.

Lemma 7. We have A0,0(0, 0, 0) = 1.

Proof. Thanks to Lemma 6, if <s > 0, we may write

A0,0(s, s, s) =
∑

a,b,m,n≥1
am=bn

µf (a)µf (b)λf (m)λf (n)

(ambn)1/2+s

=
∑
a,m≥1

µf (a)λf (m)

(am)1+2s

∑
n|am

µf (am/n)λf (n).

Since (µf (n)) is the convolution inverse of (λf (n)), we have∑
n|d

µf (d/n)λf (n) = δ(d).

Thus A0,0(s, s, s) = µf (1)λf (1) = 1. To conclude, we extend this relation to
s = 0 by continuity in the half-plane <s > 0.

Lemma 8. For all non-negative integers a, we have∑
n≤M

λf (n)2

n

(
ln
M

n

)a
=

Ress=1 L(f × f, s)
ζ(N)(2)

M�

1

1

r

(
ln
M

r

)a
dr +O((lnM)a).

Proof. We may find in [Ran39] the following asymptotic behaviour:∑
n≤x

λf (n)2 = x
Ress=1 L(f × f, s)

ζ(N)(2)
+O(x3/5).

After one integration by parts, we get∑
n≤M

λf (n)2

n

(
ln
M

n

)a
=

Ress=1 L(f × f, s)
ζ(N)(2)

∑
n≤M

1

n

(
ln
M

n

)a
+O((lnM)a).

Finally, the Euler–Maclaurin formula gives∑
n≤M

1

n

(
ln
M

n

)a
=

M�

1

1

r

(
ln
M

r

)a
dr +O((lnM)a).

3.2.2. Estimation of ID1
f (α, β). For positive integers i and j, and for

any positive real δ, let

(27) Jα,β(i, j)

=
1

(2iπ)2

�

(δ)

�

(δ)

Mu+v L(f × f, 1 + u+ v)Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

du

ui+1

dv

vj+1
.
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Lemma 9. Let α, β � 1/L be complex numbers. For positive integers i
and j, we have

Jα,β(i, j) =
(lnM)i+j−1

i!j! Ress=1 L(f×f, s)
d2

dxdy

[
Mαx+βy

1�

0

(x+u)i(y+u)j du
]∣∣∣
x=y=0

+O

(
Li+j−2

(
1 +

(lnL)2

Li−1

)(
1 +

(lnL)2

Lj−1

))
.

Proof. We use the Dirichlet series of L(f × f, s). Moving either the u or
the v integration line far to the right, we obtain

Jα,β(i, j) =
∑
n≤M

λf (n)2

n

× 1

(2iπ)2

�

(δ)

�

(δ)

(
M

n

)u+v ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

du

ui+1

dv

vj+1
.

Let

r
(i,j)
α,β (u, v) =

(
M

n

)u+v ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

1

ui+1vj+1
.

We consider the contour γ = γ1 ∪ γ2 ∪ γ3 with c > 0, Y � 1 large and

γ1 = {iτ : |τ | ≥ Y },
γ2 = {σ ± iY : −c/lnY ≤ σ ≤ 0},
γ3 = {−c/lnY + iτ : |τ | ≤ Y }.

By the standard zero-free region of L(f × f, s), we replace integration over
<u = <v = δ by integration over γ. Thus,

1

(2iπ)2

�

(δ)

�

(δ)

r
(i,j)
α,β (u, v) du dv

= Resu=0
1

2iπ

�

<v=δ
r
(i,j)
α,β (u, v) dv +

1

(2iπ)2

�

u∈γ

�

<v=δ
r
(i,j)
α,β (u, v) dv du

= Resu=v=0 r
(i,j)
α,β (u, v) + Resu=0

1

2iπ

�

v∈γ
r
(i,j)
α,β (u, v) dv

+ Resv=0
1

2iπ

�

u∈γ
r
(i,j)
α,β (u, v) du+

1

(2iπ)2

�

γ

�

γ

r
(i,j)
α,β (u, v) du dv.
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• We begin with the estimation of Resu=0
1

2iπ

	
v∈γ r

(i,j)
α,β (u, v) dv. We ex-

press the residue as a contour integral over a circle of radius 1/L. We get

Resu=0
1

2iπ

�

v∈γ
r
(i,j)
α,β (u, v) dv =

1

(2iπ)2

�

v∈γ

(M/n)v

L(f × f, 1 + β + v)

×
�

D(0,L−1)

(
M

n

)u ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)

du

ui+1

dv

vj+1
.

