The number of k-sums of abelian groups of order k

by
Hong Bing Yu (Suzhou)

1. Introduction. Let G be an abelian group of order k. Given a sequence of elements a_{1}, \ldots, a_{n} in G (possibly with repetitions), a t-sum is a sum of the form $a_{i_{1}}+\ldots+a_{i_{t}}\left(i_{1}<\ldots<i_{t}\right)$. In [6] Erdős, Ginzburg and Ziv proved an important result in Combinatorial Number Theory, which states that if $n=2 k-1$ then some k-sum is 0 . Since then, numerous other proofs and generalizations of this result have been given (see for example [2] and the survey paper [4]). More recently, Bollobás and Leader [3] proved the following interesting result: for $n=k+r(1 \leq r \leq k-1)$, if 0 is not a k-sum then there are at least $r+1 k$-sums. This clearly implies the Erdős-Ginzburg-Ziv theorem, by taking $r=k-1$.

In this paper we shall prove several results concerning k-sums for abelian groups of order k. Our first result here is the following theorem, which settles a conjecture of Bollobás and Leader (see [3, Section 2]).

Theorem 1. Let G be an abelian group of order k, and let $r \geq 1$. Then the minimum number of k-sums for a sequence a_{1}, \ldots, a_{k+r} of elements of G that does not have 0 as a k-sum is attained at the sequence $b_{1}, \ldots, b_{r+1}, 0, \ldots, 0$, where b_{1}, \ldots, b_{r+1} is chosen to minimize the number of (non-empty) sums without 0 being a (non-empty) sum.

Our second result gives a characterization of the extremal cases in Bol-lobás-Leader's theorem mentioned above.

Theorem 2. Let G be an abelian group of order k, and let $d(G)$ be the maximal order of an element in G. Let $a_{1}, \ldots, a_{k+r} \in G$. Then if 0 is not a k-sum then the number of k-sums is at least $r+1$, and the bound is attained if and only if $1 \leq r \leq d(G)-2$ and the sequence is of the form $a, \ldots, a, b, \ldots, b$ with the order of $a-b$ being at least $r+2$.

[^0]From Theorems 1 and 2 we see that to estimate the minimum number of k-sums for a sequence of elements of G with length $k+r$ that does not have 0 as a k-sum, it suffices to consider the problem in the case of G non-cyclic and $d(G)-1 \leq r \leq D(G)-2$, where $D(G)$ is the Davenport constant of G, i.e., the minimal n such that, whenever $a_{1}, \ldots, a_{n} \in G$, some non-empty sum of the a_{i} is 0 . We remark here that Eggleton and Erdős [5] have proved that $D(G) \leq k / 2+1$ for any abelian non-cyclic group G of order k.

The following result can be easily deduced from Theorem 1 and the theorem of Olson and White [7], so its proof is omitted.

Theorem 3. Let G be an abelian non-cyclic group of order k, and let $d(G)-1 \leq r \leq D(G)-2$. Let $a_{1}, \ldots, a_{k+r} \in G$. Then if 0 is not a k-sum then the number of k-sums is at least $2 r+1$.

We do not know whether the bound of Theorem 3 is sharp in general. It should be mentioned here that in the case of $G=\mathbb{Z}_{n}^{2}$ Bollobás and Leader have conjectured that the bound in question is $n(r-n+3)-1$ for $n-1 \leq r \leq 2 n-3\left(=D\left(\mathbb{Z}_{n}^{2}\right)-2\right)($ see $[3$, Section 2]).
2. Preliminary lemmas. In the proof of Theorems 1 and 2 we need the following two well known results. The first follows from Corollary 2.3 of Alon [1], and the second is Lemma 1 of Olson and White [7].

Lemma 1. Let G be an abelian group of order k, and let a_{1}, \ldots, a_{n} be a sequence of elements of G in which no value is repeated $l+1$ times. If $n \geq k$ then the sequence has a t-sum equal to 0 for some $1 \leq t \leq l$.

