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Small prime solutions of ternary linear equations
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Jianya Liu (Jinan) and Kai-Man Tsang (Hong Kong)

1. Introduction. For any integer n, we consider the ternary linear
equation

(1.1) a1p1 + a2p2 + a3p3 = n,

where pj are prime variables and the coefficients aj are non-zero integers.
A necessary condition for the solubility of (1.1) is

(1.2) a1 + a2 + a3 ≡ n mod 2.

We also suppose

(1.3) (ai, aj) = 1, (aj , n) = 1 for 1 ≤ i < j ≤ 3,

and write A = max{2, |a1|, |a2|, |a3|}. The main result of this paper is the
following.

Theorem 1.1. Assume (1.2) and (1.3).

(i) If a1, a2, a3 are not all of the same sign, then (1.1) has solutions in
primes pj satisfying

|aj |pj � |n|+ A|a1a2a3|5/2 log26A.

(ii) If a1, a2, a3 are all positive, then (1.1) is soluble whenever

n� A(a1a2a3)5/2 log26A.

It follows from the above theorem that, in case (i), (1.1) has prime solu-

tions satisfying pj � |n|+ A15/2 log26A, and in case (ii), (1.1) is soluble in

primes pj if n� A17/2 log26A.
This problem was first raised and investigated by Baker in his well known

work [1]. In the case when condition (1.3) is relaxed to that any three of
a1, a2, a3, n are relatively prime, the problem was settled qualitatively by
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M. C. Liu and Tsang [10]. In Choi [2] the bound A4190 was obtained in place
of those in our Theorem 1.1. The number 4190 was subsequently reduced
to 45 by M. C. Liu and Wang [12], and then to 38 by Li [8]. Under the
Generalized Riemann Hypothesis, Choi, M. C. Liu, and Tsang [3] reduced
the constant to 5 + ε.

We prove our theorem by the circle method, and the idea will be ex-
plained in §2. At this stage, we point out that in contrast to the earlier
works [2], [10], [11], [12], which treated the enlarged major arcs by the
Deuring–Heilbronn phenomenon, we show that under the stronger condi-
tion (1.3), the possible existence of Siegel’s zero does not have special influ-
ence and hence the Deuring–Heilbronn phenomenon can be avoided. This
observation enables us to get better results without using heavy numerical
computations.

Notation. As usual, ϕ(n), µ(n) and Λ(n) stand for the functions of
Euler, Möbius and von Mangoldt respectively, and τ(n) is the divisor func-
tion. We use χ mod q and χ0 mod q to denote a Dirichlet character and the
principal character modulo q, and L(s, χ) is the Dirichlet L-function. r ∼ R
means R < r ≤ 2R. The letters c and cj denote absolute positive constants,
but the value of c without subscript may vary at different places. The letter
ε denotes a positive constant which is arbitrarily small.

2. Outline of the method. Denote by r(n) the weighted number of
solutions of (1.1), that is

r(n) =
∑

n=a1p1+a2p2+a3p3

M<|aj |pj≤N

(log p1)(log p2)(log p3),

where M = N/200. We will estimate r(n) by the circle method. To this end,
we set

(2.1) P = (N/A)2/5, L = logN, Q = N/(PL2).

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q]
may be written in the form

(2.2) α = a/q + λ, |λ| ≤ 1/(qQ),

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M(q, a) the set of α satisfying (2.2) and write M for the union of all these ma-
jor arcs, that is, those M(q, a) with 1 ≤ a ≤ q ≤ P and (a, q) = 1. It follows
from 2P ≤ Q that these major arcs M(a, q) are mutually disjoint. Define,
as usual, the minor arcs m to be the complement of M in [1/Q, 1 + 1/Q].
Let
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Sj(α) =
∑

M<|aj |p≤N
(log p)e(ajpα).

Then we have

(2.3) r(n) =

1+1/Q�

1/Q

S1(α)S2(α)S3(α)e(−nα) dα =
�

M

+
�

m

.

The integral over the major arcs M causes the main difficulty, which is
handled by the following.

Theorem 2.1. Assume (1.3). Let P , Q be defined by (2.1). Then

(2.4)
�

M

S1(α)S2(α)S3(α)e(−nα) dα = S(n, P )I(n) +O

(
N2

|a1a2a3|L

)
,

where S(n, P ) and I(n) are defined in (2.5) and (2.6) respectively.

The proof of this theorem forms the bulk of this paper, in §§3–5. The
quality of our bounds in Theorem 1.1 depends on the size of our major
arcs which, as can be seen in (2.1), are quite large. The key observation is
that under the assumption (1.3), we can save one negative power of r0 in
Lemma 3.1 below. With this saving, (2.4) can be derived from a hybrid esti-
mate for Dirichlet polynomials (Lemma 3.4 below), Heath-Brown’s identity,
Gallagher’s lemma, and classical results on the distribution of the zeros of
L-functions.

To derive Theorem 1.1 from Theorem 2.1, we need to bound S(n, P )
and I(n) from below. For χ mod q, define

C(χ, a) =

q∑

h=1

χ(h)e

(
ah

q

)
, C(q, a) = C(χ0, a).

If χ1, χ2, χ3 are characters modulo q, we write

B(q, χ1, χ2, χ3) =

q∑

h=1
(h,q)=1

e

(
−hn
q

)
C(χ1, a1h)C(χ2, a2h)C(χ3, a3h),

B(q) = B(q, χ0, χ0, χ0), A(q) =
B(q)

ϕ3(q)
.