Furthermore, since |ζ(N)(2(1 + u + v))Aα,β(u, v, 0)| � 1 in our range of
integration and since

1

L(f × f, 1 + α+ u)
� α+ u� L−1 because u � 1/L,

we obtain

Resu=0
1

2iπ

�

v∈γ
r
(i,j)
α,β (u, v) dv � Li−1

�

v∈γ

(M/n)<v

|L(f × f, 1 + β + v)|
dv

|v|j+1
.

As −L′(f × f, z)/L(f × f, z) =
∑

n≥1 Λf (n)/nz with Λf (n) ≥ 0, we deduce
(cf. [Ten95, Section 3.10] and [IK04, Section 5.3]) that

1

L(f × f, σ + iτ)
� ln |τ |,

and it follows that

(28)
�

v∈γ

(M/n)<v

|L(f × f, 1 + β + v)|
dv

|v|j+1

�
�

|τ |≥Y

ln τ

|τ |j+1
dτ + lnY ·

0�

−c/lnY

dσ

|σ + iY |j+1

+

(
M

n

)− c
lnY

lnY ·
�

|τ |≤Y

dτ

|τ − ic/lnY |j+1

� lnY

Y j
+ (lnY )j+1

(
M

n

)− c
lnY

.

As a result, we get the bound

(29) Resu=0
1

2iπ

�

v∈γ
r
(i,j)
α,β (u, v) dv�Li−1 lnY ·

(
1

Y j
+(lnY )j

(
M

n

)− c
lnY
)
.

• Since r
(i,j)
α,β (u, v) = r

(j,i)
β,α (v, u), the previous bound immediately yields

(30) Resv=0
1

2iπ

�

u∈γ
r
(i,j)
α,β (u, v) du�Lj−1 lnY ·

(
1

Y i
+(lnY )i

(
M

n

)− c
lnY
)
.



224 D. Bernard

• By (28), we bound
	
γ

	
γ r

(i,j)
α,β (u, v) du dv:

(31)
1

(2iπ)2

�

γ

�

γ

r
(i,j)
α,β (u, v) du dv

=
1

(2iπ)2

�

γ

�

γ

(
M

n

)u+v ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

du dv

ui+1vj+1

�
�

γ

(M/n)<v

|L(f × f, 1 + β + v)|
dv

|v|j+1

�

γ

(M/n)<u

|L(f × f, 1 + α+ u)|
du

|u|i+1

�
(

lnY

Y j
+ (lnY )j+1

(
M

n

)− c
lnY
)(

lnY

Y i
+ (lnY )i+1

(
M

n

)− c
lnY
)

�(lnY )2
(

1

Y i+j
+ (lnY )i+j

(
M

n

)− c
lnY
)
.

• In addition, for any positive integer `, let

W` =
∑
n≤M

λf (n)2

n

(
1

Y `
+ (lnY )`

(
M

n

)− c
lnY
)
.

We can bound

W`�
1

Y `

∑
n≤ M

(Y lnY )`(lnY )/c

λf (n)2

n
+(lnY )`

∑
M

(Y lnY )`(lnY )/c
≤n≤M

λf (n)2

n

(
M

n

)− c
lnY

� L

Y `
+ (lnY )`

∑
0≤d≤ ln(Y lnY )

ln 2

2−d`
∑

M

(2d+1)`(lnY )/c
≤n≤ M

(2d)`(lnY )/c

λf (n)2

n

� L

Y `
+ (lnY )`+1.

