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1. Introduction. If α is an algebraic number, we denote by α the
maximum of the absolute values of the conjugates of α and by den(α) the
least positive integer such that den(α)α is an algebraic integer, and we
set ‖α‖ = max{α ,den(α)}. Then for nonzero algebraic α, we have the
fundamental inequalities

|α| ≥ ‖α‖−2[Q(α):Q] and ‖α−1‖ ≤ ‖α‖2[Q(α):Q]

(cf. [12, Lemma 2.10.2]).
Let K be an algebraic number field and OK be the ring of integers in K.

Let r and L be integers such that r ≥ 2 and L ≥ 1. We consider the function

Φ0(x) =
∞∑

k=0

Ek(xr
k

)
Fk(xrk)

,

where

Ek(x) = ak1x+ ak2x
2 + . . .+ akLx

L ∈ K[x],

Fk(x) = 1 + bk1x+ bk2x
2 + . . .+ bkLx

L ∈ OK [x],

log ‖akl‖, log ‖bkl‖ = o(rk), 1 ≤ l ≤ L.

The aim of this paper is to study the arithmetical nature of Φ0(α) when
α ∈ K, 0 < |α| < 1, and Fk(αr

k

) 6= 0 for every k ≥ 0.
It should be noticed that in some cases Φ0(x) can be explicitly computed

as a rational function. Specific examples are, with r = 2:
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∞∑

k=0

x2k

1− x2k+1 =
x

1− x,

∞∑

k=0

2kx2k

1 + x2k
=

x

1− x,

∞∑

k=0

(−2)kx2k

x2k+1 − x2k + 1
=

x

x2 + x+ 1
.

The first equality is due to Lucas [9]. The latter two equalities are proved
in Duverney [4] but are evidently older. In the case where r = 3, we have
for example

∞∑

k=0

3kx3k(1− x2·3k)
x4·3k + x2·3k + 1

=
x

1− x2 .

This equality is proved in Duverney and Shiokawa [7]. Clearly for these
examples, Φ0(α) ∈ K if α ∈ K.

Our main result will be

Transcendence Criterion. Φ0(α) is algebraic if and only if Φ0(x) is
a rational function.

In fact we will prove the more precise Theorem 6 below (see Section 3),
which will also give us a way of proving that Φ0(x) 6∈ K(x). The proof of
Theorem 6 (and therefore of the transcendence criterion) relies on Mahler’s
transcendence method, more precisely on the following result, which is a
special case of a theorem of Loxton and van der Poorten [8] (cf. [12, Theo-
rem 2.9.1]).

Theorem 1. Let K be an algebraic number field , r ≥ 2 be an integer ,
{Φn(x)}n≥0 be a sequence in the ring of formal power series K[[x]] and
α ∈ K with 0 < |α| < 1. If the following three properties are satisfied , then
Φ0(α) is transcendental.

(I) Φn(αr
n

) = anΦ0(α) + bn, where an, bn ∈ K, and log ‖an‖, log ‖bn‖
= O(rn).

(II) If Φn(x) =
∑∞
l=0 σ

(n)
l xl, then for any ε > 0 there is a positive

integer n0 such that

log ‖σ(n)
l ‖ ≤ εrn(1 + l)

for any n ≥ n0 and l ≥ 0.
(III) Let {sl}l≥0 be variables and

F (x; s) = F (x; {sl}l≥0) =
∞∑

l=0

slx
l,
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in such a way that

F (x;σ(n)) = F (x; {σ(n)
l }l≥0) = Φn(x).

Then for any polynomials P0(x, s), . . . , Pd(x, s) ∈ K[x, {sl}l≥0] and

E(x, s) =
d∑

j=0

Pj(x, s)F (x; s)j ,

there is a positive integer I with the following property : if n is sufficiently
large and P0(x, σ(n)), . . . , Pd(x, σ(n)) are not all zero, then ordE(x, σ(n))
≤ I, where ord denotes the zero order at 0.

However, applying Theorem 1 to Φ0(x) will not be an easy task, because
of condition (III). Thus the second section will be devoted to the proof
of Theorem 3, in which condition (III) will be replaced by a simpler one,
namely, some kind of irrationality measure of the function Φ0(x). The tool
in this section is an inductive method developed in Duverney [5].

Then, in the third section, we will use rather classical tools in approxima-
tion theory, in order to compute this irrationality measure. By introducing
low-order Padé approximants of the functions Φn(x) connected to Φ0(x) by
the equality (41), we will arrive at Theorem 6, which implies the transcen-
dence criterion and will enable us to obtain transcendence results. These
results will be developed in Section 5 (see Theorems 7–11).

2. An inductive method

Theorem 2. Let K be an algebraic number field , r and L be integers
such that r ≥ 2 and L ≥ 1, and

S = Φ0(x) =
∞∑

k=0

Ek(xr
k

)
Fk(xrk)

,

where
Ek(x) = ak1x+ ak2x

2 + . . .+ akLx
L ∈ K[x],

Fk(x) = 1 + bk1x+ bk2x
2 + . . .+ bkLx

L ∈ K[x].

Suppose that there is a positive constant c1 such that for any M ≥ 1 and any
polynomials A0, A1 ∈ K[x], not both zero, satisfying degA0,degA1 ≤M ,

(1) ord(A0 + A1S) ≤ c1M.

Then for any positive integer d there is a positive constant cd such that
for any M ≥ 1 and any polynomials A0, A1, . . . , Ad ∈ K[x], not all zero,
satisfying degAi ≤M, 0 ≤ i ≤ d,

(2) ord(A0 + A1S + . . .+ AdS
d) ≤ cdM.
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Proof. Let

Φn(x) =
∞∑

k=0

En+k(xr
k

)
Fn+k(xrk)

, Rn = Φn(xr
n

), Tn =
n−1∑

k=0

Ek(xr
k

)
Fk(xrk)

.

Then S = Tn + Rn. We prove (2) by induction on d. If d = 1, then (2) is
the same as (1). Suppose that for a given d ≥ 2, we have

(3) ord(B0 +B1S + . . .+Bd−1S
d−1) ≤ cd−1M,

for any B0, . . . , Bd−1 ∈ K[x], not all zero, with degBi ≤ M , 0 ≤ i ≤ d− 1.
We may assume cd−1 ≥ 1 and Ad 6= 0. Let e = dL. For every n > 0, there
exist Qn(x) ∈ K[x] with Qn(x) 6= 0, and Pn1(x), . . . , Pnd(x) ∈ K[x] such
that

degQn ≤ de, degPni ≤ de, 1 ≤ i ≤ d,
Qn(x)Φn(x)i − Pni(x) = xde+e+1Gni(x), 1 ≤ i ≤ d,(4)

where

Gni(x) =
∞∑

l=0

gnilx
l ∈ K[[x]].

For this we choose Qn(x) in such a way that the terms of degrees de + 1,
. . . , de + e vanish in the Taylor expansion of Qn(x)Φn(x)i for i = 1, . . . , d.
We only have to solve a linear homogeneous system which has de equations
and de+ 1 unknowns.

Lemma 1. ordGn1(x) ≤ γ, where γ = c1(de+ L)− (de+ e+ 1).

Proof. In (4), replacing x by xr
n

, we have

Qn(xr
n

)(S − Tn)− Pn1(xr
n

) = x(de+e+1)rnGn1(xr
n

).

Multiplying both sides by Dn =
∏n−1
k=0 Fk(xr

k

), we have

DnQn(xr
n

)S −Qn(xr
n

)DnTn −DnPn1(xr
n

) = x(de+e+1)rnDnGn1(xr
n

).