Lemma 2. Let c_{1}, \ldots, c_{r+1} be a sequence of elements of an abelian group without 0 being a non-empty sum. Then there are at least $r+1$ non-empty sums, and the bound is attained only when $c_{1}=\ldots=c_{r+1}$.
3. Proof of Theorems 1 and 2. Let $N_{k+r}(A)$ be the number of k sums for a sequence $A=\left\{a_{1}, \ldots, a_{k+r}\right\}$ that does not have 0 as a k-sum. We observe that Theorem 1 together with Lemma 2 implies immediately that $N_{k+r}(A) \geq r+1$, and equality holds only if $1 \leq r \leq d(G)-2$. Therefore, to prove the theorems it suffices to prove the following assertions:
(i) Let b_{1}, \ldots, b_{r+1} be as in Theorem 1, and let N_{r+1} be the number of (non-empty) sums for this sequence. Then $N_{k+r}(A) \geq N_{r+1}$.
(ii) If $N_{k+r}(A)=r+1$ then A must be of the form stated in Theorem 2.

Translating (which does not affect k-sums), we may assume that 0 is the most often repeated value in A. Let L be the subsequence of all 0 in A, and write $l=|L|$ (here and below $|X|$ denotes the length of a sequence X). Clearly $l \leq k-1$. We distinguish two cases.

Case 1: $l>r$. Then $|A \backslash L|<k$. Let H be a subsequence of maximal cardinality of $A \backslash L$ summing to 0 (H may be empty), and let $h=|H|$. Clearly $0 \leq h \leq k-1$, which implies that

$$
\begin{equation*}
l+h \leq k-1 \tag{1}
\end{equation*}
$$

for otherwise, H with $k-h$ zeros of L added would be a subsequence of A with length k summing to 0 . Hence $|A \backslash L \cup H| \geq r+1$. Furthermore, $A \backslash L \cup H$ has no non-empty sum equal to 0 by the maximality of H. Take a subsequence $C \subseteq A \backslash L \cup H$ with $|C|=r+1$; then C has at least N_{r+1} non-empty sums (by the definition of N_{r+1}). It follows that $L \cup C$ has at least $N_{r+1} l+1$-sums (recall that $l>r$). Adding the sum of all elements of $A \backslash L \cup C$ to each $l+1$-sum of $L \cup C$, we obtain at least $N_{r+1} k$-sums of A (noting that $|A \backslash L \cup C|=k-l-1$). This proves (i) in Case 1.

Suppose now that $N_{r+1}(A)=r+1$. By Lemma 2 and the argument above, it follows easily that the elements in $A \backslash L \cup H$ must be all equal to some $c \in G$, and hence $r+1 \leq d_{1}-1$, where d_{1} is the order of c.

If $H \neq \emptyset$, we claim that all elements in H are also equal to c. Suppose that there exists a $x \in H$ with $x \neq c$ (note that $x \neq 0$). Removing x and $r-1$ zeros from A we obtain a sequence of length k. Since $N_{k+r}(A)=r+1$, the sum of all elements of this sequence must be equal to some k-sum obtained in the above. It follows that there exists an integer $t(1<t \leq r)$ such that $x=t c$. Then, replacing x in H by t elements c of $A \backslash L \cup H$, we obtain a subsequence H^{\prime} of $A \backslash L$ summing to 0 ; but $\left|H^{\prime}\right|>|H|$, contradicting the maximality of H. Hence the elements of $A \backslash L$ are all equal. This completes the proof of (ii) in Case 1.

CASE 2: $l \leq r$. Then $|A \backslash L| \geq k$. By repeatedly applying Lemma 1 we can find a system of subsequences S_{1}, \ldots, S_{q} of $A \backslash L$ with the following properties:
(2) The S_{j} are disjoint.
(3) Each S_{j} sums to 0 and $2 \leq\left|S_{j}\right| \leq l(j=1, \ldots, q)$.
(4) $\left|L \cup S_{1} \cup \ldots \cup S_{q-1}\right| \leq r<\left|L \cup S_{1} \cup \ldots \cup S_{q-1} \cup S_{q}\right|$
(where S_{q-1} is interpreted to be \emptyset when $q=1$).
Write

$$
\begin{equation*}
S=S_{1} \cup \ldots \cup S_{q}, \quad s=|S| \tag{5}
\end{equation*}
$$

Then by (4), $|A \backslash L \cup S|<k$. Let H be a subsequence of maximal cardinality of $A \backslash L \cup S$ summing to 0 , and let $h=|H|$. Then $0 \leq h \leq k-1$; and, in analogy to (1), $l+h \leq k-1$. We claim that

$$
\begin{equation*}
|H \cup S| \leq k-1 \tag{6}
\end{equation*}
$$

To see this, we first note that $\left|H \cup S_{1}\right|=h+\left|S_{1}\right| \leq h+l \leq k-1$. Suppose
(6) is false. Then there exists some $u(1 \leq u \leq q-1)$ such that

$$
\left|H \cup S_{1} \cup \ldots \cup S_{u}\right| \leq k-1<\left|H \cup S_{1} \cup \ldots \cup S_{u} \cup S_{u+1}\right| .
$$

