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1. Introduction and statement of results. We say that a k-tuple of
linear forms in Z[z], denoted by

H(x) = {gjz + hj}i_,,

is admissible if the associated polynomial fy (z) = [[;<;<x(gjz + h;) has no
fixed prime divisor, that is, if the inequality

#{nmod p: fy(n) =0mod p} <p

holds for every prime number p. In this note we consider only k-tuples for
which

(1) gi,---,9k >0 and H (gihj — gjhz') 75 0.

1<i<j<k

One form of the Prime k-Tuple Conjecture asserts that if H(x) is ad-
missible and satisfies (1)), then #(n) = {g;n + hj}é?:l is a k-tuple of primes
for infinitely many n € N. Recently, Maynard [5] and Tao have made great
strides towards proving this form of the Prime k-Tuple Conjecture, which
rests among the greatest unsolved problems in number theory. The follow-
ing formulation of their remarkable theorem has been given by Granville [3|
Theorem 6.2].

THEOREM (Maynard-Tao). For any m € N with m > 2 there is a num-
ber k., depending only on m, such that the following holds for every integer
k> ky: If {gjz + hj}le is admissible and satisfies (1)), then {g;n + hj};?:l
contains m primes for infinitely many n € N. In fact, one can take k., to
be any number such that k, log ky, > e +4,
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Zhang [10, Theorem 1] was the first to prove that liminf,,_,(pp+1 —Dn)
is bounded; he showed that for an admissible k-tuple H(z) = {x + Iy}"’fi1
there exist infinitely many integers n such that #(n) contains at least two
primes, provided that k > 3.5 - 105. Zhang’s proof was subsequently refined
in a Polymath project [7, Theorem 2.3] to the point where one could take
ka = 632 (at least in the case of monic linear forms). Maynard [5, Proposi-
tions 4.2, 4.3] has shown that one can take k2 = 105 and k,,, = cm?e*™ in the
Maynard-Tao theorem, where ¢ is an absolute (and effective) constant. An-
other Polymath project [8, Theorem 3.2] has since refined Maynard’s work
so that one can take ky = 50 and k,,, = ce(*=28/157)m (In [5, 8], only tuples of
monic linear forms are treated explicitly, although the results should extend
to general linear forms as considered in [3].)

The purpose of the present note is to explain some interesting conse-
quences of the Maynard—Tao theorem. We refer the reader to the expository
article [3] of Granville for the recent history and ideas leading up to this
breakthrough result, as well as a discussion of its potential impact. With-
out doubt, this result and its proof will have numerous applications, many
of which have already been given in [3]. We are grateful to Granville for
pointing out to us that Corollary 2 (below) can now be proved.

The following theorem establishes the existence of m-tuples that in-
finitely often represent strings of consecutive prime numbers.

THEOREM 1. Let m,k € N with m > 2 and k > k,,, where k., is
as in the Maynard—Tao theorem. Let by, ..., b be distinct integers such that
{z+b; }§:1 1s admissible, and let g be any positive integer coprime to by - - - by.
Then, for some subset {h1,...,hpm} C {b1,...,br}, there are infinitely many
n € N such that gn + h1,...,gn + h,, are consecutive primes.

A special case of Theorem |1}, with m =2, g = 1 (and the weaker bound
ko > 3.5-10°), has already been established in recent work of Pintz [6, Main
Theorem]|, which is based on Zhang’s method but uses a different argument
to the one presented here.

Theorem (which is proved in has various applications to the study of
gaps between consecutive primes. To state our results, let us call a sequence
(5j)§”:1 of positive integers a run of consecutive prime gaps if

6j =dryj = projt1 —pryy (1 <5 <m)
for some natural number r, where p,, denotes the nth smallest prime. The

following corollary of Theorem [I|answers an old question of Erdés and Turan
[2] (see also Erdés [1] and Guy [4, Al1]).

COROLLARY 2. For every m > 2 there are infinitely many runs ((5]-);”:1
of consecutive prime gaps with 1 < --- < &, and infinitely many runs with
01 > > 0.
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Moreover, in the proof (see §2) we construct infinitely many runs (J;)72,
of consecutive prime gaps with

i+ +6-1<6; (2<75<m),
and infinitely many runs with
0j > 0jp1+ -+ 0 (1<j<m-1).

Using a similar argument, we can impose a divisibility requirement
amongst gaps between consecutive primes as well.

COROLLARY 3. For every m > 2 there are infinitely many runs (5j)§”:1
of consecutive prime gaps such that §;_1]9; for 2 < j < m, and infinitely
many runs such that 6j41|0; for 1 <j <m—1.

In the proof (see we construct infinitely many runs (J;)72; of con-
secutive prime gaps with 01 ---d;-1]0; for 2 < j < m, and infinitely many
runs with 8,,0m—1 0410 for 1 <j <m —1.

As another application of Theorem (I}, in §2| we prove the following ex-
tension of a result of Shiu [9] on consecutive primes in a given congruence
class.

COROLLARY 4. Let a and D > 3 be coprime integers. For every m > 2,
there are infinitely many r € N such that pyy1 = -+ = Pr4m = a mod D
and pram — Pro1 < DCp,, where Cyp, is a constant depending only on m.