Since degDn,degDnTn ≤ Lrn,

degDnQn(xr
n

), deg(Qn(xr
n

)DnTn +DnPn1(xr
n

)) ≤ (L+ de)rn.

By (1) we have

ordGn1(xr
n

) ≤ (c1(de+ L)− (de+ e+ 1))rn,

which implies the lemma.

We define Pn0(x) = Qn(x), Gn0(x) = 0. In (4), replacing x by xr
n

, we
obtain, for every i = 0, 1, . . . , d,

(5) Qn(xr
n

)(S − Tn)i − Pni(xr
n

) = x(de+e+1)rnGni(xr
n

).
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We develop (S − Tn)i and write the equality (5) in matrix form. Then we
get

(6) Qn(xr
n

)Mn




1
S
...
Sd


−




Pn0(xr
n

)
Pn1(xr

n

)
...

Pnd(xr
n

)


 = x(de+e+1)rn




0
Gn1(xr

n

)
...

Gnd(xr
n

)


 ,

where

Mn =




1 0 . . . 0
−Tn 1 . . . 0
T 2
n −2Tn . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)dT dn (−1)d−1
(
d
1

)
T d−1
n . . . 1



.

In [5] it is shown that

M−1
n =




1 0 . . . 0
Tn 1 . . . 0
T 2
n 2Tn . . . 0
. . . . . . . . . . . . . . . . . . . .

T dn
(
d
1

)
T d−1
n . . . 1



.

Note that Dd
nM−1

n has entries in K[x]. Multiplying (6) on the left byM−1
n ,

we get

(7) Qn(xr
n

)




1
S
...
Sd


−M

−1
n




Pn0(xr
n

)
Pn1(xr

n

)
...

Pnd(xr
n

)


 = x(de+e+1)rnM−1

n




0
Gn1(xr

n

)
...

Gnd(xr
n

)


.

Multiplying (7) on the left by the row matrix Dd
n(A0, . . . , Ad) we obtain

(8) Un

( d∑

h=0

AhS
h
)
− Vn = x(de+e+1)rnHn,

where

Un = Dd
nQn(xr

n

) ∈ K[x],

Vn = (A0, . . . , Ad)Dd
nM−1

n




Pn0(xr
n

)
Pn1(xr

n

)
...

Pnd(xr
n

)


 ∈ K[x],
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Hn = (A0, . . . , Ad)Dd
nM−1

n




0
Gn1(xr

n

)
...

Gnd(xr
n

)


 ∈ K[[x]].

Let n be the positive integer such that

(9) rn−1 ≤ cd−1M < rn.

Then, as e = dL and cd−1 ≥ 1,

(10) deg Vn ≤M + dLrn + dern < (de+ e+ 1)rn.

Let m be the least integer such that (0, gn1m, . . . , gndm) 6= 0. By Lemma 1,
m ≤ γ. Let




0
gn1m

...
gndm


 =




0
...
0

gnim
...

gndm



, gnim 6= 0.

Then, modulo x(m+1)rn , we have

Hn ≡ Dd
n(A0, . . . , Ad)M−1

n




0
...
0

gnimx
mrn

...
gndmx

mrn




≡ Dd
n(A0, . . . , Ad)




0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
d−1
i

)
T d−i−1
n . . . . . . 1 0(

d
i

)
T d−in . . . . . . . . . 1






gnim

...
gndm


xmr

n

≡ Dd
n(A0, . . . , Ad)




0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
d−1
i

)
Sd−i−1 . . . . . . 1 0(

d
i

)
Sd−i . . . . . . . . . 1






gnim

...
gndm


xmr

n

≡ Dd
n(B0 +B1S + . . .+Bd−iS

d−i)xmr
n

,
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where B0, . . . , Bd−i ∈ K[x] and

Bd−i = Ad

(
d

i

)
gnim 6= 0, degBh ≤M, 0 ≤ h ≤ d− i.

Since ordDn = 0, by (3) and (9) we obtain

ord(Dd
n(B0 +B1S + . . .+Bd−iS

d−i)xmr
n

) ≤ cd−1M +mrn < (1 +m)rn.

Hence Hn 6≡ 0 mod x(m+1)rn . Suppose that Vn 6= 0. By (10) we get

ordVn < (de+ e+ 1)rn.

Therefore by (8), (9) we obtain

ord
( d∑

h=0

AhS
h
)
< (de+ e+ 1)rn ≤ (de+ e+ 1)rcd−1M.

If Vn = 0, by (8), (9) we obtain

ord
( d∑

h=0

AhS
h
)
< (de+ e+ 1)rn + (m+ 1)rn ≤ (de+ e+ 2 + γ)rcd−1M.

Letting cd = (de+ e+ 2 + γ)rcd−1, we obtain (2).

Theorem 3. In addition to the hypotheses of Section 1, assume (1).
Then Φ0(α) is transcendental.

Proof. We apply Theorem 1. Since

Φn(αr
n

) = Φ0(α)−
n−1∑

k=0

Ek(αr
k

)
Fk(αrk)

,

property (I) is satisfied. We prove property (III). Suppose that degx Pj(x, s)
≤ N and ordE(x, σ(n)) = In. Then

Inr
n = ordE(xr

n

, σ(n)) = ord
( d∑

j=0

Pj(xr
n

, σ(n))Φn(xr
n

)j
)
.

On the other hand,

Dd
n

d∑

j=0

Pj(xr
n

, σ(n))Φn(xr
n

)j =
d∑

j=0

Pj(xr
n

, σ(n))Dd
n(S − Tn)j .

If P0(x, σ(n)), . . . , Pd(x, σ(n)) are not all zero, by Theorem 2 we get

ordE(xr
n

, σ(n)) ≤ cd(Nrn + dLrn).

Therefore In ≤ cd(N + dL), which proves (III). Property (II) results from
the following.
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Lemma 2. For any θ > 1, there exists a positive integer n0 such that

‖σ(n)
l ‖ ≤ θlr

n

for any n ≥ n0 and l ≥ 0.

Proof. Let
∑∞
k=0 akx

k �∑∞
k=0 bkx

k mean |ak| ≤ bk for all k. Let θ > 1
and k be greater than some constant depending on θ which will be deter-
mined below. We have

‖akl‖ ≤ θr
k

, ‖bkl‖ ≤ θr
k

, 1 ≤ l ≤ L.
Then

Ek(x)� θr
k

(x+ x2 + . . .+ xL),
1

Fk(x)
� 1 + θr

k

(x+ . . .+ xL) + θ2rk(x+ . . .+ xL)2 + . . .

Since (x+ . . .+ xL)l � Ll(xl + xl+1 + . . .), we get

Ek(x)
Fk(x)

� θr
k

L(x+ x2 + . . .) + θ2rkL2(x2 + x3 + . . .) + . . .

� θr
k

Lx+ . . .+ Ll(θr
k

+ . . .+ θlr
k

)xl + . . .

� (θ2)r
k

x+ . . .+ (θ2)lr
k

xl + . . .

So we obtain
Φn(x)� (θ2)r

n

x+ . . .+ ([logr l] + 1)(θ2)lr
n

xl + . . .