As a consequence, by (29)–(31), we obtain

Jα,β(i, j) =
∑
n≤M

[
λf (n)2

n
Resu=v=0 r

(i,j)
α,β (u, v)

]
+O

(
Li−1Wj lnY + Lj−1Wi lnY +Wi+j(lnY )2

)
=
∑
n≤M

[
λf (n)2

n
Resu=v=0 r

(i,j)
α,β (u, v)

]
+O

[
Li−1 lnY ·

(
L

Y j
+ (lnY )j

)
+ Lj−1 lnY ·

(
L

Y i
+ (lnY )i

)
+ (lnY )2

(
L

Y i+j
+ (lnY )i+j

)]
.
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Choosing Y = L, which is allowed, yields the error term O((Li−1 + (lnL)2)
× (Lj−1 + (lnL)2)). Then

Jα,β(i, j) =
∑
n≤M

[
λf (n)2

n
Resu=v=0 r

(i,j)
α,β (u, v)

]
(32)

+O

(
Li+j−2

(
1 +

(lnL)2

Li−1

)(
1 +

(lnL)2

Lj−1

))
.

• We finish with the estimation of Resu=v=0 r
(i,j)
α,β (u, v). To do so, we

again express the residue as a contour integral over a circle of radius 1/L.
Thus

Resu=v=0 r
(i,j)
α,β (u, v) =

1

(2iπ)2

�

D(0,L−1)

�

D(0,L−1)

(
M

n

)u+v

×
ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

du

ui+1

dv

vj+1
.

Furthermore, since u � v � 1/L, we have

ζ(N)(2(1 + u+ v)) = ζ(N)(2) +O(1/L),

Aα,β(u, v, 0) = A0,0(0, 0, 0) +O(1/L),

1

L(f × f, 1 + α+ u)
=

α+ u

Ress=1 L(f × f, s)
(1 +O(1/L)),

1

L(f × f, 1 + β + v)
=

β + v

Ress=1 L(f × f, s)
(1 +O(1/L)).

With Lemma 7, we obtain

ζ(N)(2(1 + u+ v))Aα,β(u, v, 0)

L(f × f, 1 + α+ u)L(f × f, 1 + β + v)

= (α+ u)(β + v)
ζ(N)(2)

[Ress=1 L(f × f, s)]2
+O(1/L3).

Then

Resu=v=0 r
(i,j)
α,β (u, v) =

ζ(N)(2)

[Ress=1 L(f × f, s)]2

×
[

1

2iπ

�

D(0,L−1)

(
M

n

)uα+ u

ui+1
du

][
1

2iπ

�

D(0,L−1)

(
M

n

)v β + v

vj+1
dv

]
+O(Li+j−3).
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In addition, thanks to the Cauchy formula, for any positive integer `,

1

2iπ

�

D(0,L−1)

(
M

n

)uα+ u

u`+1
du

=
d

dx

[
eαx

2iπ

�

D(0,L−1)

(
M

n
ex
)u du

u`+1

]∣∣∣∣
x=0

=
d

dx

[
eαx

1

`!

d`

du`

[(
M

n
ex
)u]∣∣∣∣

u=0

]∣∣∣∣
x=0

=
1

`!

d

dx

[
eαx
(
x+ ln

M

n

)`]∣∣∣∣
x=0

=
1

`!

[
α

(
ln
M

n

)`
+ `

(
ln
M

n

)`−1]
.

Then we can write

Resu=v=0 r
(i,j)
α,β (u, v) =

ζ(N)(2)

i!j![Ress=1 L(f × f, s)]2

×
[
αβ

(
ln
M

n

)i+j
+ (αi+ βj)

(
ln
M

n

)i+j−1
+ ij

(
ln
M

n

)i+j−2]
+O(Li+j−3).

From (32) and by Lemma 8, we get

Jα,β(i, j) =
[Ress=1 L(f × f, s)]−1

i!j!

×
M�

1

(
α

(
ln
M

r

)i
+ i

(
ln
M

r

)i−1)(
β

(
ln
M

r

)j
+ j

(
ln
M

r

)j−1)dr
r

+O

(
Li+j−2

(
1 +

(lnL)2

Li−1

)(
1 +

(lnL)2

Lj−1

))
.

Changing the variable r to u with r = M1−u concludes the proof.

Lemma 10. If 0 < ν < 1 and α, β � L−1 are complex numbers with
|α+ β| � L−1 then

ID1
f (α, β) =

ŵ(0)

(α+ β) lnM

d2

dxdy

[
Mαx+βy

1�

0

P (x+ u)P (y + u) du
]∣∣∣
x=y=0

+O

(
T (lnL)4

L

)
.