Note that the functions B(q) and A(q) depend also on a1, a2, a3 and n,
which are fixed throughout, but we do not make this explicit for simplicity.
Finally, define

(2.5) S(n, x) =
∑

q≤x
A(q).

The following two results are Lemmas 4.4 and 7.2 of [10].
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Lemma 2.2. Assuming (1.2), we have S(n, P ) ≥ c1 for some absolute
constant c1 > 0.

Lemma 2.3. Suppose (1.3) and

(i) the aj’s are not all of the same sign and N ≥ 3|n|; or
(ii) the aj’s are all positive and N = n.

Then

(2.6) I(n) :=
∑

a1m1+a2m2+a3m3=n
M<|aj |mj≤N

1 � N2

|a1a2a3|
.

We now derive Theorem 1.1 from Theorem 2.1 and Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. We start from (2.3) and let Nj = N/|aj|. To
estimate the integral over m, we appeal to Lemma 7.1 in [10]:

(2.7) S3(α)� L4(N3P
−1/2|a3|1/2 +N

4/5
3 +N

1/2
3 Q1/2)� NL4/

√
|a3|P.

Also, we have the following mean-value estimate:

1+1/Q�

1/Q

|Sj(α)|2 dα� LNj ,

which in combination with Schwarz’s inequality gives

(2.8)

1+1/Q�

1/Q

|S1(α)S2(α)| dα� LN√
|a1a2|

.

It therefore follows from (2.7) and (2.8) that

(2.9)
∣∣∣

�

m

∣∣∣� N2L5

√
|a1a2a3|P

.

The contribution from the major arcs is estimated in Theorem 2.1 and,
together with (2.9), gives

r(n) = S(n, P )I(n) +O

(
N2

|a1a2a3|L
+

N2L5

√
|a1a2a3|P

)
.

With conditions (i) or (ii) in Lemma 2.3, we deduce from Lemmas 2.2, 2.3
and the above formula that

r(n)� N2

|a1a2a3|
provided that P � L10.4|a1a2a3|, or equivalently, N � AL26|a1a2a3|5/2.
This proves Theorem 1.1.
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3. Proof of Theorem 2.1: preliminaries. In this section, we give
four lemmas pertaining to the proof of Theorem 2.1.

Lemma 3.1. Let q and m be positive integers.

(i) If χ mod q is a character , then

|C(χ,m)| ≤ (q,m)1/2q1/2.

(ii) Let χj mod rj with j = 1, 2, 3 be primitive characters, r0 = [r1, r2, r3],
and χ0 be the principal character modulo q. Then

∑

q≤x
r0|q

1

ϕ3(q)
|B(q, χ1χ

0, χ2χ
0, χ3χ

0)| � r2
0

ϕ3(r0)

√
($, r0) log2 x;

here and throughout $ = |a1a2a3n|.
Proof. (i) Let χ mod q be induced by the primitive character χ∗ mod q∗.

Write q = q1q2 with (q2, q
∗) = 1 and p | q1 ⇒ p | q∗. Then, by [6, p. 450],

C(χ,m) = χ∗
(

m

(m, q)

)
χ∗
(

q

q∗(m, q)

)
µ

(
q

q∗(m, q)

)
ϕ(q)

ϕ(q/(m, q))
C(χ∗, 1)

if q∗ = q1/(q1,m); otherwise C(χ,m) = 0.
We first establish our assertion in the special case that q is a power of a

prime, say q = pα. In this case we must have q1 = pα and q2 = 1. Let q∗ = pβ

and pγ ‖m. We may suppose γ ≤ α, since otherwise p divides m/(m, q) and
hence

χ∗
(

m

(m, q)

)
= 0,

which gives C(χ,m) = 0. Also, we only have to consider the case q∗ =
q1/(q1,m), that is,

β = α− γ,
since otherwise we have C(χ,m) = 0 again. Finally, we have

|C(χ,m)| ≤ ϕ(pα)

ϕ(pα−γ)
|C(χ∗, 1)| ≤ pγ+β/2 = pγ/2+α/2 = (q,m)1/2q1/2.

This proves our assertion in the special case q = pα.
The general case can be established by decomposing C(χ,m) accord-

ing to the canonical factorization of χ mod q and then using the Chinese
remainder theorem.

(ii) By Lemma 4.5 in [10], we have

B(q, χ1χ
0, χ2χ

0, χ3χ
0) = B(r0, χ1χ

0, χ2χ
0, χ3χ

0)B(q/r0)

if (r0, q/r0) = 1; and it vanishes otherwise. Here we note that the moduli of
the principal characters in the above functions B(·) on the right hand side
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are r0 and q/r0 respectively. It therefore follows that

(3.1)
∑

q≤x
r0|q

1

ϕ3(q)
|B(q, χ1χ

0, χ2χ
0, χ3χ

0)|

=
1

ϕ3(r0)
|B(r0, χ1χ

0, χ2χ
0, χ3χ

0)|
∑

q≤x/r0
(r0,q)=1

|A(q)|.

Now the argument of Lemma 4.4(1) in [10] gives

(3.2)
∑

q≤x
|A(q)| � log2 x.

It remains, therefore, to estimate B(r0, χ1χ
0, χ2χ

0, χ3χ
0).