� (θ3)r
n

x+ . . .+ (θ3)lr
n

xl + . . . ,

if n is sufficiently large. Hence |σ(n)
l | ≤ (θ3)lr

n

for any n ≥ n0 and l ≥ 0. In

the same way, we have σ
(n)
l ≤ (θ3)lr

n

for any n ≥ n0 and l ≥ 0.
Since

∏L
l=1den(akl) ≤ θr

k

and bkl ∈ OK , 1 ≤ l ≤ L, we have

den(σ(n)
l ) ≤ θrnθrn+1

. . . θr
n+[logr l] ≤ θrn+[logr l](1+r−1+r−2+...) ≤ (θ2)lr

n

for any n ≥ n0 and l ≥ 0.

Lemma 2 is proved and the proof of Theorem 3 is complete. To end this
section, we prove Lemma 3, which will be used later.

Lemma 3. Let

fn(x) = −Bn(x)
An(x)

+ Φn(x),

where An(x), Bn(x) ∈ K[x], degAn,degBn ≤ L, An(0) = 1, Bn(0) = 0 and
the log ‖ ‖ of the coefficients of An(x), Bn(x) are o(rn). Let I be a positive
integer , and α ∈ K with 0 < |α| < 1. Then there exist positive numbers
η < 1 and n0 such that

0 < |fn(αr
n

)| < ηr
n ord fn(x)

for every n ≥ n0 satisfying ord fn(x) ≤ I.
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Proof. Let θ > 1 and Bn(x)/An(x) =
∑∞
l=1 τ

(n)
l xl. As in Lemma 2, we

obtain ‖τ (n)
l ‖ ≤ (θ2)lr

n

. We put

fn(x) =
∞∑

l=1

(−τ (n)
l + σ

(n)
l )xl = aHx

H + aH+1x
H+1 + . . . , aH 6= 0.

Then 1 ≤ H ≤ I and by Lemma 2, ‖al‖ ≤ (θ4)lr
n

. We have

fn(αr
n

) = aHα
Hrn

(
1 +

aH+1

aH
αr

n

+
aH+2

aH
α2rn + . . .

)
.

Since ∣∣∣∣
aH+l

aH

∣∣∣∣ ≤ (θ8[K:Q])Hr
n

(θ4)(H+l)rn ≤ θ(8[K:Q]+4)Hrnθ4lrn ,

we obtain ∣∣∣∣
aH+l

aH
αlr

n

∣∣∣∣ ≤ (θ8[K:Q]+4)Ir
n |θ4α|lrn .

We can choose θ > 1 such that

η = θ(8[K:Q]+4)I |θ4α| < 1.

Then ∣∣∣∣
aH+l

aH
αlr

n

∣∣∣∣ ≤ ηlr
n

,

and so if n is sufficiently large, then 0 < |fn(αr
n

)| < 2|θ4α|Hrn < ηHr
n

.

3. Proof of the Transcendence Criterion. We first prove a gener-
alization of [3, Theorem 9.7, p. 113]. Let K be any commutative field with
a nonarchimedean absolute value | |, thus satisfying

|x| = 0 ⇔ x = 0,(11)

|xy| = |x| |y|,(12)

|x+ y| ≤ max{|x|, |y|}.(13)

We suppose moreover that there exists in K a subring A with the following
property:

(14) for any x ∈ A \ {0}, |x| ≥ 1.

Theorem 4. Let K be as above and α ∈ K. Suppose there exist a, b, k, l
∈ (0,∞), h ≥ 1, an increasing sequence {g(n)}n≥0 in (0,∞), and a sequence
{(pn, qn)}n≥0 in A2 such that

qnpn+1 − qn+1pn 6= 0 for every n ≥ 0,(15)

|qn| ≤ kg(n)a for every n ≥ 0,(16)

|qnα− pn| ≤ l/g(n) for every n ≥ 0,(17)
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lim
n→∞

g(n) =∞,(18)

g(n+ 1) ≤ bg(n)h for every n ≥ 0.(19)

Then for every (p, q) ∈ A2 with q 6= 0, we have

|qα− p| ≥ c/|q|µ

with c = (kba(h+1)Mah2
)−1, µ = ah2, and M = max{l, g(0)}.

Proof. Let (p, q) ∈ A2, with q 6= 0, fixed. Let

(20) M = max{l, g(0)}.
Let ν be the least integer satisfying |q|M/g(ν) < 1. Such a ν exists because
of (18). Moreover, as |q| ≥ 1 because q ∈ A \ {0}, we have |q|M/g(0) ≥ 1,
therefore ν ≥ 1. Thus |q|M/g(ν − 1) ≥ 1, which implies g(ν − 1) ≤ |q|M.
By using (19), we obtain g(ν) ≤ b(|q|M)h, and by using (19) again,

(21) g(ν + 1) ≤ bh+1(|q|M)h
2
.

Now consider the determinant ∆ν =
∣∣ qν pν
qν+1 pν+1

∣∣. By (15), ∆ν 6= 0, which

means that the vectors (qν , pν) and (qν+1, pν+1) form a basis of K2. Hence
one of the two determinants

∣∣ qν pν
q p

∣∣ and
∣∣ qν+1 pν+1

q p

∣∣ is distinct from 0. Set
m = ν or m = ν + 1, such that

(22) δm =
∣∣∣∣
qm pm
q p

∣∣∣∣ 6= 0.

As δm ∈ A \ {0}, we have by (14) |pqm − qpm| ≥ 1. This means that
|q(qmα− pm)− qm(qα− p)| ≥ 1. By using (13), we obtain

(23) max{|q(qmα− pm)|, |qm(qα− p)|} ≥ 1.

But |q(qmα − pm)| ≤ |q|l/g(m) by (17). As l ≤ M and g is increasing, we
have |q(qmα − pm)| ≤ |q|M/g(ν) < 1 by definition of ν. Therefore in (23)
the greatest number on the left-hand side cannot be |q(qmα−pm)|, and (23)
becomes
(24) |qm| |qα− p| ≥ 1 ⇔ |qα− p| ≥ 1/|qm|.
By (16) we can write |qm| ≤ kg(m)a ≤ kg(ν + 1)a. By using (21) we obtain

(25) |qm| ≤ kba(h+1)(|q|M)ah
2
.

Therefore (24) becomes

|qα− p| ≥ 1
kba(h+1)Mah2

1
|q|ah2 ,

which proves the theorem.

Now we specialize Theorem 4 to the following situation. Let K be any
commutative field, let K[[x]] be the ring of formal power series with coef-
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ficients in K, and let K((x)) be the field of fractions of K[[x]]. It is well
known that K((x)) is also the field of Laurent series with coefficients in K,
which means that any f ∈ K((x))× can be written, in a unique form, as

(26) f(x) =
∑

n≥m
anx

n with am 6= 0.

The valuation of f ∈ K((x))× is defined, as usual, by

(27) v(f) = m.

It has the following properties:

v(fg) = v(f) + v(g),(28)

v(f + g) ≥ min{v(f), v(g)}.(29)

Now fix any θ > 1. We define an absolute value on K((x)) by putting

(30) |f | = θ−v(f) if f 6= 0, |0| = 0.

It is easily checked (and well known) that | | satisfies (11)–(13).

Theorem 5. Let K be a commutative field and A,B,C ∈ R, 0 < A < B,
C ≥ 1. Let r ≥ 2 be an integer. Let {m(n)}n≥0 be an increasing sequence
of nonnegative integers satisfying m(n + 1) − m(n) ≤ C. Let f ∈ K[[x]].
Suppose that there exists a sequence {(Pn, Qn)}n≥0 in K[x]2 satisfying

PnQn+1 − Pn+1Qn 6= 0 for every n ≥ 0,(31)

degQn,degPn ≤ Arm(n) for every n ≥ 0,(32)

v(Qnf − Pn) ≥ Brm(n) for every n ≥ 0.(33)

Then, for every (P,Q) ∈ K[x]2 with Q 6= 0 and degP,degQ ≤ d, d ≥ 1,

(34) v(Qf − P ) ≤
(
Arm(0)+2C

(
1 +

1
B − A

)
+ 1
)
d.