Proof. We use the Mellin transformation to write

(
ln(M/a)

lnM

)i
=


i!

(lnM)i
1

2iπ

�

(1)

(
M

a

)v dv

vi+1
if 1 ≤ a ≤M,

0 if a > M.
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Set P (X) =
∑degP

i=1 aiX
i. Thus, from (23),

ID1
f (α, β) =

∞�

−∞
w(t)

∑
i,j≥1

aiaji!j!

(lnM)i+j
1

(2iπ)3

�

(1)

�

(1)

�

(1)

Mu+vG(s)

s
gα,β(s, t)

×
∑

a,b,m,n≥1
am=bn

µf (a)µf (b)λf (m)λf (n)

a1/2+vb1/2+um1/2+α+sn1/2+β+s
ds

du

uj+1

dv

vi+1
dt.

Due to Lemma 6, we can write

ID1
f (α, β)

=

∞�

−∞
w(t)

∑
i,j≥1

aiaji!j!

(lnM)i+j
1

(2iπ)3

�

(1)

�

(1)

�

(1)

Mu+vG(s)

s
gα,β(s, t)Aα,β(u, v, s)

× L(f × f, 1 + α+ β + 2s)L(f × f, 1 + u+ v)

L(f × f, 1 + α+ u+ s)L(f × f, 1 + β + v + s)
ds

du

uj+1

dv

vi+1
dt.

We specialize G to

G(s) = es
2 (α+ β)2 − (2s)2

(α+ β)2
.

As a result, G(s)L(f × f, 1 + α + β + 2s) is an entire function. First, we
move the integration lines from <u = <v = 1 to <u = <v = δ with δ small,
to ensure the absolute convergence of Aα,β(u, v, s). Secondly, we move the
integration line from <s = 1 to <s = −δ+ ε with 0 < ε < δ, crossing a pole
at s = 0. Since t � T , ν < 1 and gα,β(s, t)� T 2s, we can bound

∞�

−∞
w(t)

∑
i,j

aiaji!j!

(lnM)i+j
1

(2iπ)3

�

<u=δ

�

<v=δ

�

<s=−δ+ε

Mu+vG(s)

s
gα,β(s, t)

×Aα,β(u, v, s)
L(f × f, 1 + α+ β + 2s)L(f × f, 1 + u+ v)

L(f × f, 1+ α+ u+ s)L(f × f, 1+ β + v + s)
ds

du

uj+1

dv

vi+1
dt

�
∞�

−∞
|w(t)| dt T 2(−δ+ε)M2δ � T 1−(2−2ν)δ+ε � T 1−ε

for sufficiently small ε. Then, using some previous notation, this estimate
gives

ID1
f (α, β) = ŵ(0)L(f × f, 1 + α+ β)

∑
i,j

aiaji!j!

(lnM)i+j
Jα,β(i, j) +O(T 1−ε).

Thanks to Lemma 9 and since

L(f × f, 1 + α+ β) =
Ress=1 L(f × f, s)

α+ β
+O(1),
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we get

ID1
f (α, β) = ŵ(0)

[
Ress=1 L(f × f, s)

α+ β
+O(1)

][
1

Ress=1 L(f × f, s) lnM

× d2

dxdy

[
Mαx+βy

1�

0

P (x+ u)P (y + u) du
]∣∣∣
x=y=0

+O

(
(lnL)4

L2

)]
+O(T 1−ε)

=
ŵ(0)

(α+ β) lnM

d2

dxdy

[
Mαx+βy

1�

0

P (x+ u)P (y + u) du
]∣∣∣
x=y=0

+O

(
T (lnL)4

(α+ β)L2

)
+O(T/L).

We conclude using the assumption |α+ β| � L−1.

Remark 9. Sometimes, it may be useful to consider the relation

(33)
d2

dxdy

[
Mαx+βy

1�

0

P (x+ u)P (y + u) du
]∣∣∣
x=y=0

=

1�

0

(P ′(u) + α lnMP (u))
(
P ′(u) + β lnMP (u)

)
du.

Lemma 11. If 0 < ν < 1 and α, β � L−1 are complex numbers with
|α+ β| � L−1 then

ID2
f (α, β) = T−2(α+β)ID1

f (−β,−α) +O(T/L).

