The number of k-sums of abelian groups of order k

by

HONG BING YU (Suzhou)

1. Introduction. Let G be an abelian group of order k. Given a sequence of elements a_1, \ldots, a_n in G (possibly with repetitions), a *t-sum* is a sum of the form $a_{i_1} + \ldots + a_{i_t}$ $(i_1 < \ldots < i_t)$. In [6] Erdős, Ginzburg and Ziv proved an important result in Combinatorial Number Theory, which states that if n = 2k - 1 then some k-sum is 0. Since then, numerous other proofs and generalizations of this result have been given (see for example [2] and the survey paper [4]). More recently, Bollobás and Leader [3] proved the following interesting result: for n = k + r $(1 \le r \le k - 1)$, if 0 is not a k-sum then there are at least r + 1 k-sums. This clearly implies the Erdős–Ginzburg–Ziv theorem, by taking r = k - 1.

In this paper we shall prove several results concerning k-sums for abelian groups of order k. Our first result here is the following theorem, which settles a conjecture of Bollobás and Leader (see [3, Section 2]).

THEOREM 1. Let G be an abelian group of order k, and let $r \ge 1$. Then the minimum number of k-sums for a sequence a_1, \ldots, a_{k+r} of elements of G that does not have 0 as a k-sum is attained at the sequence $b_1, \ldots, b_{r+1}, 0, \ldots, 0$, where b_1, \ldots, b_{r+1} is chosen to minimize the number of (non-empty) sums without 0 being a (non-empty) sum.

Our second result gives a characterization of the extremal cases in Bollobás–Leader's theorem mentioned above.

THEOREM 2. Let G be an abelian group of order k, and let d(G) be the maximal order of an element in G. Let $a_1, \ldots, a_{k+r} \in G$. Then if 0 is not a k-sum then the number of k-sums is at least r + 1, and the bound is attained if and only if $1 \le r \le d(G) - 2$ and the sequence is of the form $a, \ldots, a, b, \ldots, b$ with the order of a - b being at least r + 2.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11B50, 20D60.

The author was supported by the National Natural Science Foundation of China.

From Theorems 1 and 2 we see that to estimate the minimum number of k-sums for a sequence of elements of G with length k + r that does not have 0 as a k-sum, it suffices to consider the problem in the case of G non-cyclic and $d(G) - 1 \le r \le D(G) - 2$, where D(G) is the *Davenport constant* of G, i.e., the minimal n such that, whenever $a_1, \ldots, a_n \in G$, some non-empty sum of the a_i is 0. We remark here that Eggleton and Erdős [5] have proved that $D(G) \le k/2 + 1$ for any abelian non-cyclic group G of order k.

The following result can be easily deduced from Theorem 1 and the theorem of Olson and White [7], so its proof is omitted.

THEOREM 3. Let G be an abelian non-cyclic group of order k, and let $d(G) - 1 \leq r \leq D(G) - 2$. Let $a_1, \ldots, a_{k+r} \in G$. Then if 0 is not a k-sum then the number of k-sums is at least 2r + 1.

We do not know whether the bound of Theorem 3 is sharp in general. It should be mentioned here that in the case of $G = \mathbb{Z}_n^2$ Bollobás and Leader have conjectured that the bound in question is n(r-n+3)-1 for $n-1 \le r \le 2n-3$ (= $D(\mathbb{Z}_n^2)-2$) (see [3, Section 2]).

2. Preliminary lemmas. In the proof of Theorems 1 and 2 we need the following two well known results. The first follows from Corollary 2.3 of Alon [1], and the second is Lemma 1 of Olson and White [7].

LEMMA 1. Let G be an abelian group of order k, and let a_1, \ldots, a_n be a sequence of elements of G in which no value is repeated l+1 times. If $n \ge k$ then the sequence has a t-sum equal to 0 for some $1 \le t \le l$.

LEMMA 2. Let c_1, \ldots, c_{r+1} be a sequence of elements of an abelian group without 0 being a non-empty sum. Then there are at least r + 1 non-empty sums, and the bound is attained only when $c_1 = \ldots = c_{r+1}$.