Proof. We apply Theorem 4 with K replaced by K((x)) and

A = {f ∈ K((x)) | f(x) = P (x−1) for some P ∈ K[x]}.
For every n ∈ N, put

Qn(x) = x[Arm(n)]Q̃n(x), Pn(x) = x[Arm(n)]P̃n(x).

Then P̃n, Q̃n ∈ A for every n ∈ N and by (33),

(35) v(Q̃nf − P̃n) ≥ (B − A)rm(n).

By using the absolute value (30), we deduce from (31), (32) and (35) that

P̃nQ̃n+1 − P̃n+1Q̃n 6= 0 for every n ≥ 0,(36)

|Q̃n| ≤ θAr
m(n)

for every n ≥ 0,(37)

|Q̃nf − P̃n| ≤ 1/θ(B−A)rm(n)
for every n ≥ 0.(38)
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Therefore we can apply Theorem 4 with g(n) = θ(B−A)rm(n)
, k = 1, a =

A/(B − A), l = 1, b = 1, h = rC , M = g(0) = θ(B−A)rm(0)
. For every

(P,Q) ∈ K[x]2 with degP,degQ ≤ d, Q 6= 0, put P (x) = xdP̃ (x) and
Q(x) = xdQ̃(x). Then P̃ , Q̃ ∈ A and by Theorem 4 we have

(39) |Q̃f − P̃ | ≥ 1
θArm(0)+2C

1

|Q̃| A
B−A r

m(0)+2C
.

By taking logarithms, we get

v(Q̃f − P̃ ) ≤ Arm(0)+2C − A

B − A rm(0)+2Cv(Q̃).

But v(Q̃) ≥ −d, therefore

v(Q̃f − P̃ ) ≤ Arm(0)+2C
(

1 +
d

B − A

)
,

and finally

v(Qf−P ) ≤ Arm(0)+2C
(

1+
d

B − A

)
+d ≤

(
Arm(0)+2C

(
1+

1
B − A

)
+1
)
d,

because d ≥ 1.

Now we are ready to prove the Transcendence Criterion. Let

Φ0(x) =
∞∑

k=0

Ek(xr
k

)
Fk(xrk)

satisfy the assumptions in Section 1 and

Φn(x) =
∞∑

k=0

En+k(xr
k

)
Fn+k(xrk)

.

It is clear that

(40) Φn(xr) = Φn−1(x)− En−1(x)
Fn−1(x)

.

An easy induction shows that

(41) Φn(xr
n

) = Φ0(x)−
n−1∑

k=0

Ek(xr
k

)
Fk(xrk)

.

We want to construct a sequence {(Pn, Qn)}n≥0 satisfying the hypotheses
of Theorem 5. Consider the (L,L) Padé approximants to Φn(x), that is,
polynomials An and Bn satisfying degAn,degBn ≤ L, and

(42) An(x)Φn(x)−Bn(x) = O(x2L+1).
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By using the so-called Siegel lemma (cf. [12, Lemma 1.4.2]), we may assume
that the log ‖ ‖ of the coefficients of An(x) and Bn(x) are o(rn). Define

(43) Dn(x) =

∣∣∣∣∣∣

An(x) Bn(x)

An+1(xr) An+1(xr)
En(x)
Fn(x)

+Bn+1(xr)

∣∣∣∣∣∣
.

Lemma 4. Suppose that Dn(x) 6= 0. Then

ord(An(x)Φn(x)−Bn(x)) ≤ r(2L+ 1).

Proof. Suppose that

(44) An(x)Φn(x)−Bn(x) = O(xq)

with q > r(2L+ 1). We also have, by (42),

An+1(x)Φn+1(x)−Bn+1(x) = O(x2L+1).

Replacing x by xr and using (40), we obtain

(45) An+1(xr)Φn(x)−
(
An+1(xr)

En(x)
Fn(x)

+Bn+1(xr)
)

= O(xr(2L+1)).

Multiply the first column of Dn(x) by Φn(x) and subtract it from the second
one. By (44) and (45), we see that Dn(x) = O(xr(2L+1)). This means that

Fn(x)Dn(x) =
∣∣∣∣

An(x) Bn(x)
An+1(xr)Fn(x) An+1(xr)En(x) +Bn+1(xr)Fn(x)

∣∣∣∣

= O(xr(2L+1)).

But this determinant is a polynomial of degree at most L(r+2). As L(r+2) <
r(2L+ 1), we have Dn(x) = 0. This contradiction proves Lemma 4.

Now we construct the sequence {(Pn, Qn)}n≥0. If we replace x by xr
n

in
(42) and use the functional equation (41) we obtain

Q∗n(x)Φ0(x)− P ∗n(x) = O(x(2L+1)rn),

where

Q∗n(x) = An(xr
n

)
n−1∏

k=0

Fk(xr
k

),

P ∗n(x) =
(
An(xr

n

)
n−1∑

k=0

Ek(xr
k

)
Fk(xrk)

+Bn(xr
n

)
) n−1∏

k=0

Fk(xr
k

).

It is clear that

degQ∗n ≤
rL

r − 1
rn, degP ∗n ≤

rL

r − 1
rn.

As rL/(r−1) ≤ 2L for every r ≥ 2, we see that the sequence {(Pn, Qn)}n≥0

= {(P ∗m(n), Q
∗
m(n))}n≥0 satisfies hypotheses (32) and (33) of Theorem 5 for
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every increasing sequence {m(n)}n≥0. It remains to study condition (31) in
Theorem 5. We need the following lemma.

Lemma 5. For every n ≥ 0, put

∆n(x) =
∣∣∣∣
Q∗n(x) P ∗n(x)
Q∗n+1(x) P ∗n+1(x)

∣∣∣∣ .

Then ∆n(x) = 0 if and only if Dn(x) = 0, that is,

En(x)
Fn(x)

=
Bn(x)
An(x)

− Bn+1(xr)
An+1(xr)

.

Proof. We have

∆n(x) = 0

⇔

∣∣∣∣∣∣∣∣∣∣

An(xr
n

) An(xr
n

)
n−1∑

k=0

Ek(xr
k

)
Fk(xrk)

+Bn(xr
n

)

An+1(xr
n+1

) An+1(xr
n+1

)
n∑

k=0

Ek(xr
k

)
Fk(xrk)

+Bn+1(xr
n+1

)

∣∣∣∣∣∣∣∣∣∣

= 0

⇔

∣∣∣∣∣∣

An(xr
n

) Bn(xr
n

)

An+1(xr
n+1

) An+1(xr
n+1

)
En(xr

n

)
Fn(xrn)

+Bn+1(xr
n+1

)

∣∣∣∣∣∣
= 0

⇔

∣∣∣∣∣∣

An(x) Bn(x)

An+1(xr) An+1(xr)
En(x)
Fn(x)

+Bn+1(xr)

∣∣∣∣∣∣
= 0 ⇔ Dn(x) = 0

⇔

∣∣∣∣∣∣∣∣

1
Bn(x)
An(x)

1
En(x)
Fn(x)

+
Bn+1(xr)
An+1(xr)

∣∣∣∣∣∣∣∣
= 0,

which is the desired conclusion.