Proof. We write

ID2
a,b (α, β) =

∑
am=bn

λf (m)λf (n)

m1/2−βn1/2−α

∞�

−∞
w(t)

(
t
√
N

2π

)−2(α+β)
V−β,−α(mn, t) dt

+O

( ∑
am=bn

mn�T 2+ε

|λf (m)λf (n)|
m1/2−βn1/2−α

)
.

Let a′ = a/(a, b) and b′ = b/(a, b). Then, for all δ > 0, the above error term
becomes∑

am=bn
mn�T 2+ε

|λf (m)λf (n)|
m1/2−βn1/2−α

� 1

(a′b′)1/2−δ

∑
k�T 1+ε/2/

√
a′b′

1

k1−α−β−2δ
� T ε√

a′b′
.
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Therefore, if w2(t) = w(t)
(
t
√
N

2π

)−2(α+β)
, we may write

ID2
f (α, β) =

∑
a,b≤M

µf (a)µf (b)√
ab

P

(
ln(M/a)

lnM

)
P

(
ln(M/b)

lnM

)

×
[ ∑
am=bn

λf (m)λf (n)

m1/2−βn1/2−α

∞�

−∞
w2(t)V−β,−α(mn, t) dt

]
+O

(
T ε

∑
a,b≤M

1√
ab
√
a′b′

)
.

We also have∑
a,b≤M

1√
ab
√
a′b′
�
∑
k≤M

1

k

∑
a,b≤M/k

1

ab
�
∑
k≤M

1

k

(
ln
M

k

)2

� (lnM)3

and since w2 satisfies (9a)–(9c), up to replacing w by w2 and (α, β) by
(−β,−α), Lemma 10 gives

ID2
f (α, β) =

ŵ2(0)

(−α− β) lnM

d2

dxdy

[
M−αx−βy

1�

0

P (x+ u)P (y + u) du

]∣∣∣∣
x=y=0

+O(T (lnL)4/L).

Finally, due to the support of w, we can write
(
t
√
N

2π

)−2(α+β)
= T−2(α+β) +

O(1/L), which gives ŵ2(0) = T−2(α+β)ŵ(0) +O(T/L).

Proof of Proposition 4. From (24) and using Lemma 11, we can write

IDf (α, β) = ID1
f (α, β) + T−2(α+β)ID1

f (−β,−α) +O(T (lnL)4/L)

= ID1
f (α, β) + ID1

f (−β,−α) + ID1
f (−β,−α)[T−2(α+β) − 1]

+O(T (lnL)4/L).

Finally, using (33) and Lemma 10, we have

ID1
f (α, β) + ID1

f (−β,−α) = ŵ(0) +O(T (lnL)4/L).

Combining these relations, we get the result.

4. Effective proportion of zeros on the critical line. In this sec-
tion, we prove Corollary 1. From Theorem 1, we may deduce the following
theorem about the mollified second moment of L(f, s) and its derivative.

Theorem 5. Let Q be a polynomial with complex coefficients satisfying
Q(0) = 1. Let

V (s) = Q

(
− 1

2 lnT

d

ds

)
L(f, s).
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Then, if ν < 1−2θ
4+2θ , we have

1

T

T�

1

|V ψ(σ0 + it)|2 dt = c(P,Q, 2R, ν/2) + o(1)

where

c(P,Q, r, ξ) = 1 +
1

ξ

1�

0

1�

0

e2rs
[
d

dx

(
erξxQ(s+ ξx)P (x+ u)

)∣∣∣∣
x=0

]2
du ds.

We do not give the proof of this theorem, which is essentially the same
as the one in [You10, Theorem 1]. We refer to [You10, Sections 2 and 3] for
more details. Now, Q is a polynomial with complex coefficients of the shape

Q(x) = 1 +

M∑
n=1

in+1λn[(1− 2x)n − 1](34)

where M is a positive integer and (λ1, . . . , λM ) ∈ RM .
Let Nf (T ) (resp. Nf,0(T )) be the number of non-trivial zeros ρ (resp. on

the critical line) of L(f, s) with 0 < =ρ ≤ T for f a holomorphic primitive
cusp form of even weight, square-free level and trivial character.

