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1. Introduction and results. A few years ago, Dilcher and Stolarsky
[4, Definition 5.1] introduced the two power series

(1.1)
F (z) := 1 + z + z2 + z5 + z6 + z8 + z9 + z10 + z21 + z22 + · · · ,
G(z) := 1 + z + z3 + z4 + z5 + z11 + z12 + z13 + z16 + z17 + · · · ,

with coefficients 0 and 1 only, defining holomorphic functions on D :=
{z ∈ C : |z| < 1}. Here the infinite sequences of integers appearing in
the exponents are examples of so-called self-generating sequences.

The main aim of the present paper is to study the transcendence degree of
the field C(z)(F (z), F (z4), G(z), G(z4)) over C(z), and the analogous ques-
tion over Q if the variable z is specialized to non-zero algebraic points α
in D. By virtue of the relation

(1.2) F (z)G(z4)− zF (z4)G(z) = 1,

which is formula (5.8) in [4], we immediately obtain the right-hand inequality
in

2 ≤ trdegC(z)C(z)(F (z), F (z4), G(z), G(z4)) ≤ 3.

The left-hand inequality is a consequence of the algebraic independence over
C(z) of the functions G(z) and G(z4) proved first by Adamczewski [1], or

of that of F (z) and F (z4) obtained in [3, Theorem 1.11].
As our main result, we shall subsequently establish the following sharp-

ening of the algebraic independence results just quoted.

Theorem 1.1. The functions F (z), G(z), G(z4) are algebraically inde-
pendent over C(z).

Clearly, by (1.2), the same statement holds if we interchange F and G.
Also, equivalent to Theorem 1.1 is the following symmetrical formulation.
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Theorem 1.2. One has

trdegC(z)C(z)(F (z), F (z4), G(z), G(z4)) = 3.

Combining this second formulation with a suitable algebraic indepen-
dence criterion, we can demonstrate the following arithmetical application
of our main result.

Theorem 1.3. For any non-zero algebraic α ∈ D,

trdegQQ(F (α), F (α4), G(α), G(α4)) = 3.

This theorem together with (1.2) implies that, for every non-zero alge-
braic α ∈ D, any three of the four numbers F (α), F (α4), G(α), G(α4) are
algebraically independent. Moreover, it simultaneously improves on Adam-
czewski’s result in [1, Proposition 3.1] that, for the same α’s, the numbers
G(α) and G(α4) are algebraically independent, as well as on our F -analogue
in [3, Theorem 1.12].

Our paper is organized in such a way that we first prove Theorem 1.3 in
Sec. 2. Next, in Sec. 3 we provide several preliminary results for the proper
proof of Theorem 1.1 in Sec. 4. This proof uses an extension to three func-
tions of the elementary (or poor man’s) method we already applied in [2,
Theorem 1.3] and in [3, Theorem 1.11] to show the algebraic independence
of two functions over C(z). In the case of the function pairs F (z), F (z4), or
G(z), G(z4), one could use instead (as done in [1] for the second pair) the
procedure of Nishioka [5, Theorem 5.2] which is limited to only two functions.

To conclude this section, we briefly comment on some of the questions we
asked in [3, Problem 1.15]. Clearly, the algebraic independence of F (z) and
G(z) over C(z) is contained in our Theorem 1.1, and its arithmetical ana-
logue in Theorem 1.3. Nevertheless, one may be interested in direct proofs,
i.e., without detour via algebraic independence of more than two objects as
in the above theorems.

2. Proof of Theorem 1.3. This proof essentially depends on an al-
gebraic independence criterion of Nishioka [5, Theorem 4.2.1] from whose
formulation we quote here only the homogeneous version.

Lemma 2.1. Let K denote an algebraic number field, and let t ∈ Z≥2.
Suppose that f1, . . . , fm ∈ K[[z]] converge in some disc U ⊂ D about the
origin, where they satisfy the matrix functional equation

τ (f1(z
t), . . . , fm(zt)) = A(z) · τ (f1(z), . . . , fm(z))

with A(z) ∈ Matm,m(K(z)), τ denoting the matrix transpose. If α is a non-

zero algebraic number in U such that none of the αt
j

(j = 0, 1, . . .) is a pole
of the entries of A(z), then

(2.1) trdegQQ(f1(α), . . . , fm(α)) ≥ trdegK(z)K(z)(f1(z), . . . , fm(z)).
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Proof of Theorem 1.3. According to [4, Proposition 5.1], the functions F
and G satisfy the system of linear homogeneous functional equations

(2.2)
F (z) = p(z)F (z4)− z4F (z16),

zG(z) = p(z)G(z4)−G(z16)

in D with

(2.3) p(z) := 1 + z + z2.