The following theorem is a precise version of the Transcendence Crite-
rion.

Theorem 6. Under the hypotheses of Section 1, Φ0(α) is algebraic if
and only if ∆n(x) = 0 for every n ≥ N , that is,

En(x)
Fn(x)

=
Bn(x)
An(x)

− Bn+1(xr)
An+1(xr)

for every n ≥ N .

Proof. Suppose that there exist infinitely many n satisfying ∆n(x) 6= 0.
Denote by {m(n)}n≥0 the sequence satisfying

∆m(n)(x) 6= 0, ∆k(x) = 0
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for every n ≥ 0 and every k with m(n) < k < m(n+ 1). Then two cases can
occur.

(I) m(n+ 1)−m(n) ≤ C for some constant C > 0. Then it is clear that
the determinant

δn =
∣∣∣∣
Q∗m(n)(x) P ∗m(n)(x)
Q∗m(n+1)(x) P ∗m(n+1)(x)

∣∣∣∣ =
∣∣∣∣
Qn(x) Pn(x)
Qn+1(x) Pn+1(x)

∣∣∣∣

is not zero. Therefore condition (31) in Theorem 5 is fulfilled, and we can
apply Theorem 3. Hence Φ0(α) is transcendental.

(II) lim sup(m(n+ 1)−m(n)) =∞. In this case, by using Lemma 5 we
have

Ek(x)
Fk(x)

=
Bk(x)
Ak(x)

− Bk+1(xr)
Ak+1(xr)

for every k satisfying m(n) < k < m(n+ 1), so that

m(n+1)−1∑

k=m(n)+1

Ek(xr
k

)
Fk(xrk)

=
Bm(n)+1(xr

m(n)+1
)

Am(n)+1(xrm(n)+1)
− Bm(n+1)(xr

m(n+1)
)

Am(n+1)(xr
m(n+1))

.

Thus we have

Φ0(x) =
m(n)∑

k=0

Ek(xr
k

)
Fk(xrk)

+
Bm(n)+1(xr

m(n)+1
)

Am(n)+1(xrm(n)+1)
(46)

− Bm(n+1)(xr
m(n+1)

)

Am(n+1)(xr
m(n+1))

+ Φm(n+1)(x
rm(n+1)

).

Let

fm(n+1)(x) = −Bm(n+1)(x)
Am(n+1)(x)

+ Φm(n+1)(x).

As ∆m(n+1)(x) 6= 0, we have Dm(n+1)(x) 6= 0 by Lemma 5. Therefore by
Lemma 4,

ord fm(n+1)(x) ≤ ord(Am(n+1)(x)Φm(n+1)(x)−Bm(n+1)(x)) ≤ r(2L+ 1).

Since ordΦn(x) ≥ 1, we may assume that Am(n+1)(0) = 1 and Bm(n+1)(0)
= 0. Applying Lemma 3, we see that, for every sufficiently large n,

(47) 0 < |fm(n+1)(α
rm(n+1)

)| < η(2L+1)rm(n+1)
.

By (46) we have

fm(n+1)(α
rm(n+1)

) = Φ0(α)−
m(n)∑

k=0

Ek(αr
k

)
Fk(αrk)

− Bm(n)+1(αr
m(n)+1

)

Am(n)+1(αrm(n)+1)
.
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If Φ0(α) is algebraic, then fm(n+1)(αr
m(n+1)

) is also algebraic and we can see
easily

(48) ‖fm(n+1)(α
rm(n+1)

)‖ ≤ Crm(n)
,

where C > 1 is some constant. The inequalities (47), (48) contradict the
fundamental inequalities recalled in Section 1. Hence we proved that Φ0(α)
is transcendental in both cases. The converse is trivial.

4. Technical lemmas. In order to apply Theorem 6, we will need to
get some knowledge about polynomials An and Bn satisfying (An, Bn) = 1
and

(49)
En(x)
Fn(x)

=
Bn(x)
An(x)

− Bn+1(xr)
An+1(xr)

=
Bn(x)An+1(xr)−An(x)Bn+1(xr)

An(x)An+1(xr)

with degEn,degFn,degAn,degBn ≤ L, An(0) = 1, Bn(0) = 0. We will also
assume that L ≥ r−1, because we will see later (in Section 5.1) that the case
L < r−1 is easy to handle. The main result in this section will be Lemma 10,
which asserts that, under some additional assumptions, An(x) |An+1(xr).

Lemma 6. If Bn+1(x) 6= 0 and (49) holds, then

degAn+1(x) ≤ 2L/r.

Proof. Suppose that degAn+1(x) > 2L/r. Then degAn+1(xr) ≥ 2L+ 1.
As degFn ≤ L in (49), there exists q(x) ∈ K[x] with deg q(x) ≥ L+ 1 such
that

(50) q(x) |An+1(xr) and q(x) |Bn(x)An+1(xr)− An(x)Bn+1(xr).

As Bn+1(xr) 6= 0 and (An+1, Bn+1) = 1, from (50) we have q(x) |An(x), a
contradiction with degAn ≤ L.

Lemma 7. Suppose there exist infinitely many n such that En(x) 6= 0. If
there exists n ∈ N such that Bn(x) = 0, then there exists (m,d) ∈ N2 such
that degEm = dr and m ≥ n.

Proof. Suppose that Bn(x) = 0. If Bn+1(x) = 0, then by (49) we have
En(x) = 0. Therefore there exists m ≥ n such that Bm(x) = 0, Bm+1(x)
6= 0. Since Bm+1(0) = 0 and Bm+1(x) 6= 0, d = degBm+1(x) ≥ 1 and by
(49), we have

Em(x)
Fm(x)

= −Bm+1(xr)
Am+1(xr)

,

which implies degEm(x) = dr.

Lemma 8. If Bn(x) 6= 0 and degFn−1 > L− r, then degAn(x) ≥ 1.
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Proof. Assume that degAn = 0, that is, An(x) = 1. Then from (49),

En−1(x)
Fn−1(x)

=
Bn−1(x)−Bn(xr)An−1(x)

An−1(x)
.

As the right-hand side is irreducible, we have An−1(x) = Fn−1(x) and

En−1(x) = Bn−1(x)−Bn(xr)An−1(x).

Hence degBn(xr)An−1(x) > r + (L− r) = L and degEn−1 > L, a contra-
diction.

Lemma 9. Suppose that there exist infinitely many n such that En(x)
6= 0 and

r ≥ L/2 + 1,(51)

degEn is not a multiple of r for every n ≥ N,(52)

degFn > L− r for every n ≥ N.(53)

Then for large n, Bn(x) 6= 0 and h = degAn is a constant satisfying

1 ≤ h ≤ 2L/r.

Remark. We put deg 0 = −1.

Proof. Let n ≥ N + 1. Then Bn(x) 6= 0 by Lemma 7. Suppose that
degAn+1 > degAn. Then (50) holds with deg q(x) ≥ (degAn + 1)r−L. As
q(x) |An(x), we have

degAn ≥ deg q ≥ r degAn + r − L,
which implies (r− 1) degAn ≤ L− r. As degAn ≥ 1 by (53) and Lemma 8,
we obtain r − 1 ≤ L− r, that is, r ≤ (L+ 1)/2, a contradiction with (51).
Hence degAn+1 ≤ degAn, and so h = degAn is a constant for large n. We
have 1 ≤ degAn ≤ 2L/r by Lemma 6.