Proposition 5. For f a holomorphic primitive cusp form of even weight,
square-free level and trivial character, and Q as in (34), we have

lim inf
T→∞

Nf,0(T )

Nf (T )
≥ lim sup

T→∞

[
1− 1

2R
ln

(
1

T

T�

1

|V ψ(σ0 + it)|2 dt
)]
.

Hence, using Theorem 5, we get

lim inf
T→∞

Nf,0(T )

Nf (T )
≥ 1− inf

P,Q,R

1

R
ln c(P,Q,R, ν/2).

The work of Kim and Sarnak [Kim03] gives θ = 7/64, so Theorem 5 gives
ν = 5/27. The Ramanujan–Petersson conjecture (θ = 0) gives ν = 1/4.

Lemma 12 ([Con89, Sect. 4]). We have

inf
P

1

R
ln c(P,Q,R, ν/2) =

1

R
ln

(
1 + |w(1)|2

2
+

Aα

tanh να
2

)
where w(x) = eRxQ(x), A =

	1
0 |w(x)|2 dx, B =

	1
0w(x)w′(x) dx, C =	1

0 |w
′(x)|2 dx and α =

√
(B −B)2 + 4AC/(2A).

For empirical reasons, we restrict ourselves to polynomials Q with real
coefficients of the shape

Q(x) = 1 +
N∑
n=1

hn[(1− 2x)2n−1 − 1](35)
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where N is a positive integer and (h1, . . . , hN ) ∈ RN . Then we get

lim inf
T→∞

Nf,0(T )

Nf (T )
≥ 1− inf

Q real, R

1

R
ln

(
1 + w(1)2

2
+

√
AC

tanh
(
ν
2

√
C
A

)).(36)

To obtain Corollary 1, we choose N = 4, R and Q as in (35) where R, h1,
h2, h3, h4 are given in the following table.

ν = 1/6 ν = 5/27

R 6.6838894702116801322 6.4278834168344993342

h1 1.6017785744634898860 1.5898336242677838745

h2 −3.0362512753510924917 −2.8999828229132398066

h3 3.0757757634512927939 3.0171733454035522056

h4 −1.1407980564855935531 −1.1164150244992046552

ν = 1/4

R 5.6503610091685135131

h1 1.5369390514358411982

h2 −2.7929104872905007806

h3 2.7758193765120241770

h4 −1.0187870607687957034

5. Non-mollified second integral moment. This section contains
the proof of Theorem 2. For convenience, we set

Mf,2(α, β) =

∞�

−∞
w(t)L(f, 1/2 + α+ it)L(f, 1/2 + β − it) dt

where w satisfies (9a)–(9c). Applying the approximate equation (Lemma 1)
and using previous notation, we can write

Mf,2(α, β) = ID1
1,1 (α, β) + ID2

1,1 (α, β) + IND1
1,1 (α, β) + IND2

1,1 (α, β).

Proposition 2 and Corollary 5 allow us to bound the off-diagonal contribu-
tion so that

Mf,2(α, β) = ID1
1,1 (α, β) + ID2

1,1 (α, β) +O(T 1/2+θ+ε).(37)

5.1. Diagonal contribution. We begin with a useful lemma.

Lemma 13. The Laurent series of the meromorphic function s 7→
L(f×f,s)
ζ(N)(2s)

about s = 1 can be written as

L(f × f, 1 + s)

ζ(N)(2(1 + s))
=

af/2

s
+ bf/2 +O(s).
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Proof. We have

L(f × f, 1 + s)

ζ(N)(2(1 + s))
=

1∏
p|N
(
1 + 1

p1+s

) ζ(1 + s)

ζ(2(1 + s))
L(Sym2 f, 1 + s)

=
N

ν(N)

(
1 + s

∑
p|N

ln p

p+ 1
+O(s2)

)(
L(Sym2 f, 1) + sL′(Sym2 f, 1) +O(s2)

)

×

(
1− 2 ζ

′(2)
ζ(2) +O(s2)

)
ζ(2)

(
1

s
+ γ +O(s)

)
.

An easy calculation gives the result.

Lemma 14. Let α, β � lnT be complex numbers. Then

ID1
1,1 (α, β) =

�

R

w(t) Ress=0

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α+ β + 2s)

ζ(N)(2(1 + α+ β + 2s))

]
dt

+O(T 1/2).