Set F (z4) =: I(z), G(z4) =: H(z). Then (2.2) is equivalent to the matrix
functional equation

τ (F (z4), G(z4), H(z4), I(z4)) = A(z) · τ (F (z), G(z), H(z), I(z))

with

A(z) :=


0 0 0 1

0 0 1 0

0 −z p(z) 0

−z−4 0 0 z−4p(z)

 .

Thus, we may apply Lemma 2.1 with K = Q, m = 4, (f1, f2, f3, f4) =
(F,G,H, I), t = 4, U = D to obtain, for every non-zero algebraic α ∈ D,

(2.4) trdegQQ(F (α), F (α4), G(α), G(α4))

≥ trdegQ(z)Q(z)(F (z), F (z4), G(z), G(z4)).

This concludes our proof of Theorem 1.3 if we observe first that, according
to (1.2), the left-hand side of (2.4) cannot exceed 3, while the right-hand
side remains unchanged if we replace Q(z) by C(z) in both places, and
subsequently use Theorem 1.2.

3. Some preliminaries to the proof of Theorem 1.1. Recall that,
by the definition of H(z) after (2.3), the second equation in (2.2), and equa-
tion (1.2), we have

(3.1)

G(z4) = H(z), H(z4) = −zG(z) + p(z)H(z),

F (z4) =
H(z)F (z)− 1

zG(z)

with p(z) defined in (2.3). In this section, we consider the polynomial se-
quences (am(z))m≥−1 and (bm(z))m≥−1 defined by

(3.2)
a−1(z) = 1, b−1(z) = 0,

am+1(z) = −zbm(z4), bm+1(z) = am(z4)+p(z)bm(z4) (m≥−1).

We note that if `(z) = am(z)G(z) + bm(z)H(z), then `(z4) = am+1(z)G(z)
+ bm+1(z)H(z), by (3.5). In fact, this is the motivation for the above defi-
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nition. We also introduce the notation

(3.3) `m = am(z)x+ bm(z)y ∈ C[z, x, y] (m ≥ −1),

in particular, `−1 = x and `0 = y. Moreover, we note that the substitution
z → z4, x→ y, y → −zx+ p(z)y in `m gives `m+1.

The following three lemmas will be useful.

Lemma 3.1. We have gcd(am(z), bm(z)) = 1 for all m ≥ −1. Moreover,
the degrees of am(z) and bm(z) are strictly increasing with m (≥ 0).

Proof. The claim concerning the degrees follows immediately from (3.2).
Further, z does not divide any bm(z) (m ≥ 0), and, by assuming

gcd(am(z), bm(z)) = 1,

we therefore obtain

gcd(am+1(z), bm+1(z)) = gcd
(
−zbm(z4), am(z4) + p(z)bm(z4)

)
= gcd(am(z4), bm(z4)) = gcd(am(z), bm(z)) (m≥ 0).

Thus gcd(am(z), bm(z)) = 1 for all m ≥ −1 by induction.

Before formulating the next lemmas, we note that if P (z, x, y) ∈ C[z, x, y]
is homogeneous in x, y and non-zero, then also P (z4, y, `1) 6= 0. Indeed, if

P (z, x, y) =
L∑
k=0

pk(z)x
L−kyk 6= 0,

then, after some computations,

P (z4, y, `1) =

L∑
k=0

k∑
j=0

(−1)j
(
k

j

)
pk(z

4)zjp(z)k−jxjyL−j

=
L∑
k=0

( k∑
j=0

(−1)L−k
(
L− k + j

L− k

)
pL−k+j(z

4)zL−kp(z)j
)
xL−kyk,

and so the assumption P (z4, y, `1) = 0 implies pL(z4) = pL−1(z
4) = · · · =

p0(z
4) = 0, leading to P (z, x, y) = 0, a contradiction. Thus P (z4, y, `1) 6= 0.

Lemma 3.2. Assume that the polynomial P (z, x, y) ∈ C[z, x, y] \ {0} is
homogeneous in x, y. Then `m |P (z, x, y) if and only if `m+1 |P (z4, y, `1).