Since $\left|S_{u+1}\right| \leq l$, it follows that $1 \leq k-\left|H \cup S_{1} \cup \ldots \cup S_{u}\right| \leq l$. Then, by (2), (3) and the definition of $H, H \cup S_{1} \cup \ldots \cup S_{u}$ with $k-\left|H \cup S_{1} \cup \ldots \cup S_{u}\right|$ zeros of L added would be a subsequence of A with length k summing to 0 , a contradiction. Hence (6) holds. Further, in analogy to (1), from (6) we deduce that $|L \cup H \cup S| \leq k-1$. Hence $|A \backslash L \cup H \cup S| \geq r+1$. Take a subsequence $C \subseteq A \backslash L \cup H \cup S$ with $|C|=r+1$. Then C has no nonempty sum equal to 0 (by the maximality of H). Hence C has at least N_{r+1} non-empty sums.

We shall prove that $L \cup S \cup C$ has at least $N_{r+1} l+s+1$-sums. To do this it suffices to show that for each i-sum σ_{i} of $C(1 \leq i \leq r+1), L \cup S \cup C$ has an $l+s+1$-sum equal to σ_{i}. We first note that $s \leq r<l+s$ by using (4), (5) and $\left|S_{q}\right| \leq l$. If $1 \leq i \leq l+1$, then $0 \leq l+1-i \leq l$. It is easily seen that $S \cup C$ with $l+1-i$ zeros from L appended has an $l+s+1$-sum equal to σ_{i}. If $s+1 \leq i \leq r+1$, then $0 \leq l+s+1-i \leq l$. It follows that C with $l+s+1-i$ zeros from L appended has an $l+s+1$-sum equal to σ_{i}. Thus we are done unless $s>l+1$. In the latter case, for $l+1<i<s+1$, we have $i+\left|S_{1}\right| \leq i+l<l+s+1<i+s$. It follows that there exists a $v(1 \leq v \leq q-1)$ such that

$$
\begin{equation*}
i+\left|S_{1} \cup \ldots \cup S_{v}\right|<l+s+1 \leq i+\left|S_{1} \cup \ldots \cup S_{v} \cup S_{v+1}\right| \tag{7}
\end{equation*}
$$

Recalling that $\left|S_{v+1}\right| \leq l$, by (7) we have $1 \leq l+s+1-i-\left|S_{1} \cup \ldots \cup S_{v}\right| \leq l$. Hence $C \cup S_{1} \cup \ldots \cup S_{v}$ with $l+s+1-i-\left|S_{1} \cup \ldots \cup S_{v}\right|$ zeros from L appended has an $l+s+1$-sum equal to σ_{i}. The desired result is thus proved.

Now, adding the sum of all elements of $A \backslash L \cup S \cup C$ to each of the $l+s+1$-sums of $L \cup S \cup C$, we obtain at least $N_{r+1} k$-sums of A (noting that $|A \backslash L \cup S \cup C|=k-l-s-1$). This completes the proof of (i) in Case 2.

Finally, since $l \leq r$ and $|C|=r+1$, the elements in C cannot be all equal (recalling the definition of l). Hence, by Lemma $2, C$ has at least $r+2$ non-empty sums and thus we must have $N_{k+r}(A)>r+1$ in Case 2.

The proof of Theorems 1 and 2 is now complete.

References

[1] N. Alon, Subset sums, J. Number Theory 27 (1987), 196-205.
[2] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdős is Eighty, János Bolyai Math. Soc., Budapest, 1993, 33-50.
[3] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), 27-35.
[4] Y. Caro, Zero-sum problems - a survey, Discrete Math. 152 (1996), 93-113.
[5] R. B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111-116.
[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel (F) 10 (1961), 41-43.
[7] J. E. Olson and E. T. White, Sums from a sequence of group elements, in: Number Theory and Algebra, H. Zassenhaus (ed.), Academic Press, 1977, 215-222.

Department of Mathematics
Suzhou University
Suzhou 215006, Jiangsu, P.R. China
E-mail: yuhb@suda.edu.cn

Received on 3.12.2001
and in revised form on 1.9.2003

[^0]: 2000 Mathematics Subject Classification: Primary 11B50, 20D60.
 The author was supported by the National Natural Science Foundation of China.