Proof. By the definition of ID1
1,1 (α, β), we can write

ID1
1,1 (α, β) =

∑
m=n

λf (m)λf (n)

m1/2+αn1/2+β

�

R

w(t)Vα,β(mn, t) dt

=
�

R

w(t)
1

2iπ

�

(σ)

G(s)

s
gα,β(s, t)

∑
m≥1

λf (m)2

m1+α+β+2s
ds dt.

Since L(f × f, s) = ζ(n)(2s)
∑

m≥1 λf (m)2/ms, for all positive real σ we get

ID1
1,1 (α, β) =

�

R

w(t)
1

2iπ

�

(σ)

G(s)

s
gα,β(s, t)

L(f × f, 1 + α+ β + 2s)

ζ(N)(2(1 + α+ β + 2s))
ds dt.

If α+ β 6= 0, we specialise

G(s) = es
2 (α+ β)2 − (2s)2

(α+ β)2

in order to ensure G
(
−α+β

2

)
= 0. We move the integration line from <s = σ

to <s = −A with A = 1/4 + (α+ β)/2, crossing a pole at s = 0. Thus,

ID1
1,1 (α, β) =

�

R

w(t) Ress=0

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α+ β + 2s)

ζ(N)(2(1 + α+ β + 2s))

]
dt

+O(T 1−2A).

In order to calculate the residue at s = 0 in the previous lemma, we split
our proof according to the multiplicity of this pole.

Double pole case. In this subsection, we assume α + β = 0. Then the
pole at s = 0 in the previous lemma has multiplicity 2.
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Lemma 15. We have

Ress=0

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α+ β + 2s)

ζ(N)(2(1 + α+ β + 2s))

]
=

af
2

ln

(
t
√
N

2π

)
+

bf
2
.

Proof. We compute the following asymptotic behaviour at s = 0:

G(s)

(
t
√
N

2π

)2sL(f × f, 1 + 2s)

ζ(N)(2(1 + 2s))

= [1 +O(s2)]

[
1 + 2s ln

(
t
√
N

2π

)
+O(s2)

][
af/2

2s
+ bf/2 +O(s)

]
=

af/2

s
+

af
2

ln

(
t
√
N

2π

)
+

bf
2

+O(s).

These results prove Theorem 2 when α + β = 0. More precisely, by
(37) and since ID1

1,1 (α, β) = ID2
1,1 (α, β) in the case under consideration, the

following corollary follows from Lemmas 14 and 15.

Corollary 6. Let α� L−1 be a complex number. For all ε > 0,

Mf,2(α,−α) = af
�

R

w(t) ln t dt+ bf
�

R

w(t) dt+O(T 1/2+θ+ε).

Simple pole case. In this subsection, we assume that α + β 6= 0 and

G(s) = es
2 (α+β)2−(2s)2

(α+β)2
. We also set w2(t) = w(t)

(
t
√
N

2π

)−2(α+β)
.

Lemma 16. Let α, β � L−1 be complex numbers. For all ε > 0, we have

Mf,2(α, β) =
L(f × f, 1 + α+ β)

ζ(N)(2(1 + α+ β))
ŵ(0) +

L(f × f, 1− α− β)

ζ(N)(2(1− α− β))
ŵ2(0)

+O(T 1/2+θ+ε).

Proof. Since the pole at s = 0, which appears in Lemma 14, is simple,
we have

Ress=0

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α+ β + 2s)

ζ(N)(2(1 + α+ β + 2s))

]
=
L(f × f, 1 + α+ β)

ζ(N)(2(1 + α+ β))
.

Then, by Lemma 14,

ID1
1,1 (α, β) =

L(f × f, 1 + α+ β)

ζ(N)(2(1 + α+ β))
ŵ(0) +O(T 1/2).

Up to replacing w by w2, we have ID2
1,1 (α, β) = ID1

1,1 (−β,−α), thus

ID2
1,1 (α, β) =

L(f × f, 1− α− β)

ζ(N)(2(1− α− β))
ŵ2(0) +O(T 1/2).