Proof. If P (z, x, y) = `mP1(z, x, y), then P (z4, y, `1) = `m+1P1(z
4, y, `1)

as noted above. Thus, each factor `m of P (z, x, y) produces a factor `m+1

to P (z4, y, `1). Assume now that P (z, x, y) does not have a factor `m and
P (z4, y, `1) = `m+1P2(z, x, y) with some P2(z, x, y) ∈ C[z, x, y].

Let

P (z, x, y) =
N∑
j=0

pj(z)x
jyN−j with all pj(z) ∈ C[z].
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If x is not a factor of P (z, x, y), then p0(z) 6= 0. But this means that in

P (z4, y, `1) =

N∑
j=0

pj(z
4)yj

(
−zx+ p(z)y

)N−j

the term xN has a non-zero coefficient, and so y does not divide P (z4, y, `1).
Thus m = −1 leads to a contradiction. Further, if y is not a factor of
P (z, x, y), then pN (z) 6= 0, and this means that all terms in the above sum
except pN (z4)yN 6= 0 are divisible by `1. So we have a contradiction also if
m = 0.

We may now assume that m ≥ 1 and

P (z, x, y) = xtyu
M∑
j=0

qj(z)x
jyM−j ,

where qj(z) ∈ C[z] satisfy q0(z)qM (z) 6= 0 for M = N − t − u. Since we
assume that `m+1 |P (z4, y, `1), we necessarily have M > 0. We may now
write

P (z, x, y) = xtyuqM (z)
M∏
j=1

(x+Aj(z)y),

where the Aj ’s are non-zero algebraic functions. Since `m is not a factor of
P (z, x, y), we have

(3.4) Aj(z) 6=
bm(z)

am(z)
(j = 1, . . . ,M).

Now we get

P (z4, y, `1) = yt`u1qM (z4)
( M∏
j=1

−zAj(z4)
) M∏
j=1

(
x−

(
p(z)

z
+

1

zAj(z4)

)
y

)
.

Since `m+1 |P (z4, y, `1), there must exist an index j such that

x−
(
p(z)

z
+

1

zAj(z4)

)
y = x+

bm+1(z)

am+1(z)
y = x−

(
p(z)

z
+

am(z4)

zbm(z4)

)
y,

where we used definition (3.2). This gives Aj(z
4) = bm(z4)/am(z4) and

therefore Aj(z) = bm(z)/am(z), contradicting (3.4).

The following result is a consequence of the proof of [3, Theorem 1.11]
as we explain below.

Lemma 3.3. Assume that P (z, x, y) ∈ C[z, x, y] \ {0} is homogeneous in
x, y and

P (z, x, y) =
L∑
k=0

pk(z)x
L−kyk,
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where gcd(p0(z), . . . , pL(z)) = 1. If L ≥ 1, then the equality

s(z)P (z, x, y) = P (z4, y, `1)

with a polynomial s(z) is not possible.

Proof. A sketch of this proof is given at the end of [3]. Namely, the stated
equality is equivalent to

(3.5)

s(z)pk(z) =
k∑
j=0

(−1)L−k
(
L− k + j

L− k

)
pL−k+j(z

4)zL−kp(z)j (k = 0, . . . , L),

as we saw before Lemma 3.2. By using these equalities and our assumption
on the coprimality of the pk’s, we get the divisibility relation

s(z) | zL

– see the Sketch of the proof of the G-analogue of Theorem 1.11 at the end
of [3]. This leads to a contradiction as in the proof of [3, Theorem 1.11] if we
just replace equation (5.9) there by our (3.5) and follow the proof there.

4. Proof of Theorem 1.1. Assume the contrary of Theorem 1.1,
namely that the functions G(z), H(z) (= G(z4)), and F (z) are algebraically
dependent over C(z). We shall deduce a contradiction in four steps.

Step 1: basic construction. By our assumption, there exists an irredu-
cible polynomial P (z, x, y, w)∈C[z, x, y, w] such that P (z,G(z), H(z), F (z))
= 0. Let

P (z, x, y, w) =
U∑
k=0

Pk(z, x, y)wk with PU (z, x, y) 6= 0.

