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1. Introduction and results. Upper bounds of |L(1, x)| are mainly
useful in number theory to study class numbers of algebraic extensions.
In [1]-[3] Louboutin establishes bounds for |L(1, x)| that take into account
the behavior of x at small primes. His method uses special representations
of L(1,x) and does not extend to odd characters. For instance in [2] he uses
L(1l,x) =2>,> 1<, x(1)/(n(n+ 1)(n + 2)) which comes from an integra-
tion by parts; such a formula fails in the odd case. But the effect of this
integration by parts is in fact similar to the introduction of a smoothing,
something we did in [5], the only difficulty being to handle properly the
Fourier transform of functions behaving like 1/t near co. This method gives
good numerical results in a uniform way.

In this note we improve on the results given in [2] and [3] and extend
them to the odd character case. Let us mention that we take this opportunity
to correct several typos occurring in [5].

We first state a general formula.

THEOREM. Let x be a primitive Dirichlet character modulo q¢ and let h
be an integer prime to q. Let F : R — R be such that f(t) = F(t)/t is in
C?(R) (also at 0), vanishes at +o0o and f' and f" are in L'(R). Assume
also that F is even if x is odd, and odd if x is even. Then, for every é > 0,
we have

1—F(én
(- 0= X am =

plh n>1
(n,h)=1
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Here the Gauss sum 7() is defined by

(1) ()= > x(a)e(a/q)

amod q

and the Ramanujan sums cp(m) by

(2) cn(m)= e(ma/q).
amod* h

Of course e(-) = %™ and amod* h denotes summation over all invertible

residue classes modulo h. We further restrict our attention to square-free h.

Here are two interesting choices for F' which we take directly from Propo-
sition 2 of [5]. Set

o e (g ).

meZ
fe’e) 1

4 =\ F%me(ut)dtzn[_l,u(u) | (r(1—t) cotwt + 1) dit,
—00 Jul

5) Fit)=1- (Sm“)z

7t
which satisfies

T Fut)

(6) | — = e(ut) dt = —in(1 - Jul)?1_q 4 (u).

—00

Notice furthermore that F3 and Fj take their values in [0, 1].

In order to compute efficiently the resulting sums we select several levels
of hypotheses, starting by the most general ones. We use the Euler ¢-function
and the number w(t) of distinct prime factors of t.

COROLLARY 1. Let x be a primitive Dirichlet character modulo q and
h an integer prime to q. Assume q is divisible by a square-free k and set
ky = 0 if x is even, and Kk, =5 —2log6 = 1.41648 ... if x is odd. Then

H <1 - %)L(l,x)‘ - % [logq+22% + w(h)log4 + Ky
plh plhk

is bounded from above if x is even and q > k24«1 by

o(h)2e®™t {10g(q4“(h)“) if q> k24~
h\/q 1.81 +w(h)logd —logq if k=1,
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and if x is odd by

h)2« (k) 11 4h?
smo(hk) 1 77— 1 m¢(h) 20 ifq>k2max< goh) _>
+3 7 2hyg 10 o) )
2
2hkq AP 0 if k=1.

This improves on Theorems 1, 4 and 5 of [3] in the quality of the bounds
and in their range, and also by the fact that it covers the case of odd char-
acters. For instance in Theorem 5 of [3], where Louboutin studies separately
the cases h = 3 and k = 2, he gets the upper bound %(logq+4.83 ...+o(1))
for even characters, while we get £(logq + 3.87...+ 3(logq)//q). Recently
in [4], by generalizing his method mtroduced in [ ], Louboutin has reached
a similar result for the case of even characters, albeit with a slightly larger
constant K, = 2 + v — log(4m) = 0 046 ... instead of x, = 0. This enabled
him to replace ¢(loggq +4.83...+ 0(1)) by §(logg+3.91...).

Notice that the upper bound in the case of even characters is non-positive
when £ =1 as soon as ¢ > 6.2 - 4w (h)

When h = 2 we can get slightly more precise results:

COROLLARY 2. Let x be a primitive Dirichlet character modulo odd q.
Then

(1= x(2)/2)L(1,x)| < ;(log g + (X))
where k(x) = 4log2 if x is even, and k(x) =5 — 21log(3/2) otherwise.

In [2], the value k(x) ~ 2.818.. . is proved to hold true for even characters
while 4log2 = 2.772 ...

We introduce the character ¢ induced by x modulo gh. Furthermore
(m,t) denotes the ged of m and ¢.