As a result, we obtain Theorem 2 when α+ β 6= 0.
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Corollary 7. Let α, β � L−1 be complex numbers. For all ε > 0, we
have

Mf,2(α, β) = af

∞�

−∞
w(t) ln t dt+

[
bf + af ln

(√
N

2π

)]
ŵ(0)

+O
(
|α+ β|T (lnT )2 + T 1/2+θ+ε

)
.

Proof. Thanks to Lemma 13, the previous lemma gives

Mf,2(α, β)

=
af/2

α+ β
(ŵ(0)− ŵ2(0)) +

bf
2

(ŵ(0) + ŵ2(0)) +O(T |α+ β|+ T 1/2+θ+ε).

Furthermore,

ŵ2(0) =
�

R

w(t)

(
t
√
N

2π

)−2(α+β)
dt

=
�

R

w(t)

(
1− 2(α+ β) ln

(
t
√
N

2π

)
+O(|α+ β|2 ln2 t)

)

= ŵ(0)− 2(α+ β)
�

R

w(t) ln

(
t
√
N

2π

)
dt+O(|α+ β|2T ln2 T ).

An easy calculation gives the result.

We remark that, up to replacing ∆ = T/lnT by T/(lnT )2, we obtain
Corollary 3.

5.2. Conjecture of Conrey, Farmer, Keating, Rubinstein and
Snaith. We can find in [CFK+05] numerous conjectures related to integral
moments of L-functions. In particular, Conjecture 2.5.4 predicts the asymp-
totic behaviour of any even integral moment of a primitive L-function on
the critical line.

Conjecture 1. Let L(s) be a primitive L-function. Let k be a positive
integer. Then for any “suitable” weight function g, we have
∞�

−∞
|L(1/2 + it)|2kg(t) dt =

∞�

−∞
Pk
(
w ln(Q2/wt/2)

)
(1 +O(t−1/2+ε))g(t) dt

where w and Q are respectively the degree and the conductor of L, and Pk
is an explicit polynomial of degree k2.

In this paper, we consider L-functions of holomorphic primitive cusp
forms of even weight, square-free level N and trivial character. The degree
of such an L-function is w = 2 and the conductor is Q =

√
N/π (cf. (7)).

The following conjecture is a simple rewriting of Conjecture 1 in this case
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for the second integral moment and when g(t) = r(t/T ) with r a smooth
function compactly supported in [1, 2].

Conjecture 2. Let f be a holomorphic primitive cusp forms of even
weight, square-free level N and trivial character. Then, for any ε > 0, we
have

∞�

−∞
|L(f, 1/2 + it)|2g(t) dt =

∞�

−∞
P1

(
2 ln

(
t
√
N

2π

))
g(t) dt+O(T 1/2+ε)

with

P1(x) =
−1

(2iπ)2

�

|z1|=r1

�

|z2|=r2

L(f ×f, 1+z1−z2)
ζ(N)(2(1 + z1 − z2))

(z2−z1)2

z21z
2
2

e
x
2
(z1−z2) dz1 dz2

for any small positive real numbers r1 and r2 (namely r1 + r2 < 1).

In order to compare our Corollary 2 with this conjecture, we have to

compute P1. Choosing r1 6= r2, and since (z2−z1)2
z21z

2
2

= 1
z21
− 2

z1z2
+ 1

z22
, we have

P1(x) =
2

(2iπ)2

�

|z1|=r1

�

|z2|=r2

L(f × f, 1 + z1 − z2)
ζ(N)(2(1 + z1 − z2))

1

z1z2
e
x
2
(z1−z2) dz1 dz2

=
2

2iπ

�

|z2|=r2

L(f × f, 1− z2)
ζ(N)(2(1− z2))

e−
x
2
z2 dz2

z2
.

Moreover, since

L(f × f, 1− z2)
ζ(N)(2(1− z2))

e−
x
2
z2 =

(
−af/2
z2

+ bf +O(z22)

)(
1− x

2
z2 +O(z22)

)
=
−af/2
z2

+

(
bf
2

+
xaf
4

)
+O(z22),

we obtain

P1(x) =
af
2
x+ bf .

To conclude, we can see that the main terms in Corollary 2 and Conjecture 2
are similar and, assuming the Ramanujan–Petersson conjecture, the error
terms are also equal.
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