By the definition of C(χ,m), we have C(χ,mh) = χ(h)C(χ,m). Conse-
quently,

B(r0, χ1χ
0, χ2χ

0, χ3χ
0)

=

r0∑

h=1
(h,r0)=1

e

(
−nh
r0

)
C(χ1χ

0, a1h)C(χ2χ
0, a2h)C(χ3χ

0, a3h)

= C(χ1χ
0, a1)C(χ2χ

0, a2)C(χ3χ
0, a3)C(χ1χ2χ3χ

0,−n).

Now (i) and (1.3) gives

|B(r0, χ1χ
0, χ2χ

0, χ3χ
0)| ≤ r2

0

√
(a1, r0)(a2, r0)(a3, r0)(n, r0) = r2

0

√
($, r0),

which together with (3.2) and (3.1) yields the desired result.

Recall Nj = N/|aj| for j = 1, 2, 3, and set

Mj =
M

|aj |
, Vj(λ) =

∑

M<|aj |m≤N
e(ajmλ),

and

(3.3) Wj(χ, λ) =
∑

M<|aj |p≤N
(log p)χ(p)e(ajpλ)− δχ

∑

M<|aj |m≤N
e(ajmλ),

where δχ = 1 or 0 according as χ is principal or not. Define

(3.4) Jj(R) =
∑

r∼R

√
($, r)

r

∑∗

χmod r

max
|λ|≤1/(rQ)

|Wj(χ, λ)|,

and for any positive integer g,

(3.5) Kj(g,R) =
∑

r∼R

√
($, [g, r])

[g, r]

∑∗

χmod r

{ �

|λ|≤1/(rQ)

|Wj(χ, λ)|2 dλ
}1/2

,
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where
∑∗

χmod r is over all the primitive characters modulo r. To prove our
Theorem 2.1, we need the following two key lemmas which will be proved
in §5.

Lemma 3.2. For P , Q satisfying (2.1), we have

(i) Kj(g,R)� g−1
√

($, g) τ(g)τ($)
√
N |aj |−1Lc if R� P ,

(ii) Kj(g,R)� g−1
√

($, g) τ(g)
√
N |aj |−1Lc if R� N1/10.

Lemma 3.3. Let P , Q be as in (2.1). We have

(i) Jj(R)� τ($)R−1/4N |aj |−1Lc if R� P ,

(ii) Jj(R)� R−1/4N |aj |−1L−c2 for any large constant c2 if R� N1/10.

These two lemmas depend on a hybrid estimate for Dirichlet polynomials
(Lemma 3.4 below). Let X2/5 < Y ≤ X and D1, . . . ,D10 be positive integers
such that

(3.6) 2−10Y ≤ D1 · · ·D10 < X and 2D6, . . . , 2D10 ≤ X1/5.

For j = 1, . . . , 10, define

(3.7) bj(m) =





logm if j = 1,

1 if j = 2, . . . , 5,

µ(m) if j = 6, . . . , 10,

where µ(n) is the Möbius function. For any Dirichlet character χ and com-
plex variable s, define the functions

fj(s, χ) =
∑

m∼Dj

bj(m)χ(m)

ms

and

(3.8) FD(s, χ) = f1(s, χ) · · · f10(s, χ),

where D = (D1, . . . ,D10). The following hybrid estimate for FD(s, χ) is
Lemma 2.1 in [9]. The parameter d in (3.9) is crucial for our iterative argu-
ment in §4.

Lemma 3.4. Let FD(s, χ) be defined as above. Then for any 1 ≤ R ≤ X2

and T > 0,

(3.9)
∑

r∼R
d|r

∑∗

χmod r

2T�

T

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt

�
{
R2

d
T +

R

d1/2
T 1/2X3/10 +X1/2

}
logcX.
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4. Proof of Theorem 2.1: an iterative method. Introducing Dirich-
let characters, we can express the exponential sum Sj(α) as (see for example
[4, §26, (2)])

Sj

(
h

q
+ λ

)
=
C(q, ajh)

ϕ(q)
Vj(λ) +

1

ϕ(q)

∑

χmod q

C(χ, ajh)Wj(χ, λ) =: Tj + Uj ,

say. Thus,

(4.1)
�

M

S1(α)S2(α)S3(α)e(−nα) dα = I0 + I1 + I2 + I3,

where I0, I1, I2, I3 are the contributions from, respectively,

T1T2T3,

U1T2T3 + T1U2T3 + T1T2U3,

U1U2T3 + U1T2U3 + T1U2U3,

U1U2U3.

We shall now show that I0 contains the main term for �
M and I1, I2, I3

constitute the error term.

Lemma 4.1. For j = 1, 2, 3, we have

(i)
�

|λ|≤1/|2aj |
|Vj(λ)|2 dλ� N |aj|−2,

(ii)
�

|λ|≤1/2

|Vj(λ)|2 dλ� N |aj |−1.

Proof. By definition of Vj(λ),

�

|λ|≤1/|2aj |
|Vj(λ)|2 dλ =

∑

Mj<m,m′≤Nj

�

|λ|≤1/|2aj |
e((m−m′)ajλ) dλ� Nj

|aj |
.

Part (ii) follows from (i) and the fact that Vj(λ) has period |aj |−1.

Lemma 4.2. For (2A)−1 < |λ| < 1/2, we have

max
j=1,2,3

(‖ajλ‖) ≥ 1/(2A).