Lemma 10. Under the assumptions of Lemma 9, we have h = 1 or
An(x) |An+1(xr) for every large n. Moreover , if degAn = degAn+1 = 1
and An(x) does not divide An+1(xr), then degFn = r + 1.

Proof. Assume that An(x) does not divide An+1(xr) for some large n.
(50) holds with deg q ≥ hr − L. As before, we have q(x) |An(x). Then
deg q(x) ≤ degAn(x) = h. If deg q(x) = h, then An(x) |An+1(xr), a contra-
diction. So deg q(x) < h and h > hr − L. Hence h < L/(r − 1) ≤ 2 by (51).
Therefore h = 1.

If degAn = degAn+1 = 1 and An(x) does not divide An+1(xr), then
An(x) and An+1(xr) are prime to each other, which implies degFn = r + 1
by (49).

We end this section by two lemmas giving polynomials An satisfying
An(x) |An+1(xr) in the cases h = 1 and h = 2.
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Lemma 11. Assume that An(x) |An+1(xr), and degAn = 1 for every
n ≥ N . Then, for every n ≥ N ,

An(x) = 1− arnx for some a ∈ K.

Proof. Put An(x) = 1 − qnx. Then An+1(q−rn ) = 0, which implies that
1− qn+1q

−r
n = 0, that is, qn+1 = qrn. Therefore there exists a ∈ K such that

qn = ar
n

.

Lemma 12. Assume that An(x) |An+1(xr), and degAn = 2 for every
n ≥ N . Then only two cases can occur :

(i) There exist a, b ∈ K such that for every n ≥ N ,

(54) An(x) = (1− arnx)(1− brnx).

(ii) There exist M ≥ N , a ∈ K and a sequence {ωn}n≥0 of rth roots of
unity such that for every n ≥M ,

(55) An(x) = (1− arnx)(1− ωnar
n

x).

Proof. Put An(x) = (1− qnx)(1− q′nx). Then

(1− qnx)(1− q′nx) | (1− qn+1x
r)(1− q′n+1x

r).

Then, as in the proof of Lemma 11, we may assume qn+1 = qrn and qn = ar
n

for every n ≥ N . We now have

1− q′nx
∣∣∣
( r−1∑

k=0

(qnx)k
)

(1− q′n+1x
r).

Therefore we have q′n+1 = (q′n)r or q′n = ωnqn with ωrn = 1. If there exists
M ≥ N such that q′M = ωMqM with ωrM = 1, then q′M+1 = (q′M )r =
(ωMqM )r = qrM = qM+1 or q′M+1 = ωM+1qM+1 with ωM+1 = 1. In both
cases we see that q′M+1 = ωM+1qM+1 with ωrM+1 = 1 and by induction (55)
holds. If q′n+1 = (q′n)r for every n ≥ N , then (54) holds.

5. Examples

5.1. The case L < r − 1

Theorem 7. Let Φ0(x) satisfy the assumptions of Section 1. If L < r−1
and En(x) 6= 0 for infinitely many n, then Φ0(x) 6∈ K(x). Therefore, for
every algebraic α with 0 < |α| < 1 and Fk(αr

k

) 6= 0 for every k, Φ0(α) is
transcendental.

Proof. Suppose that Φ0(x) = P (x)/Q(x), where P (x), Q(x) ∈ K[x].
Then

P (x)
Q(x)

−
n−1∑

k=0

Ek(xr
k

)
Fk(xrk)

= Φn(xr
n

).
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If En(x) 6= 0, then Φn(xr
n

) 6= 0 and ordΦn(xr
n

) ≥ rn. On the other hand,
Q(x)Φn(xr

n

)
∏n−1
k=0 Fk(xr

k

) is a polynomial of degree less than

degP (x) + degQ(x) +
L

r − 1
rn.

Therefore we have

rn ≤ degP (x) + degQ(x) +
L

r − 1
rn,

which is a contradiction if n is large.

5.2. The case L = r − 1. Let

Fk(x) =
r−1∑

i=0

xi, Ek(x) = rkxF ′k(x) = rk
r−1∑

i=1

ixi.

Then
Ek(x)
Fk(x)

=
rk(1− x)

∑r−1
i=1 ix

i

(1− x)
∑r−1
i=0 x

i
= rk

(
x

1− x −
rxr

1− xr
)
.

Hence

Φ0(x) =
∞∑

k=0

Ek(xr
k

)
Fk(xrk)

=
x

1− x.

Note that this formula can also be obtained from Corollary 4.1 in Duverney
and Shiokawa [7], by taking d = r, c = 1, P (x) = 1 − x, Q(x) =

∑r−1
i=0 x

i.
Moreover for any ω ∈ K, Φ0(ωx) is also in K(x). The next theorem asserts
that when L = r − 1, only such functions are rational functions.

Theorem 8. Let Φ0(x) satisfy the assumptions of Section 1. Suppose
that L = r − 1, En(x) 6= 0 for infinitely many n and Φ0(x) ∈ K(x). Then
there exist a constant c, a root of unity ω and a positive integer N such that

En(xr
n

)
Fn(xrn)

= crn
(

(ωx)r
n

1− (ωx)rn
− r(ωx)r

n+1

1− (ωx)rn+1

)
for every n ≥ N .

Proof. Since Φ0(x) ∈ K(x), Φ0(α) is algebraic, and from Theorem 6,
we have (49) for every n ≥ N . Since L = r − 1, Lemma 9 applies and
h = degAn = 1 for every large n. By Lemmas 10 and 11, An(x) = 1−arnx.
Therefore (49) can be written as

(56)
En(x)
Fn(x)

=
Bn(x)

∑r−1
k=0 a

krnxk −Bn+1(xr)
1− (arnx)r

.

Assume degBn+1 ≥ 2. As deg(Bn(x)
∑r−1
k=0 a

krnxk) ≤ L + r − 1 = 2r − 2,
the degree of the numerator is at least 2r. Therefore

degFn(x)
(
Bn(x)

r−1∑

k=0

akr
n

xk −Bn+1(xr)
)
≥ 2r,
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which is a contradiction because degEn(x)(1− (ar
n

x)r) ≤ L+ r = 2r − 1.
Hence degBn+1 ≤ 1. As Bn(0) = 0, we have Bn(x) = bnx for every large n,
and (56) becomes

(57)
En(x)
Fn(x)

=
bnx

∑r−1
k=0 a

krnxk − bn+1x
r

1− (arnx)r
.

As degFn ≤ L = r−1, at least one linear divisor of 1− (ar
n

x)r must divide
both the numerator and the denominator; it is 1−arnx = An(x). Hence the
numerator must vanish for x = a−r

n

, whence bnra−r
n − bn+1a

−rn+1
= 0,

that is, bn+1 = ra(r−1)rnbn. Therefore bn = crnar
n

, and a must be a root
of unity because of Kronecker’s theorem and the growth condition on the
coefficients of En and Fn.

Example 1. Let r = 2 and L = 1. Let K be an algebraic number field
and

Φ0(x) =
∞∑

k=0

x2k

1 + bkx2k
,

where bk ∈ K is an integer for every k and log ‖bk‖ = o(2k). By Theorem 8,
Φ0(x) 6∈ K(x). Hence Φ0(α) is transcendental for any α ∈ K, 0 < |α| < 1.
By taking bk ∈ Z and α = 1/a, a ∈ Z, |a| > 1, we obtain the special case
dealt with in [5].