As for the typos in [5], first, Proposition 2 gives a wrong formula for
L(1, x) if x is even: the sign preceding 7(x) should be 4+ and not —. Then
Lemma 8 gives a fancy value for p4. In fact g4(¢) = —im(1 — |t|)21[_171} (1),
which is what is proved and used throughout the paper! Finally, in the 6th
line of page 264, it is written, “and this last summand is non-negative”,
while this summand is without any doubt non-positive.

We thank the referee for his careful reading and for improving Lemma 11.

2. Lemmas. We essentially combine Louboutin’s proof [2] and ours [5],
while generalizing both situations.
First here is a generalization of the new part in Louboutin’s paper [2]:

LEMMA 1. For every m in Z, we have

> Wla)e(am/(gh)) = en(m)x(h)x(m)T(x)-

amod gh
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Proof. By the Chinese remainder theorem,

> dlaelam/(hg) = > D W(wq+yhe((wq+yh)m/(hq))

amod hq zmod h y mod ¢

= Z e(xm/h) Z x(yh)e(ym/q)

rzmod* h ymod q
= en(m)x(h)x(m)7(x),
where ¢, (m) is the Ramanujan sum defined by (2).

Now, Lemma 3 of [5] can be extended to

LEMMA 2. The sum Y., f(0n)x(n) exists in the restricted sense given
in [5] and

S snppn) = XIS migon) § f()e(omt/(ah)dt
nez meZ\{0} -

Note: §™_g(t)e(ut) dt = limp_.o SiTg(t)e(ut) dt for u # 0.

Now we state and prove lemmas that give approximations of the relevant
quantities.

LEMMA 3. For 6 > 0 and hk > 2 we have

hk F3(5n) logp
SToF) Z - —logé—1+ Z .
n>1 p|hk
(n,hk)=1

Proof. We have

Z F3 on) ZM Z 1 — F3(on)

n21 d|hk n>1
(n,hk): d‘n
_ N ld) 1 - Fy(don)
N Z d Z n ’
d|hk n>1

Lemma 16 of [5] gives the value of the above if hk = 1, which is — log 6 —14-6.
This equality is stated only for § < 1 but since only analytic functions are
involved, it naturally extends to § > 0. We infer that

S DO o) 1+ a)
( nZ)l d|hk
n,hk)=1
_ o(hk) _ @(hk) | o(hk) logp
I Lyt %p—l
p

provided hk > 2.
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LEMMA 4. For dug > 1 we have
ouq — 2log(eduq) < Z j(m/(duq)) < duq — log(2mdug/e).
1<m<duq

The upper bound is proved between (6.3) and (6.4) in [5]. There also
the restriction § < 1 can be dispensed with. The lower bound comes simply
from a comparison to an integral since j is non-increasing and since j(t) <
—2log|t| for t <1 (shown to be true in Lemma 7 of [5]),

(7) Vi(t)dt < —2(rlogr—r) (r€0,1]).
0

LEMMA 5. Foré >0 and ' = h/(2,h) we have

> ¢ . h (m/(5hq)) < 2°Msq + 1 —log(2mdq) + H(Zl) >
1<m<6q ¢( ) p|h’ b=

Proof. Let us introduce the non-negative multiplicative function H =
w* ¢. We have H(p) = p — 2. We get

> d((m,h)j(m/(6q)) = > H(d) > j(dm/(3q))

1<m<dq d|h 1<m<édq/d
< Z 5 + ¢(h)(1 — log(2m6hq)) + > H(d)logd.
dlh dlh
Now and since h is square-free we see that Zd‘h hH(d)/d = 2P g(h).

LEMMA 6. For § > k/q we have

>0 O s (oma) < 240 A gy 1220 g2

1<m<5q
(m,k)=

Proof. Following the proof of Lemma 5, our sum equals

DH@Y ) D j(dim/(5hq))

d|h 1|k 1<m<éq/(dl)

<502 o(n) "M 4 S (@) 37 2log(eb/ (@)
dlh 1)k
wl)=-1

< 6g2Mo(h) %k)

+ ¢(h)2°®) log(edq/2)

provided that dq/k > 1.
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LEMMA 7. For 6 > 0 and hk > 2 we have

hk 1 — Fy(dn) 3 log p
— Z 7:10g5+§—10g(27r)+z —

¢(hk) 1 n ok P
(n,hk)=1
1
2¢(hk) wdot | dt
d)\(1=t)]log| ———|—.
T 2D (1= 1)log sin(rdot) | d
d|hk 0
When hk = 2 the last 5umm3and is non-positive, and in general if § <
1/(2hk), it is not more than 7-6* Hp|hk(p2 —1)/p?.
Proof. Lemma 17 of [5] gives us
1
1 — Fy(on) 3 ot
—————= = —logd + = —log(2 2\ (1 —t)log| ————
; n 080+ 2 og(2m) + (S]( ) log sin(7ot)

and we use the same technique as in the previous lemma. The error term is
non-positive if hk = 2 as shown in [5] between (7.2) and (7.3). Furthermore
the integral is shown there (in Lemma 18) to be not more than 735%/12 as
soon as 6 < 1/2.