3. Proof of Theorems 1 and 2. Let $N_{k+r}(A)$ be the number of ksums for a sequence $A = \{a_1, \ldots, a_{k+r}\}$ that does not have 0 as a k-sum. We observe that Theorem 1 together with Lemma 2 implies immediately that $N_{k+r}(A) \ge r+1$, and equality holds only if $1 \le r \le d(G) - 2$. Therefore, to prove the theorems it suffices to prove the following assertions:

(i) Let b_1, \ldots, b_{r+1} be as in Theorem 1, and let N_{r+1} be the number of (non-empty) sums for this sequence. Then $N_{k+r}(A) \ge N_{r+1}$.

(ii) If $N_{k+r}(A) = r+1$ then A must be of the form stated in Theorem 2.

Translating (which does not affect k-sums), we may assume that 0 is the most often repeated value in A. Let L be the subsequence of all 0 in A, and write l = |L| (here and below |X| denotes the length of a sequence X). Clearly $l \leq k - 1$. We distinguish two cases.

CASE 1: l > r. Then $|A \setminus L| < k$. Let H be a subsequence of maximal cardinality of $A \setminus L$ summing to 0 (H may be empty), and let h = |H|. Clearly $0 \le h \le k - 1$, which implies that

$$(1) l+h \le k-1,$$

for otherwise, H with k - h zeros of L added would be a subsequence of A with length k summing to 0. Hence $|A \setminus L \cup H| \geq r + 1$. Furthermore, $A \setminus L \cup H$ has no non-empty sum equal to 0 by the maximality of H. Take a subsequence $C \subseteq A \setminus L \cup H$ with |C| = r + 1; then C has at least N_{r+1} non-empty sums (by the definition of N_{r+1}). It follows that $L \cup C$ has at least $N_{r+1} \ l + 1$ -sums (recall that l > r). Adding the sum of all elements of $A \setminus L \cup C$ to each l + 1-sum of $L \cup C$, we obtain at least $N_{r+1} \ k$ -sums of A (noting that $|A \setminus L \cup C| = k - l - 1$). This proves (i) in Case 1.

Suppose now that $N_{r+1}(A) = r + 1$. By Lemma 2 and the argument above, it follows easily that the elements in $A \setminus L \cup H$ must be all equal to some $c \in G$, and hence $r + 1 \leq d_1 - 1$, where d_1 is the order of c.

If $H \neq \emptyset$, we claim that all elements in H are also equal to c. Suppose that there exists a $x \in H$ with $x \neq c$ (note that $x \neq 0$). Removing x and r-1zeros from A we obtain a sequence of length k. Since $N_{k+r}(A) = r+1$, the sum of all elements of this sequence must be equal to some k-sum obtained in the above. It follows that there exists an integer t ($1 < t \leq r$) such that x = tc. Then, replacing x in H by t elements c of $A \setminus L \cup H$, we obtain a subsequence H' of $A \setminus L$ summing to 0; but |H'| > |H|, contradicting the maximality of H. Hence the elements of $A \setminus L$ are all equal. This completes the proof of (ii) in Case 1.

CASE 2: $l \leq r$. Then $|A \setminus L| \geq k$. By repeatedly applying Lemma 1 we can find a system of subsequences S_1, \ldots, S_q of $A \setminus L$ with the following properties:

(2) The S_i are disjoint.

(3) Each S_j sums to 0 and $2 \le |S_j| \le l \ (j = 1, \dots, q)$.

$$(4) \quad |L \cup S_1 \cup \ldots \cup S_{q-1}| \le r < |L \cup S_1 \cup \ldots \cup S_{q-1} \cup S_q|$$

(where S_{q-1} is interpreted to be \emptyset when q = 1). Write

(5)
$$S = S_1 \cup \ldots \cup S_q, \quad s = |S|.$$

Then by (4), $|A \setminus L \cup S| < k$. Let H be a subsequence of maximal cardinality of $A \setminus L \cup S$ summing to 0, and let h = |H|. Then $0 \le h \le k - 1$; and, in analogy to (1), $l + h \le k - 1$. We claim that

$$(6) |H \cup S| \le k - 1.$$

To see this, we first note that $|H \cup S_1| = h + |S_1| \le h + l \le k - 1$. Suppose