Since G(z) and H(z) are algebraically independent over C(z), we have U≥1.
Moreover, it follows from the transcendence of F (z) that degx,y Pk(z, x, y)
≥ 1 for at least one k. We now use (3.1) to obtain

P (z4, G(z4), H(z4), F (z4))

= P

(
z4, H(z),−zG(z) + p(z)H(z),

H(z)F (z)− 1

zG(z)

)
= (zG(z))−U

×
U∑
k=0

Pk
(
z4, H(z),−zG(z) + p(z)H(z)

)
(zG(z))U−k(H(z)F (z)− 1)k = 0.
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This yields another polynomialQ(z, x, y, w) withQ(z,G(z), H(z), F (z)) = 0,
namely

Q(z, x, y, w) :=

U∑
k=0

Pk
(
z4, y,−zx+ p(z)y

)
(zx)U−k(yw − 1)k

=
U∑
k=0

(U−k∑
j=0

(−1)U−k−j
(
U − j
k

)
yk(zx)jPU−j

(
z4, y,−zx+ p(z)y

))
wk

=:
U∑
k=0

Qk(z, x, y)wk.

Note here that QU (z, x, y) = yUPU (z4, y, `1) 6= 0 by the remark before
Lemma 3.2. Thus, there exists a polynomial S(z, x, y) 6= 0 such that

S(z, x, y)P (z, x, y, w) = Q(z, x, y, w);

in particular,

(4.1) S(z, x, y)PU (z, x, y) = yUPU (z4, y, `1)

and

(4.2)
S(z, x, y)PU−1(z, x, y) = −UyU−1PU (z4, y, `1) + zxyU−1PU−1(z

4, y, `1).

By these two equations, we see that degx,y S(z, x, y) = U and

(4.3) S(z, x, y)
(
yPU−1(z, x, y) + UPU (z, x, y)

)
= zxyUPU−1(z

4, y, `1).

Step 2: equation (4.1). To study (4.1) in more detail, we separate the
homogeneous terms in S(z, x, y) and PU (z, x, y). So let

S(z, x, y) =

U∑
j=0

Sj(z, x, y), PU (z, x, y) =

V∑
j=0

PU,j(z, x, y),

where Sj(z, x, y) and PU,j(z, x, y) are homogeneous of degree j in x, y (or
vanish), and SU (z, x, y) 6= 0, PU,V (z, x, y) 6= 0. Then (4.1) gives

(4.4) SU (z, x, y)PU,V (z, x, y) = yUPU,V (z4, y, `1).

We may now write

SU (z, x, y) = s(z)yj0
U−j0∑
j=0

sj(z)x
jyU−j0−j =: s(z)yj0SU,0(z, x, y),

PU,V (z, x, y) = p̃(z)yk0
V−k0∑
j=0

pj(z)x
jyV−k0−j =: p̃(z)yk0PU,V,0(z, x, y),
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where j0, k0 are non-negative integers with j0 + k0 = U , and s(z),
p̃(z), sj(z), pj(z) are polynomials with gcd(s0(z), . . . , sU−j0(z)) = 1 and
gcd(p0(z), . . . , pV−k0(z)) = 1. Then (4.4) implies

(4.5) s(z)SU,0(z, x, y)p̃(z)PU,V,0(z, x, y) = p̃(z4)`k01 PU,V,0(z
4, y, `1).

If k0 = 0, then j0 = U and SU,0(z, x, y) = 1, hence (4.5) has the form

(4.6) s(z)p̃(z)PU,V,0(z, x, y) = p̃(z4)PU,V,0(z
4, y, `1).

Since gcd(p0(z), . . . , pV−k0(z)) = 1, this gives p̃(z4) | s(z)p̃(z), say s(z)p̃(z) =
S(z)p̃(z4) with S(z) ∈ C[z] \ {0}, whence

S(z)PU,V,0(z, x, y) = PU,V,0(z
4, y, `1).

By Lemma 3.3, this is possible only if V = 0 and PU,V,0(z, x, y) = 1. Thus,
in the case k0 = 0, we have

(4.7) SU (z, x, y) = s(z)yU , PU,V (z, x, y) = p̃(z), s(z)p̃(z) = p̃(z4).

In the case k0 ≥ 1, from (4.5) we obtain

SU,0(z, x, y) = `j11 SU,1(z, x, y), PU,V,0(z, x, y) = `k11 PU,V,1(z, x, y),

where j1 + k1 = k0 (k1 = 0 if V = k0); note here that gcd(−z, p(z)) = 1 for
the p(z) from (2.3). By (4.5),

(4.8) s(z)SU,1(z, x, y)p̃(z)PU,V,1(z, x, y) = p̃(z4)`k12 PU,V,1(z
4, y, `1).