5.3. The case L = r. The case L = r is much more complicated. First,
the rational sums in Theorem 8 can be used to obtain many new series. For
r = L = 2 for example, we have

∞∑

n=0

2nx2n

1 + x2n =
x

1− x,

so that for every α1, α2 ∈ K and roots of unity ω1, ω2,

α1

∞∑

n=0

2n(ω1x)2n

1 + (ω1x)2n + α2

∞∑

n=0

2n(ω2x)2n

1 + (ω2x)2n

=
∞∑

n=0

2nx2n(α1ω
2n
1 + α2ω

2n
2 + (ω1ω2)2n(α1 + α2)x2n)

(1 + ω2n
1 x2n)(1 + ω2n

2 x2n)

is a rational function. Another type of weird series is the following. Let {an}
and {bn} be any sequences in K. Put

E2n(x) = anx
r, F2n(x) = 1 + bnx

r,

E2n+1(x) = −anx, F2n+1(x) = 1 + bnx.

Then obviously
∑∞
n=0En(xr

n

)/Fn(xr
n

) = 0.
In order to avoid these cases, we will assume that 1 ≤ degEn < r.
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Theorem 9. Let Φ0(x) satisfy the assumptions of Section 1. Suppose
that L = r, degEn < r, degFn = r for every large n, En(x) 6= 0 for
infinitely many n, and Φ0(x) ∈ K(x). Then only three cases can occur :

(i) There exist a root of unity ω and a constant c such that for every
large n,

(58) En(x) = c
r−1∑

k=1

(ωr
n

x)k, Fn(x) = 1− (ωr
n

x)r.

(ii) r = 2 and there exist two roots of unity ω1, ω2 and a constant c
such that for every large n,

(59) En(x) = c2n(ω2n
1 − ω2n

2 )x, Fn(x) = (1 + ω2n
1 x)(1 + ω2n

2 x).

(iii) r = 2 and there exist a root of unity ω and a constant c such that
for every large n,

(60) En(x) = c4nω2nx, Fn(x) = (1 + ω2nx)2.

Remark. It should be observed that (59) and (60) come from the case
L = 1, r = 2 obtained in Theorem 8 ((59) by subtraction, as indicated at the
beginning of Section 5.3, (60) by term-by-term differentiation). By contrast,
(58) cannot be obtained from the case L = r − 1. For L = r = 2, it gives
the famous series of Lucas

∞∑

n=0

x2n

1− x2n+1 =
x

1− x.

The general case
∞∑

n=0

xr
n

(1− x(r−1)rn)
(1− xrn)(1− xrn+1)

=
x

1− x

first appeared in Bruckman and Good [2]. Note that (58) can be obtained
from Corollary 4.1 in [7] by taking c = d = r, P (x) = 1−x, Q(x) =

∑r−1
k=0 x

k.

Proof of Theorem 9. Assume that Φ0(x) ∈ K(x). Then Theorem 6
applies and (49) holds. By Lemma 9, Bn(x) 6= 0; by Lemma 10,
An(x) |An+1(xr); and by Lemma 9, 1 ≤ degAn ≤ 2 for every large n.

First assume that degAn = 1. By Lemma 11, An(x) = 1−arnx. Inserting
this in (49) we obtain, as in (56),

En(x)
Fn(x)

=
Bn(x)

∑r−1
k=0 a

krnxk −Bn+1(xr)
1− (arnx)r

.

As in the proof of Theorem 8, we see that degBn+1 ≥ 2 is impossible,
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therefore Bn(x) = bnx for every large n and

En(x)
Fn(x)

=
bnx

∑r−1
k=0 a

krnxk − bn+1x
r

1− (arnx)r
.

By comparing the degrees of the denominators we get

En(x) = bnx
r−1∑

k=0

akr
n

xk − bn+1x
r, Fn(x) = 1− (ar

n

x)r.

As degEn < r, we have bn+1 = a(r−1)rnbn and there exists a constant c
such that bn = car

n

. Hence

En(x) = c

r−1∑

k=1

akr
n

xk

and (58) holds (a must be a root of unity because of the growth conditions).
Assume now that degAn = 2. This will be more difficult. Put An+1(xr)

= An(x)Qn(x) with degQn = 2r − 2. Then (49) becomes

En(x)
Fn(x)

=
Bn(x)Qn(x)−Bn+1(xr)

An+1(xr)
,

where we assume (En, Fn) = 1 (divide En, Fn by their greatest common
divisor). Then degEn < r and degFn ≤ r. This implies that An+1(xr) =
Fn(x)Rn(x) with degRn ≥ r and

Bn(x)Qn(x)−Bn+1(xr) = En(x)Rn(x).

Moreover (Rn, Qn) = 1, otherwise Bn+1(xr) and An+1(xr) would have a
common factor. Therefore Rn(x) |An(x) and r = 2. Since Fn(0) = 1 and
An+1(0) = 1, we have Rn(0) = 1 and so Rn(x) = An(x), Fn(x) = Qn(x),
and

(61) En(x)An(x) = Bn(x)Qn(x)−Bn+1(x2).

As degEn(x) < r, we have En(x) = enx. By putting Bn(x) = xB∗n(x), we
obtain

(62) enAn(x) = B∗n(x)Qn(x)− xB∗n+1(x2),

with degB∗n = degBn − 1 ≤ L − 1 = 1. Therefore we can put B∗n(x) =
bnx+ cn. We now distinguish 3 cases according to Lemma 12.

First Case: An(x) = (1 − a2nx)(1 − b2nx) for every large n. We can
suppose that a2n 6= ±b2n for every large n, otherwise (55) holds. We also
have Qn(x) = (1 + a2nx)(1 + b2

n

x) = Fn(x). Since the roots of Fn(x)
must satisfy the same growth condition as the coefficients of Fn(x) (see
[12, Lemma 1.5.4]), a and b are roots of unity. As the terms of degree 3
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must vanish on the right-hand side of (62), we have bn+1 = (ab)2nbn, which
implies

(63) bn = c(ab)2n .

By taking x = a−2n and x = b−2n in (62), we get

0 = (bna−2n + cn)2(1 + b2
n

a−2n)− a−2n(bn+1a
−2n+1

+ cn+1),(64)

0 = (bnb−2n + cn)2(1 + a2nb−2n)− b−2n(bn+1b
−2n+1

+ cn+1).(65)

Using (63) yields

0 = (cb2
n

+ cn)2(a2n + b2
n

)− (cb2
n+1

+ cn+1),

0 = (ca2n + cn)2(a2n + b2
n

)− (ca2n+1
+ cn+1).

By subtracting these two equalities, we get c = 0 and therefore bn = 0 for
every large n. By (64) we now have cn+1 = 2(a2n + b2

n

)cn. Therefore there
exists c such that cn = c2n(a2n − b2n). By taking x = 0 in (62), we see that
en = cn and (59) holds.

According to Lemma 12, we can now assume that (55) is satisfied, that
is, An(x) = 1− a2n+1

x2 or An(x) = (1− a2nx)2.

Second Case: There exists n such that An(x) = 1 − a2n+1
x2. Then

An+1(x) = (1 − a2n+1
x)2 is impossible, because in this case Qn(x) = (1 −

a2n+1
x2) would not be prime to Rn(x) = An(x). Therefore An(x) = 1 −

a2n+1
x2 for every large n, and Qn(x) = 1 + a2n+1

x2. As the terms of degree
3 must vanish on the right-hand side of (62), we have bn+1 = a2n+1

bn, which
implies bn = ca2n+1

. By taking x = a−2n and x = −a−2n in (62), we get

0 = (bna−2n + cn)2− a−2n(bn+1a
−2n+1

+ cn+1),(66)

0 = (−bna−2n + cn)2 + a−2n(−bn+1a
−2n+1

+ cn+1).(67)

By adding these two equalities, we get 2cn = a−2nbn+1a
−2n+1

, that is, cn =
ca2n/2. If we subtract them, we obtain cn+1 = 2bn = 2ca2n+1

. Hence c = 0,
a contradiction because En(x) 6= 0 for infinitely many n.