Proof. For j = 1, 2, 3, let βj = ‖ajλ‖ and ajλ = nj ± βj , where nj are
integers. If the three rational numbers nj/aj are all the same, then since
(a1, a2, a3) = 1 they must be all equal to an integer k. Furthermore k must
be equal to zero, for otherwise, from

λ =
n1

a1
± β1

a1
= k ± β1

a1
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we have |λ| ≥ |k| − 1/2 ≥ 1/2, which is a contradiction. Hence

βj = |ajλ| >
|aj |
2A

, j = 1, 2, 3.

This yields the desired bound.
On the other hand, if the three rational numbers nj/aj are not all the

same, n1/a1 6= n2/a2, say, then
∣∣∣∣
β1

a1
± β2

a2

∣∣∣∣ =

∣∣∣∣
n1

a1
− n2

a2

∣∣∣∣ ≥
1

|a1a2|
.

Hence

max(β1, β2)

(
1

|a1|
+

1

|a2|

)
≥ 1

|a1a2|
.

The desired bound again follows in this case.

By definition, I0 is equal to

(4.2)
∑

q≤P

B(q)

ϕ3(q)

�

|λ|≤1/(qQ)

V1(λ)V2(λ)V3(λ)e(−nλ) dλ.

We begin by extending the above integral to the interval [−1/2, 1/2] in
two steps. First, by the obvious bound Vj(λ) � ‖ajλ‖−1 = |ajλ|−1 for
|λ| ≤ 1/(2A), we have

�

1/(qQ)<|λ|≤1/(2A)

V1(λ)V2(λ)V3(λ)e(−nλ) dλ

�
�

1/(qQ)<|λ|≤1/(2A)

dλ

|a1a2a3|λ3
� (qQ)2

|a1a2a3|
.

In view of (2.1) and (3.2), the error this contributes to I0 in (4.2) is
� N2(L|a1a2a3|)−1, which is acceptable. Next, by the bound Vj(λ) �
‖ajλ‖−1 and Lemma 4.2, we have

�

1/(2A)<|λ|≤1/2

V1(λ)V2(λ)V3(λ)e(−nλ) dλ

� A
∑

1≤i<j≤3

�

|λ|≤1/2

|Vi(λ)Vj(λ)| dλ� AN,

by Lemma 4.1(ii) and Schwarz’s inequality. Clearly, the contribution of this
to (4.2) is negligible. Hence we find that

I0 =
∑

q≤P

B(q)

ϕ3(q)

�

|λ|≤1/2

V1(λ)V2(λ)V3(λ)e(−nλ) dλ+O

(
N2

L|a1a2a3|

)
.

In view of (2.6) and (2.5), this yields the main term on the right hand side
of (2.4).



88 J. Y. Liu and K. M. Tsang

We now turn to the terms in I1, I2, and I3. The main feature in these
terms is that each of them has at least one factor of Uj and this is precisely
the source of the saving of a factor L−c2 in Lemma 3.3(ii). We explain our
strategy below by treating in detail the most complicated case, viz. I3, and
then indicate briefly the treatment for I2 and I1.

Reducing the characters in I3 into primitive characters, we have

|I3| =
∣∣∣∣
∑

q≤P

∑

χ1 mod q

∑

χ2 mod q

∑

χ3 mod q

B(q, χ1, χ2, χ3)

ϕ3(q)

×
�

|λ|≤1/(qQ)

W1(χ1, λ)W2(χ2, λ)W3(χ3, λ)e(−nλ) dλ

∣∣∣∣

≤
∑

ri≤P

∑∗

χi mod ri

∑

q≤P
r0|q

|B(q, χ1χ
0, χ2χ

0, χ3χ
0)|

ϕ3(q)

×
�

|λ|≤1/(qQ)

|W1(χ1χ
0, λ)W2(χ2χ

0, λ)W3(χ3χ
0, λ)| dλ,

where
∑

ri≤P
=
∑

r1≤P

∑

r2≤P

∑

r3≤P
,

∑∗

χi mod ri

=
∑∗

χ1 mod r1

∑∗

χ2 mod r2

∑∗

χ3 mod r3

,

χ0 is the principal character modulo q and r0 = [r1, r2, r3]. For q ≤ P
and M < |aj |p ≤ N , we have (q, p) = 1. Using this and (3.3), we see

that Wj(χjχ
0, λ) = Wj(χj, λ) for the primitive characters χj above. Conse-

quently, by Lemma 3.1(ii) we have

|I3| ≤
∑

ri≤P

∑∗

χi mod ri

�

|λ|≤1/(r0Q)

|W1(χ1, λ)W2(χ2, λ)W3(χ3, λ)| dλ(4.3)

×
∑

q≤P
r0|q

|B(q, χ1χ
0, χ2χ

0, χ3χ
0)|

ϕ3(q)

� L3
∑

ri≤P

√
($, r0)

r0

×
∑∗

χi mod ri

�

|λ|≤1/(r0Q)

|W1(χ1, λ)W2(χ2, λ)W3(χ3, λ)| dλ

� L6 max
R1,R2,R3≤P

I3(R1, R2, R3),

where
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(4.4) I3(R1, R2, R3) =
∑

r1∼R1

∑

r2∼R2

∑

r3∼R3

√
($, r0)

r0

×
∑∗

χi mod ri

�

|λ|≤1/(r0Q)

|W1(χ1, λ)W2(χ2, λ)W3(χ3, λ)| dλ.