A simple comparison to an integral yields:

LEMMA 8. For dug > 1 we have

where the last summand can be omitted if k = 1.
Proof. We proceed as in Lemma 6 to deduce that our sum is

SHO u) Y (1—{2—?)2

d|h 1|k 1<m<5q/(dl)

and the conclusion follows readily.

From [6, (3.22), (2.11) and (3.26)], we get
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LEMMA 10. We have

1
Yy P clogx ~ 1332+ (X > 319),
2log X
1<p<X
—1 27 1
IT 2 gleX<1+ 5 ) (X >1),
2ip<X P og 2log” X

where v is Fuler’s constant.

LEMMA 11. For h > 1, we have

—9 ]
[T 253 252 <7414
p—1 p—2
2<plh 2<plh

Proof. First writing h = hip; where p; is a prime factor, the reader
readily checks that our quantity is a non-increasing function of p;. We thus
find that its maximum is obtained when h =[], <p<x D- As a function of X,
it numerically seems increasing and GP/PARI needs at most 10 seconds to
prove it is < 0.72 if the product is taken over primes < 10°. Using Lemma 10,
we get

S(X) = Z logp Z 2log12> " Z logp_lo§2

2<p§Xp_2 2<p§Xp(p_ ) 1epex P

<1.27+log X —1.332 4+ —0.346

2log X
<logX —0.4

for X > 10°. Furthermore, still invoking Lemma 10, we have

p—2

2<p<X p
< o1 p-1
< 11 {1~ (p—1) 11 p

2<p<X 2<p<X

1 277 1

< 1L (- Gmm)uex ()

2<p<106 (p—1)*/log X 2log” X

also for X > 10°. Since (1 —0.4y)(1+0.5y%) < 1if 0 < y < 0.4, our function
is not more than

(8) 2¢7 ] <1 - ﬁ) < 0.7414.

2<p<106
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3. Proof of the Theorem. Let us start with
1—F(on) F(on
(9) L) =) w(n) ———+ w(n)
n>1 n>1

Thanks to the hypothesis concerning the respective parities of F' and x, we

get
Zzp )6 f(6n),

(10) > 1(n)

n>1 neZ

to which we apply Lemma 2, and the Theorem follows readily.

4. Proofs of the corollaries. For even characters we take F' = Fj.
Combining the Theorem with Lemmas 3 and 6, and noticing that |c,(m)| <

é((h,m)), we get

an 'H<1__> }qs

logp 1 ( h k2
—logd —1+ + —(2¢M5q +
%p— 1 Vg ¢ (k)

provided 6 > k/q. We simply have to choose § = 1/(2““‘)\/@ and the
claimed formula follows readily.
For odd characters we use F' = F,; and Lemmas 7 and 9 to get

w(k)

log(edgq/ 2))

3
12 (I ( - %) ‘¢ s —logd + o — log(2r)
plh
logp 2T 52°Mg w1 K
t 2 F (T )
plhk p|hk

provided § € [k/q,1/(2hk)]. We take § = 3/(2"x, /g) and the claimed
formula follows readily.

To prove the second corollary (i.e. with k& = 1), we simply adapt the
above proof, but we can simplify the bound in the even case. We first obtain

1 —w 2 lo
(13) %<1—10g((27r/e)\/(_]2 (k) Hp 3 gp).

-2
2<Mh 2<Mhp

The last factor is bounded in Lemma 11 by 0.7414, so the above term is not
more than (1.81 + w(h)log4 —logq)/(2,/q) as announced.

When h = 2, the claimed upper bounds are proved if ¢ > 39, in part
because the term in §2 appearing in (12) disappears by Lemma 7. We com-
plete the verification by appealing to GP/PARI as indicated in [5]. The
maximum of k() for even characters of module < 1000 is < 1.705, attained
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for ¢ = 109, while the maximum of k() for odd characters of module < 1000
is < 3.360, attained for ¢ = 131.
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