If k1 = 0, then j1 = k0 = U − j0 and SU,1(z, x, y) = 1. If k1 ≥ 1, we
may continue in the same way to get a sequence of positive integers k1 ≥
· · · ≥ km−1 such that if j2 = k1 − k2, . . . , jm−1 = km−2 − km−1, jm = km−1

(= km−1 − km, where km = 0), then

SU,1(z, x, y) = `j22 · · · `
jm
m , PU,V,1(z, x, y) = `k22 · · · `

km−1

m−1 PU,V,m−1(z, x, y).

This holds since U = j0 + k0 = j0 + j1 + k1 = · · · = j0 + j1 + · · ·+ jm−1 + jm
and gcd(am(z), bm(z)) = 1 for all m, by Lemma 3.1. Now (4.8) implies

s(z)p̃(z)PU,V,m−1(z, x, y) = p̃(z4)PU,V,m−1(z
4, y, `1),

but this is analogous to (4.6), and therefore Lemma 3.3 gives a contradiction
unless V − k0− · · ·− km−1 = 0, and in this case PU,V,m−1(z, x, y) = 1. Thus,
we must have

(4.9)

SU (z, x, y) = s(z)yj0
m∏
i=1

`jii , PU,V (z, x, y) = p̃(z)yk0
m−1∏
i=1

`kii , s(z)p̃(z) = p̃(z4),

where j0 + · · · + jm = U , k0 + · · · + km−1 = V . Next we shall use these
representations with (4.2). From (4.2) the relation PU−1(z, x, y) 6= 0 is ob-
vious. Let us denote degx,y PU−1(z, x, y) =: N . If N < V − 1, then (4.2) is
impossible, whence N ≥ V −1 holds, and we first deal with the case N ≥ V .
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Step 3: equation (4.2), case N ≥ V . Note that in (4.7), V = 0, and
therefore the above condition N ≥ V holds in this case. Let

Q̃N (z, x, y) = q(z)

N∑
j=0

qj(z)x
jyN−j =: q(z)QN,−2(z, x, y)

be the highest homogeneous term in PU−1(z, x, y), where q(z) and the qj(z)
are polynomials with gcd(q0(z), . . . , qN (z)) = 1. Then (4.2) gives

SU (z, x, y)Q̃N (z, x, y) = zxyU−1Q̃N (z4, y, `1).

The above equation and (4.9) mean that x is a factor of QN,−2(z, x, y),
and so we may write QN,−2(z, x, y) = xQN,−1(z, x, y) with a polynomial
QN,−1(z, x, y), whence

s(z)yj0
( m∏
i=1

`jii

)
q(z)QN,−1(z, x, y) = zq(z4)yUQN,−1(z

4, y, `1).

Since U − j0 = k0, we get QN,−1(z, x, y) = yk0QN,0(z, x, y), and therefore

s(z)
( m∏
i=1

`jii

)
q(z)QN,0(z, x, y) = zq(z4)`k01 QN,0(z

4, y, `1).

By using the fact j1+k1= k0, we may now writeQN,0(z, x, y)= `k11 QN,1(z, x, y)
and

s(z)
( m∏
i=2

`jii

)
q(z)QN,1(z, x, y) = zq(z4)`k12 QN,1(z

4, y, `1).

Repeating this (and recalling jm = km−1) we come to the equation

s(z)q(z)QN,m−1(z, x, y) = zq(z4)QN,m−1(z
4, y, `1).

As in the case of (4.6), we now apply Lemma 3.3 to obtain N = 1 + k0 + · · ·
+ km−1 = V + 1 and QN,m−1(z, x, y) = 1. Therefore s(z)q(z) = zq(z4) and,
by (4.7) or (4.9), we have s(z)p̃(z) = p̃(z4). If we denote, for a moment,
deg s(z) = d, deg p̃(z) = p̃, and deg q(z) = q, then d + p̃ = 4p̃ and d + q =
1 + 4q. This implies 3(p̃− q) = 1, a contradiction.