Without loss of generality, suppose R1 ≥ R2, R3. In the integral in
I3(R1, R2, R3), we take out |W1(χ1, λ)| and then use Schwarz’s inequality
to get

(4.5) |I3(R1, R2, R3)|
�

∑

r1∼R1

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W1(χ1, λ)|

×
∑

r2∼R2

∑∗

χ2 mod r2

{ �

|λ|≤1/(r2Q)

|W2(χ2, λ)|2 dλ
}1/2

×
∑

r3∼R3

√
($, r0)

r0

∑∗

χ3 mod r3

{ �

|λ|≤1/(r3Q)

|W3(χ3, λ)|2 dλ
}1/2

.

We now consider two cases.

Case (I): R1 � N1/10. The innermost sum over r3 in I3(R1, R2, R3) is
K3([r1, r2], R3). Applying the bound in Lemma 3.2(i) twice then yields

(4.6) I3(R1, R2, R3)

�
∑

r1∼R1

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W1(χ1, λ)|

×
∑

r2∼R2

∑∗

χ2 mod r2

{ �

|λ|≤1/(r2Q)

|W2(χ2, λ)|2 dλ
}1/2

×
√

($, [r1, r2])

[r1, r2]
τ($)τ([r1, r2])

√
N

|a3|
Lc

� τ($)Rε1

√
N

|a3|
∑

r1∼R1

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W1(χ1, λ)|K2(r1, R2)

� τ2($)Rε1
N

|a2a3|
∑

r1∼R1

√
($, r1)

r1

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W1(χ1, λ)|.

In the above, we have used the fact that τ([r1, r2]) � [r1, r2]ε � Rε1.
The last double sum above is J1(R1), which we estimate by the bound
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in Lemma 3.3(i). This leads to

I3(R1, R2, R3)� τ3($)R
ε−1/4
1

N2

|a1a2a3|
� N2−ε

|a1a2a3|
,

in view of τ($) � $ε � N ε and our assumption that R1 � N1/10 in this
case.

Case (II): R1 � N1/10. The procedure here is the same as in Case (I),
except that we use the alternative bounds in Lemmas 3.2, 3.3 in which τ($)
does not appear. In this way, we get

I3(R1, R2, R3)� N2

|a1a2a3|Lc3
for any constant c3 > 0.

Inserting these two cases into (4.5) and then into (4.3), we obtain

I3 �
N2

|a1a2a3|L
,

as desired.
The treatment for the terms in I2 is similar. For instance, the contribu-

tion of U1T2U3 is

� L3
∑

r1≤P

∑

r3≤P

√
($, r′)
r′

(4.7)

×
∑∗

χ1 mod r1

∑∗

χ3 mod r3

�

|λ|≤1/(r′Q)

|W1(χ1, λ)V2(λ)W3(χ3, λ)| dλ

� L5 max
R1,R3≤P

∑

r1∼R1

∑

r3∼R3

√
($, r′)
r′

∑∗

χ1 mod r1

∑∗

χ3 mod r3

×
�

|λ|≤1/(r′Q)

|W1(χ1, λ)V2(λ)W3(χ3, λ)| dλ,

where r′ = [r1, r3]. Without loss of generality, assume R1 ≥ R3. Then the
inner integral is

≤ max
|λ|≤1/(r1Q)

|W1(χ1, λ)|
{ �

|λ|≤1/Q

|V2(λ)|2 dλ
}1/2

(4.8)

×
{ �

|λ|≤1/(r3Q)

|W3(χ3, λ)|2 dλ
}1/2

.

By Lemma 4.1(i) (note that 1/Q < 1/|2a2|) we see that the right hand side
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of (4.7) is

� L5

√
N

|a2|
max

R3≤R1≤P

∑

r1∼R1

∑∗

χ1 mod r1

max
|λ|≤1/(r1Q)

|W1(χ1, λ)|K3(r1, R3),

which can be handled as before by considering separately the cases R1 �
N1/10 and R1 � N1/10.

The treatment of the three terms in I1 is even simpler, requiring only
Lemma 4.1(i) twice and Lemma 3.3. This completes the proof of Theo-
rem 2.1.

5. Bounds for Kj and Jj. Let

Ŵj(χ, λ) =
∑

M<|aj |m≤N
(Λ(m)χ(m)− δχ)e(ajmλ).

Then

(5.1) Wj(χ, λ)− Ŵj(χ, λ)

= −
∑

k≥2

∑

M<|aj |pk≤N
(log p)χ(p)e(ajp

kλ)�
√
Nj .

The contributions of this error term
√
Nj to Jj and Kj are

�
√
Nj

∑

r∼R

√
($, r) and

√
RNj

Q

∑

r∼R

√
($, [g, r])

[g, r]

respectively. Estimating these by using (5.8), (5.9), (5.20) and (5.22) below,
we see that these are negligible in comparison with our bounds for Jj and Kj .

We shall henceforth replace Wj by Ŵj in Jj and Kj .

Proof of Lemma 3.3. To the sum

(5.2)
∑

Mj<m≤u
Λ(m)χ(m), u ≤ Nj ,

in Jj , we apply Heath-Brown’s identity (see Lemma 1 in [7]) with k = 5,
which states that

Λ(m) =

5∑

j=1

(
5

j

)
(−1)j−1

∑

m1···m2j=m

mj+1,...,m2j≤u1/5

(logm1)µ(mj+1) · · ·µ(m2j).