Shiu [9] attributes to Chowla the conjecture that there are infinitely
many pairs of consecutive primes p,, py4+1 with p, = p,41 = amod D (see
also [4, A4]), and proved the above result without the constraint p, 4, — pr41
< DC,.

2. Proofs

Proof of Theorem . Replacing each b; with b; + g/N for a suitable inte-
ger N, we can assume without loss of generality that

1<by <0 < by.

Let S be the set of integers ¢t such that 1 < ¢ < by, t & {b1,...,b;}. Let
{¢ : t € S} be distinct primes coprime to g such that ¢ # b; mod g; for
allt € §, 1 < j < k. By the Chinese remainder theorem we can find an
integer a such that

(2) ga+t=0modq (teS8),
and therefore

(3) ga+bjZ0modg (t€S,1<j<k).
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Consider the k-tuple

A(z) = {9Qz + ga + bj}le where Q = [],cs @

In view of (3)) and the equality gcd(g, by - - - b)) = 1, we have ged(g@, ga + b;)
= 1 for each j, and since {x + bj}é?:1 is admissible, it follows that the k-
tuple A(z) is also admissible. Moreover, A(x) satisfies (with g; = ¢Q
and hj = ga + b;) as the integers by, ..., by are distinct and g@Q > 1.

For every N € N, the congruences and our choices of @) and a imply
that

g(QN +a)+t=0mod ¢ (t€S).
Hence, any prime number in the interval [g(QN + a) + b1, g(QN + a) + by]

must lie in A(n). Let m’ be the largest integer for which there exists a subset
{h1,... hp} C{b1,...,bx} with the property that the numbers

(4) g(QN +a) + h; (1<i<m)

are simultaneously prime for infinitely many N € N. Since k > k,,,, we can
apply the Maynard-Tao theorem with A(z) to deduce that m’ > m.

By the maximal property of m’, it must be the case that for all sufficiently
large N € N, if the numbers in are all prime, then g(QN + a) + b; is
composite for every b; € {b1,...,b;} \ {h1,...,hp}. Hence, for infinitely
many N € N| the interval [¢g(QN +a)+b1, g(QN +a) +bi] contains precisely
m/ primes, namely, the numbers {gn + h;}, with n = QN +a. u

Proof of Corollary @ Let m > 2 and k > kyy1. Let A(z) = {o+27}%

J=1
which is easily seen to be admissible. By Theorem [1} there exists an (m+1)-
tuple

B(z) = {z + 27} C A(x)

such that B(n) is an (m-+1)-tuple of consecutive primes for infinitely many n.
Here, 1 <1y < -++ < Vpy1 < k. For such n, writing

B(”) = {n + 2% }T:Jil = {pr+17 cee 7pr+m+1}

with some integer r, we have

0j = dryj = Projpr — Prgy = 2901 =2 (1< j<m).

Then
j—1 j—1
D Gi= (2 - 2n) =2 — 9V <M — 2% =4 (2< 5 <m).
=1 =1

Hence, 01 < 01+---40d;-1 < d; for each j, which proves the first statement.
To obtain runs of consecutive prime gaps with d; > 041 + -+ + 0y > 641,
consider instead the admissible k-tuple {z — 27 };‘f’:l. ]
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Proof of Corollary @ Let m > 2, and let k > kpqq. Put Q = Hp<kp,
and define the sequence by, ..., b inductively as follows. Let a

b1 =0, b2=@Q, b3=20,
and for any j > 3 let
bi=bia+ [ (br—0s).
1<s<t<j—1
Note that
(5) (but1 = bu) [ (o1 —by) (0= u=>1).

Now put A(z) = {z + b, };?:1, and observe that A(z) is admissible since
@ divides each integer b;. By Theorem [1| there exists an (m + 1)-tuple

Blx) = {a + b, )15 C A)

such that B(n) is an (m+1)-tuple of consecutive primes for infinitely many n.
Here, 1 < 1) <+ < Vpt1 < k. For any such n, writing

B(n) = {n + ij };n:tl = {pTJrlv cee apr+m+1}

with some integer r, we have

0j = drtj = Dryjt1 — Prij = by — by, (1< 5 <m).

Then
j—1 j—1
H (51 = H(bVi+1 - bw) H (bt - bs) = ij+1 - ij
i=1 i=1 1<s<t<y;

if 2 < j < m. On the other hand, using we see that
vit1—1

(bl/j+1 - bl/j) ’ Z (bi+1 - bl) = ij+1 - bl’j = 5]"

1=Vy

Hence, 61---6j—1|6; for 2 < j < m, which proves the first statement. To
obtain runs of consecutive prime gaps with 0,,6,,—1 - 0j41]0; for 1 < j <
m — 1, consider instead the admissible k-tuple {z — b; }§:1- .

Proof of Comllary. Let m > 2, and let k > k,,. Let {:r:—l—aj};?zl be any
admissible k-tuple with a1 < --- < ag, and put b; = Da; +a for 1 < j < k;
then {z + bj}é?:l is also admissible. Since ged(D,b;) = ged(D,a) = 1 for
each j, we can apply Theorem [I| with ¢ = D to conclude that there is
a subset {h1,...,hm} C {b1,...,b;} such that Dn + hy,...,Dn + hy, are
consecutive primes for infinitely many n € N; as such primes lie in the
arithmetic progression a mod D and are contained in an interval of length
by, — by = D(ay — ay), the corollary follows. =
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