(6) is false. Then there exists some u $(1 \le u \le q - 1)$ such that

$$|H \cup S_1 \cup \ldots \cup S_u| \le k - 1 < |H \cup S_1 \cup \ldots \cup S_u \cup S_{u+1}|.$$

Since $|S_{u+1}| \leq l$, it follows that $1 \leq k - |H \cup S_1 \cup \ldots \cup S_u| \leq l$. Then, by (2), (3) and the definition of $H, H \cup S_1 \cup \ldots \cup S_u$ with $k - |H \cup S_1 \cup \ldots \cup S_u|$ zeros of L added would be a subsequence of A with length k summing to 0, a contradiction. Hence (6) holds. Further, in analogy to (1), from (6) we deduce that $|L \cup H \cup S| \leq k - 1$. Hence $|A \setminus L \cup H \cup S| \geq r + 1$. Take a subsequence $C \subseteq A \setminus L \cup H \cup S$ with |C| = r + 1. Then C has no nonempty sum equal to 0 (by the maximality of H). Hence C has at least N_{r+1} non-empty sums.

We shall prove that $L \cup S \cup C$ has at least N_{r+1} l+s+1-sums. To do this it suffices to show that for each *i*-sum σ_i of C $(1 \le i \le r+1), L \cup S \cup C$ has an l+s+1-sum equal to σ_i . We first note that $s \le r < l+s$ by using (4), (5) and $|S_q| \le l$. If $1 \le i \le l+1$, then $0 \le l+1-i \le l$. It is easily seen that $S \cup C$ with l+1-i zeros from L appended has an l+s+1-sum equal to σ_i . If $s+1 \le i \le r+1$, then $0 \le l+s+1-i \le l$. It follows that Cwith l+s+1-i zeros from L appended has an l+s+1-sum equal to σ_i . Thus we are done unless s > l+1. In the latter case, for l+1 < i < s+1, we have $i+|S_1| \le i+l < l+s+1 < i+s$. It follows that there exists a v $(1 \le v \le q-1)$ such that

(7)
$$i + |S_1 \cup \ldots \cup S_v| < l + s + 1 \le i + |S_1 \cup \ldots \cup S_v \cup S_{v+1}|.$$

Recalling that $|S_{v+1}| \leq l$, by (7) we have $1 \leq l+s+1-i-|S_1 \cup \ldots \cup S_v| \leq l$. Hence $C \cup S_1 \cup \ldots \cup S_v$ with $l+s+1-i-|S_1 \cup \ldots \cup S_v|$ zeros from L appended has an l+s+1-sum equal to σ_i . The desired result is thus proved.

Now, adding the sum of all elements of $A \setminus L \cup S \cup C$ to each of the l + s + 1-sums of $L \cup S \cup C$, we obtain at least N_{r+1} k-sums of A (noting that $|A \setminus L \cup S \cup C| = k - l - s - 1$). This completes the proof of (i) in Case 2.

Finally, since $l \leq r$ and |C| = r + 1, the elements in C cannot be all equal (recalling the definition of l). Hence, by Lemma 2, C has at least r+2 non-empty sums and thus we must have $N_{k+r}(A) > r+1$ in Case 2.

The proof of Theorems 1 and 2 is now complete.

References

- [1] N. Alon, Subset sums, J. Number Theory 27 (1987), 196–205.
- [2] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdős is Eighty, János Bolyai Math. Soc., Budapest, 1993, 33–50.
- [3] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), 27–35.
- [4] Y. Caro, Zero-sum problems—a survey, Discrete Math. 152 (1996), 93–113.

- [5] R. B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111–116.
- P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel (F) 10 (1961), 41–43.
- [7] J. E. Olson and E. T. White, *Sums from a sequence of group elements*, in: Number Theory and Algebra, H. Zassenhaus (ed.), Academic Press, 1977, 215–222.

Department of Mathematics Suzhou University Suzhou 215006, Jiangsu, P.R. China E-mail: yuhb@suda.edu.cn

> Received on 3.12.2001 and in revised form on 1.9.2003 (4164)