Dividing the summation range for each mi into dyadic intervals of the form
(Di, 2Di], where D1, . . . ,D10 satisfy the conditions in (3.6) with Y = Mj
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and X = Nj , we see that the sum in (5.2) is equal to
∑

D σ(u; D) with

σ(u; D) :=
∑

m1∼D1

· · ·
∑

m10∼D10

Mj<m1···m10≤u

b1(m1)χ(m1) · · · b10(m10)χ(m10).

Here the functions bi are defined in (3.7) and
∑

D is the summation over
all the vectors D = (D1, . . . ,D10) which satisfy (3.6). By the definition of
FD(s, χ) in (3.8) and by using Perron’s summation formula (see, for example,
Lemma 3.12 in [14]), we have

σ(u; D) =
1

2πi

1+1/L+iT�

1+1/L−iT
F (s, χ)

us −M s
j

s
ds+O(L2)

where T = Nj .
As usual, we shift the path of integration to the vertical line Re(s) = 1/2

(note that FD(s, χ) is a Dirichlet polynomial and hence has no poles) and
estimate the contributions on the two horizontal segments as

max
1/2≤σ≤1+1/L

|FD(σ ± iT, χ)| u
σ

T
� max

1/2≤σ≤1+1/L
N1−σ
j L

uσ

T
� L,

on using the trivial estimate

FD(σ ± iT, χ)� |f1(σ ± iT, χ)| · · · |f10(σ ± iT, χ)|
� (D1−σ

1 L)D1−σ
2 · · ·D1−σ

10 � N1−σ
j L.

Then we find that

(5.3) σ(u; D) =
1

2π

T�

−T
FD

(
1

2
+ it, χ

)
u1/2+it −M1/2+it

j

1/2 + it
dt+O(L2).

We may assume that R ≥ 1 so that the primitive character χ mod r is
not principal and δχ = 0. Then

Ŵj(χ, λ) =
∑

Mj<m≤Nj
Λ(m)χ(m)e(ajmλ) =

∑

D

Nj�

Mj

e(ajuλ) d(σ(u; D))

=
∑

D

1

2π

T�

−T
FD

(
1

2
+ it, χ

) Nj�

Mj

u−1/2+ite(ajuλ) du dt

+O{(1 + |λ|N)L12}.
The inner integral over u is equal to

Nj�

Mj

u−1/2e

(
t

2π
log u+ ajλu

)
du,
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which we now estimate by means of Lemmas 4.3 and 4.5 of [14]. Let T0 =
4πN/(RQ) = 4πPL/R. Since

∣∣∣∣
d

du

(
t

2π
log u+ ajλu

)∣∣∣∣ =

∣∣∣∣
t

2πu
+ ajλ

∣∣∣∣ ≥
|t|

4πNj

for |t| > T0, and
∣∣∣∣
d2

du2

(
t

2π
log u+ ajλu

)∣∣∣∣ =

∣∣∣∣−
t

2πu2

∣∣∣∣ ≥
|t|

2πN2
j

,

we have

(5.4)

Nj�

Mj

u−1/2e

(
t

2π
log u+ ajλu

)
du

�
{√

Nj/
√
|t|+ 1 for |t| ≤ T0,√

Nj/|t| for T0 < |t| ≤ T .

Therefore,

max
|λ|≤1/(rQ)

|Ŵj(χ, λ)| �
√
Nj

∑

D

{ �

|t|≤T0

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣
dt√
|t|+ 1

(5.5)

+
�

T0<|t|≤Nj

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣
dt

|t|

}
+
NL12

RQ
.

Thus,

(5.6)
∑

r∼R
d|r

∑∗

χmod r

max
|λ|≤1/(rQ)

|Ŵj(χ, λ)|

�
√
Nj L

∑

D

{
max
Y≤T0

1√
Y

∑

r∼R
d|r

∑∗

χmod r

�

|t|∼Y

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt

+ max
T0<Z≤Nj

1

Z

∑

r∼R
d|r

∑∗

χmod r

�

|t|∼Z

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt
}

+
NR

Qd
L12.

Applying now Lemma 3.4 with X = Nj , the above is

(5.7) �
(
R2

d

√
T0Nj +

R√
d
N

4/5
j +Nj

)
Lc.

Notice that for any function H(r),

(5.8)
∑

r∼R

√
($, r)

r
H(r) ≤ 1

R

∑

d|$
d�R

√
d
∑

r∼R
d|r

|H(r)|.
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Hence by (5.7) and the definition of Jj(R) in (3.4),

Jj(R)� 1

R

∑

d|$
d�R

(√
T0Nj

d
R2 +RN

4/5
j +

√
dNj

)
Lc

� τ($)(
√
RPNj +N

4/5
j +R−1/2Nj)L

c.

In view of the assumption that R � P ≤ N
2/5
j , this yields the bound in

Lemma 3.3(i).
To prove the alternative bound for Jj(R) in Lemma 3.3(ii), we note

trivially that

(5.9) r−1
√

($, r) ≤ r−1/2.

Hence by (5.7) and definition (3.4),

Jj(R)� R−1/2{R2
√
T0Nj +RN

4/5
j +Nj}Lc

� {R
√
PNj +

√
RN

4/5
j +R−1/2Nj}Lc.