Step 4: case N = V − 1. In this case, by (4.2) and (4.9),

s(z)yj0
( m∏
i=1

`jii

)
Q̃N (z, x, y) + UyU−1p̃(z4)

m∏
i=1

`
ki−1

i = zxyU−1Q̃N (z4, y, `1).

Therefore Q̃N (z, x, y) = yn0Q∗
N,0(z, x, y), where n0 ≥ U − 1 − j0 = k0 − 1

and y is not a factor of Q∗
N,0(z, x, y). Thus

(4.10)

s(z)yn0−k0+1
( m∏
i=1

`jii

)
Q∗
N,0(z, x, y) + Up̃(z4)

m∏
i=1

`
ki−1

i = zx`n0
1 Q

∗
N,0(z

4, y, `1).
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Let us assume first that n0 = k0 + J , J ≥ 0. Then degx,y Q
∗
N,0(z, x, y) =

N − k0 − J = V − k0 − 1 − J = k1 + · · · + km−1 − 1 − J . By j1 + k1 = k0,
(4.10) implies that Q∗

N,0(z, x, y) = `k11 Q
∗
N,1(z, x, y), which is possible only if

k2 + · · ·+km−1−1−J ≥ 0, otherwise we have a contradiction. Substituting
this to (4.10) we obtain

s(z)y1+J
( m∏
i=2

`jii

)
Q∗
N,1(z, x, y) + Up̃(z4)

m∏
i=2

`
ki−1

i = zx`J1 `
k1
2 Q

∗
N,1(z

4, y, `1).

Let t be the greatest index such that kt + · · · + km−1 − 1 − J ≥ 0 (then
certainly t ≤ m− 1). By continuing as above, we get

Q∗
N,1(z, x, y) =

( t−1∏
i=2

`kii

)
Q∗
N,t−1(z, x, y),

degx,y Q
∗
N,t−1(z, x, y) = kt + · · ·+ km−1 − 1− J < kt,

and

s(z)y1+J
( m∏
i=t

`jii

)
Q∗
N,t−1(z, x, y) + Up̃(z4)

m∏
i=t

`
ki−1

i

= zx`J1 `
kt−1

t Q∗
N,t−1(z

4, y, `1).

Thus `ktt must divide Q∗
N,t−1(z, x, y). But this is impossible since we have

degx,y Q
∗
N,1(z, x, y) < kt. Thus, the assumption n0 ≥ k0 gives a contradic-

tion.

Our final task is to prove that also the case n0 = k0 − 1 leads to a
contradiction. In this case, (4.10) has the form

(4.11)

s(z)
( m∏
i=1

`jii

)
Q∗
N,0(z, x, y) + Up̃(z4)

m∏
i=1

`
ki−1

i = zx`k0−1
1 Q∗

N,0(z
4, y, `1),

where y is not a factor of Q∗
N,0(z, x, y). By Lemma 3.2, we know that `1 is

not a factor of Q∗
N,0(z

4, y, `1). Thus Q∗
N,0(z, x, y) = `k1−1

1 QN,1(z, x, y), where

QN,1(z, x, y) is not divisible by `1. By (4.11),

s(z)
( m∏
i=2

`jii

)
QN,1(z, x, y) + Up̃(z4)`1

m∏
i=2

`
ki−1

i = zx`k1−1
2 QN,1(z

4, y, `1),

where `2 is not a factor of QN,1(z
4, y, `1) by Lemma 3.2. Repeating this

argument we obtain

QN,1(z, x, y) =
(m−1∏
i=2

`ki−1
i

)
QN,m−1(z, x, y),
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where the polynomial QN,m−1(z, x, y) is not divisible by `m−1. By substitut-
ing this into the above equation we have

s(z)`jmm QN,m−1(z, x, y) + Up̃(z4)`1 · · · `m−1`
km−1
m

= zx`km−1−1
m QN,m−1(z

4, y, `1).

This is a contradiction since jm = km−1, and Lemma 3.2 says that `m is not
a factor of QN,m−1(z

4, y, `1). Thus, Theorem 1.1 is proved.

Acknowledgments. The authors are grateful to the referee for sugges-
tions improving the work.

References

[1] B. Adamczewski, Non-converging continued fractions related to the Stern diatomic
sequence, Acta Arith. 142 (2010), 67–78.

[2] P. Bundschuh and K. Väänänen, Algebraic independence of the generating functions
of Stern’s sequence and of its twist, J. Théor. Nombres Bordeaux 25 (2013), 43–57.
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