Third Case: For every large n, An(x) = (1 − a2nx)2. Then Qn(x) =
Fn(x) = (1 + a2nx)2. As before, we have bn+1 = a2n+1

bn, because the right-
hand side of (62) must have degree 2. Therefore bn = ca2n+1

. Replacing x
by a−2n in (62), we obtain

(68) B∗n+1(a−2n+1
) = 4a2nB∗n(a−2n).

Now differentiating (62), we get

−2ena2n(1− a2nx) = bn(1 + a2nx)2 + 2a2nB∗n(x)(1 + a2nx)

−B∗n+1(x2)− 2bn+1x
2.
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If we replace x by a−2n and use (68), we obtain bn+1 = 2a2n+1
bn, whence

ca2n+2
= 2ca2n+2

and c = 0, bn = 0. From (68) we get cn+1 = 4a2ncn, that
is, cn = c4na2n . For x = 0 in (62), we see that en = cn and this is (60). The
proof of Theorem 9 is complete.

5.4. Examples involving Fibonacci and Lucas numbers. Let α =
(1−

√
5)/2 and β = (1 +

√
5)/2. Then the nth Fibonacci number Fn and

nth Lucas number Ln are written as

Fn =
αn − βn
α− β =

αn − (−1)nα−n

α− β ,

Ln = αn + βn = αn + (−1)nα−n.

Let {ak}k≥0 and {bk}k≥0 be sequences in K and OK respectively. Then
∞∑

k=1

ak
F2k + bk

= (β − α)
∞∑

k=1

akα
2k

1 + (β − α)bkα2k − (α2k)2
,(69)

∞∑

k=1

ak
L2k + bk

=
∞∑

k=1

akα
2k

1 + bkα2k + (α2k)2
.(70)

Mignotte [11] proved that
∑∞
k=0 1/(k!F2k) is transcendental by using

Schmidt’s theorem on approximations of an algebraic number by algebraic
numbers. Later Mahler [10] proved it without using Schmidt’s theorem and
Loxton and van der Poorten [8] generalized Mahler’s method. Becker and
Töpfer [1] and Nishioka [13] studied the arithmetical nature of the series
(69) and (70) when bk = 0 for every k, {ak} is a periodic sequence and
a linear recurrence sequence of algebraic numbers respectively. Duverney,
Kanoko and Tanaka [6] studied the case bk = b for every k and {ak} is a
linear recurrence sequence of algebraic numbers.

We have the following:

Theorem 10. Assume that all ak and bk belong to a fixed algebraic
number field K, that log ‖ak‖, log ‖bk‖ = o(2k) and that ak 6= 0 for infinitely
many k. Let

Φ0(x) =
∞∑

k=0

akx
2k

1 + (β − α)bkx2k − x2k+1 .

If Φ0(x) is a rational function, then there exist N ∈ N and a ∈ K such that
bk = 0 and ak = a for every k ≥ N .

In particular ,
∑∞
k=1 ak/(F2k + bk) is algebraic if and only if ak = a and

bk = 0 for every k ≥ N .

Proof. Assume that Φ0(x) ∈ K(x). We have Fk(x) = 1+(β−α)bkx−x2.
Therefore Fk is not a square and (60) is impossible. Moreover, if (59) holds,
then (ω1ω2)2k = −1 for every k, which is impossible. Therefore (58) holds



Transcendence of series 329

with r = 2, ω2k = 1, bk = 0 for every large k, Ek(x) = cx and Theorem 10
is proved.

Theorem 11. Assume that all ak and bk belong to a fixed algebraic
number field K, that log ‖ak‖, log ‖bk‖ = o(2k) and that ak 6= 0 for infinitely
many k. Let

Φ0(x) =
∞∑

k=0

akx
2k

1 + bkx2k + x2k+1 .

If Φ0(x) is a rational function, then one of the following two conditions is
satisfied.

(i) There exist N ∈ N and a ∈ K such that bk = 2 and ak = a4k for
every k ≥ N .

(ii) There exist a constant a, p, q ∈ N, q 6= 0, and N ∈ N such that
bk = 2 cos

(
2k · pqπ

)
, ak = a2k sin

(
2k · pqπ

)
for every k ≥ N .

In particular ,
∑∞
k=1 ak/(L2k + bk) is algebraic if and only if (i) or (ii)

holds.

Proof. Assume that Φ0(x) ∈ K(x). Here we have Fk(x) = 1 + bkx+ x2.
Therefore (58) is impossible. If (60) holds, we have ω2k = 1 for every large
k, and bk = 2. Therefore Ek(x) = c4kx, and (i) holds. If (59) holds, we
have ω2k

1 ω2k
2 = 1 for every k ≥ N . Put ω2N

1 = exp(2iπp/q0), then ω2N
2 =

exp(−2iπp/q0) and for k ≥ N ,

ω2k
1 = exp

(
2iπp
q02N

2k
)

= exp
(
iπp

q
2k
)
, ω2k

2 = exp
(
− iπp

q
2k
)
.

Therefore

bk = ω2k
1 + ω2k

2 = 2 cos
(

2k · p
q
π

)
,

ak = c2k(ω2k
1 − ω2k

2 ) = a2k sin
(

2k · p
q
π

)
.

This completes the proof.

Corollary. Assume that there exist infinitely many k such that ak 6= 0,
and log ‖ak‖, log ‖bk‖ = o(2k). If

∑∞
k=1 ak/(L2k + bk) is algebraic, then {bk}

is eventually periodic, |bk| ≤ 2 and ak+1 = 2akbk for every large k.

Example 2. Under the assumptions of Theorem 11,
∑∞
k=1 ak/L2k

is transcendental. Moreover if |bk| > 2 for infinitely many k, then∑∞
k=1 ak/(L2k + bk) is transcendental.
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[3] D. Duverney, Théorie des Nombres, Dunod, Paris, 1998.
[4] —, Irrationality of fast converging series of rational numbers, J. Math. Sci. Univ.

Tokyo 8 (2001), 275–316.
[5] —, Transcendence of a fast converging series of rational numbers, Math. Proc.

Cambridge Philos. Soc. 130 (2001), 193–207.
[6] D. Duverney, T. Kanoko and T. Tanaka, Transcendence of certain reciprocal sums

of linear recurrences, Monatsh. Math. 137 (2002), 115–128.
[7] D. Duverney and I. Shiokawa, On series involving Fibonacci and Lucas numbers I,

preprint.
[8] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions

in several variables III, Bull. Austral. Math. Soc. 16 (1977), 15–47.
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Univ. de Paris XIII, 1974.
[12] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math. 1631,

Springer, 1996.
[13] —, Algebraic independence of reciprocal sums of binary recurrences, Monatsh. Math.

123 (1997), 135–148.

Appartement 3501
13, rue de Roubaix
59800 Lille, France
E-mail: dduverney@nordnet.fr

Mathematics, Hiyoshi Campus
Keio University

4-1-1 Hiyoshi, Kohoku-ku
Yokohama 223-8521, Japan

E-mail: kumi-nis@jcom.home.ne.jp

Received on 30.7.2002
and in revised form on 15.1.2003 (4341)