This yields the desired bound in Lemma 3.3(ii) provided (in addition to

the condition R � N1/10) that R is greater than a sufficiently large power
of L.

It remains, therefore, to consider the situation when R � Lc4 for any
large constant c4. In this case we shall obtain the bound

(5.10) Jj(R)� N

|aj |
exp{−cL1/5},

which is good enough.
We begin with the explicit formula (see [4, pp. 109 and 120])

(5.11)
∑

m≤u
Λ(m)χ(m) = δχu−

∑

|γ|≤T

u%

%
+O

{(
u

T
+ 1

)
log2(ruT )

}
,

where % = β + iγ is a typical non-trivial zero of the function L(s, χ) and
T is a parameter satisfying 2 ≤ T ≤ u. Taking T = Mj in (5.11) and then

inserting it into Ŵj(χ, λ), we get

Ŵj(χ, λ) =

Nj�

Mj

e(ajuλ) d
{∑

n≤u
(Λ(m)χ(m)− δχ)

}
(5.12)

= −
∑

|γ|≤T

Nj�

Mj

u%−1e(ajuλ) du+O{(1 + |λ|N)L2}.
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The last integral is bounded in the same way as in (5.4) and we have

Nj�

Mj

u%−1e(ajuλ) du =

Nj�

Mj

uβ−1e

(
γ

2π
log u+ ajλu

)
du

�
{
Nβ
j /
√
|γ|+ 1 if |γ| ≤ T0,

Nβ
j /|γ| if T0 < |γ| ≤ T ,

where, as before, T0 = 4πN/(RQ). Applying this to (5.12) we have

Jj(R)�
∑

r∼R

∑∗

χmod r

max
|λ|≤1/(rQ)

|Ŵj(χ, λ)|(5.13)

�
∑

r∼R

∑∗

χmod r

∑

|γ|≤T0

Nβ
j√

|γ|+ 1

+
∑

r∼R

∑∗

χmod r

∑

T0<|γ|≤Nj

Nβ
j

|γ| +RPL2

=:
∑

r∼R
H1 +

∑

r∼R
H2 +RPL2,

say. The last term above is clearly acceptable.
Vinogradov’s zero-free region (see Satz VIII.6.2 in Prachar [13]) states

that for any χ mod r, there exists a constant c5 > 0 such that L(σ+it, χ) 6= 0
in the region

σ ≥ 1− c5

log r + log4/5(|t|+ 2)

except for the possible Siegel zero. However, for r � Lc4 the Siegel zero does
not exist. It follows that L(s, χ) is zero-free for σ ≥ 1 − η(τ) and |t| ≤ τ ,

where η(τ) = c5/(2 log4/5 τ). Consequently, the inner sum in H2 is

� N
1−η(Nj)
j

∑

|γ|≤Nj

1

|γ| � Nj exp

{
−c5

3
log1/5Nj

}
,

and

H2 � Nj exp

{
−c5

4
log1/5N

}
.

Recall that R� Lc4 , so the contribution of H2 to Jj(R) is acceptable.
Finally, we bound the remaining sum involving H1, by using the zero-

density theorem that
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∑

χmod r

N(χ, τ)� (rτ)3(1−σ)/(2−σ)(log rτ)9,

where N(χ, τ) denotes the number of zeros % = β + iγ of L(s, χ) with
σ ≤ β ≤ 1, |γ| ≤ τ . Then

H1 � L max
Z≤T0

1√
Z

∑

χmod r

∑

|γ|∼Z
Nβ
j

� L10 max
Z≤T0

1√
Z

1−η(Z)�

1/2

Nσ
j (rZ)3(1−σ)/(2−σ) dσ,

by Stieltjes integration. The exponent of Z here is

φ(σ) =
3(1− σ)

2− σ − 1

2
,

which is positive when σ < 4/5 and is negative when σ > 4/5. Thus, by
dividing the above integral at the point 4/5, we have

(5.14) H1 � Lc
4/5�

1/2

Nσ
j T

φ(σ)
0 dσ + Lc

1−η(T0)�

4/5

Nσ
j dσ.

The second term here, by definition of T0, is

� LcN
1−η(T0)
j � Nj exp

{
− c5

10
log1/5Nj

}
,

which is good enough. For the first integral in (5.14), since T0 � P ≤ N2/5
j ,

it is

(5.15) �
4/5�

1/2

Nσ
j P

φ(σ) dσ ≤
4/5�

1/2

N
φ1(σ)
j dσ,

where

φ1(σ) = σ − 1

5
+

6(1− σ)

5(2− σ)
.

The maximum value of φ1(σ) for σ ∈ [1/2, 4/5] is φ1(4/5) = 4/5. This

leads to the bound N
4/5
j for the integral in (5.15). In view of (5.13) and the

assumption that R � Lc4 , the desired bound (5.10) follows. This finishes
the proof of Lemma 3.3.

We now come to prove the bounds for Kj in Lemma 3.2.

Proof of Lemma 3.2. First, by Gallagher’s lemma (see [5, Lemma 1]),
we have
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(5.16)
�

|λ|≤1/(rQ)

|Ŵj(χ, λ)|2 dλ

�
(

1

rQ

)2 ∞�

−∞

∣∣∣
∑

v<|aj |m≤v+rQ
M<|aj |m≤N

(Λ(m)χ(m)− δχ)
∣∣∣
2
dv

�
(

1

rQ

)2 N�

M−rQ

∣∣∣
∑

v<|aj |m≤v+rQ
M<|aj |m≤N

(Λ(m)χ(m)− δχ)
∣∣∣
2
dv.

Thus, in view of the definition (3.5),

Kj(g,R)�
√
N
∑

r∼R

√
($, [g, r])

[g, r]

1

rQ
(5.17)

×
∑∗

χmod r

max
Ir

∣∣∣
∑

m∈Ir
(Λ(m)χ(m)− δχ)

∣∣∣,

where the maximum is over all intervals Ir lying in [Mj , Nj ] of length
� rQ|aj |−1. For the sum

∑
m∈Ir in (5.17), we apply Heath-Brown’s iden-

tity in the same way as for Jj in (5.2)–(5.3). If we write Ir = (Y,X] where
Mj ≤ Y < X ≤ Nj , then as in (5.3),
∑

m∈Ir
Λ(m)χ(m) =

∑

D

σ(u; D)

=
1

2π

∑

D

�

|t|≤Nj
FD

(
1

2
+ it, χ

)
X1/2+it−Y 1/2+it

1/2 + it
dt+O(L12).

The factor (X1/2+it − Y 1/2+it)(1/2 + it)−1 inside the integral is clearly
�
√
Nj/|t| for |t| > T0 and is

�
∣∣∣
X�

Y

u−1/2+it du
∣∣∣� X − Y√

Nj

� rQ√
Nj |aj|

for |t| ≤ T0. Here T0 = N/(RQ) is the same as before. Therefore,

max
Ir

∣∣∣
∑

m∈Ir
(Λ(m)χ(m)− δχ)

∣∣∣

�
∑

D

rQ√
|aj|N

�

|t|≤T0

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt

+
∑

D

√
Nj

�

T0<|t|≤Nj

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣
dt

|t| + L12.



98 J. Y. Liu and K. M. Tsang

Similarly to (5.9) and applying Lemma 3.4, we have

(5.18)
∑

r∼R
d|r

∑∗

χmod r

max
Ir

∣∣∣
∑

m∈Ir
(Λ(m)χ(m)− δχ)

∣∣∣

�
∑

D

RQ√
|aj |N

∑

r∼R
d|r

∑∗

χmod r

�

|t|≤T0

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt

+
∑

D

√
Nj L max

T0<Z≤Nj

1

Z

∑

r∼R
d|r

∑∗

χmod r

�

|t|∼Z

∣∣∣∣FD

(
1

2
+ it, χ

)∣∣∣∣ dt+
R2

d
L12

� L11
√
Nj

(
R2

d
+

R√
dT0

N
3/10
j +

√
Nj

T0

)
.

To prove Lemma 3.2(i), we observe that

√
($, [g, r])

[g, r]
=

(g, r)

gr

√(
$, g

r

(g, r)

)
(5.19)

≤
√

($, g)

g

(g, r)

r

√(
$,

r

(g, r)

)

and hence, for any function H(r),

(5.20)
∑

r∼R

√
($, [g, r])

[g, r]
|H(r)| �

√
($, g)

gR

∑

h|g
k|$

h
√
k
∑

r∼R
hk|r

|H(r)|.

Using this and (5.18) we deduce from (5.17) that

(5.21) Kj(g,R)

�
√

($, g)

g
L11

√
NNj

R2Q

∑

h|g, k|$
hk≤2R

h
√
k

(
R2

hk
+

R√
hkT0

N
3/10
j +

√
Nj

T0

)

�
√

($, g)

g
Lcτ(g)τ($)

P

R2
√
|aj |

(
R2 +

R3/2

√
T0

N
3/10
j +R

√
Nj

T0

)

�
√

($, g)

g
Lcτ(g)τ($)

(
P√
|aj |

+

√
P√
|aj |

N
3/10
j +

√
N

|aj |

)

�
√

($, g)

g
Lcτ(g)τ($)

√
N

|aj|
,
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on recalling that T0 = N/(RQ) and P = (N/A)2/5 ≤ N2/5
j . This proves the

bound in Lemma 3.2(i).
To prove the bound in (ii), it is sufficient to use, instead of (5.20), the

cruder inequality

∑

r∼R

√
($, [g, r])

[g, r]
|H(r)| ≤

√
($, g)

g

∑

r∼R

(g, r)

r

√(
$,

r

(g, r)

)
|H(r)|(5.22)

=

√
($, g)

g

∑

r∼R

√
(g, r) |H(r)|√

r

�
√

($, g)

g
√
R

∑

d|g
d≤2R

√
d
∑

r∼R
d|r

|H(r)|

for any function H(r). So, parallel to the deduction of (5.21), we have

(5.23) Kj(g,R)

�
√

($, g)

g
L11

∑

d|g
d≤2R

√
d

√
NjN

R3/2Q

(
R2

d
+

R√
T0d

N
3/10
j +

√
Nj

T0

)

�
√

($, g)

g
Lcτ(g)

√
NjN

R3/2Q

(
R2 +

R√
T0
N

3/10
j +

√
RNj

T0

)

�
√

($, g)

g
Lcτ(g)

(
P
√
R√
|aj |

+

√
P√
|aj |

N
3/10
j +

√
Nj

|aj |

)
.

Since P ≤ N
2/5
j and R � N

1/10
j , the above yields the bound in Lem-

ma 3.2(ii). This completes our proof of Lemma 3.2.
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