Generators and defining equation of the modular function field of the group $\Gamma_1(N)$

by

NOBUHIKO ISHIDA and NOBURO ISHII (Osaka)

1. Introduction. Let N be a positive integer. Let $\Gamma(N)$ denote the principal congruence subgroup of level N and $\Gamma_1(N)$ a subgroup of $SL_2(\mathbb{Z})$ defined by

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \ \middle| \ a \equiv d \equiv 1 \mod N, \ c \equiv 0 \mod N \right\}.$$

Let A(N) and $A_1(N)$ be the modular function fields with respect to the groups $\Gamma(N)$ and $\Gamma_1(N)$ respectively. Further let $X_1(N)$ be the modular curve associated with the modular function field $A_1(N)$. The genus of $X_1(N)$ is ≥ 1 if and only if N = 11, $N \geq 13$. The purpose of this paper is to construct "good" generators of $A_1(N)$ such that we can obtain a "simple" equation of the field $A_1(N)$, which gives an affine, in general, singular model over \mathbb{Q} of the curve $X_1(N)$.

The non-cuspidal, \mathbb{C} -rational points of $X_1(N)$ parametrize the isomorphism classes of pairs of the elliptic curve over \mathbb{C} and a point of order N on it. From this property, Reichert [9] obtained the equations of $X_1(N)$ for $N = 11, 13, \ldots, 18$ from "raw forms" which were deduced from the equation satisfied by N-torsion points on the elliptic curve called the E(b, c)-form. Further he calculated tables of elliptic curves over quadratic fields with torsion groups of special types. Independently, Lecacheux [7], Washington [11] and Darmon [2] constructed generators of the field $A_1(N)$ explicitly and determined the equation of $X_1(N)$ for N = 13, 16, 25 respectively, for the purpose of obtaining a family of cyclic extensions over \mathbb{Q} . The authors [3]–[5] constructed generators of $A(N), A_1(N)$ for any $N \ge 6$ and showed that the equation of $A_1(N)$ can be deduced very easily from the equation of A(N) deduced from the relation between them. However our equation given in [5] is not simple as compared with the "raw forms" of Reichert. In this paper, we construct new kind of generators of $A_1(N)$ for any integer greater than 10

²⁰⁰⁰ Mathematics Subject Classification: Primary 14H05; Secondary 11F03, 11G18.

from similar functions used by Lecacheux, Washington and Darmon. The equations obtained from these new generators are as simple as the "raw forms" of Reichert.

In Sections 2 and 3, we shall introduce modular functions W_3 , W_4 , W_5 of $\Gamma_1(N)$ which are modular units (for modular units, see Kubert and Lang [6]) and show that the pairs (W_3, W_5) , (W_3, W_4) generate $A_1(N)$ over \mathbb{C} , respectively. In Section 4, we shall study the properties of the equation of $A_1(N)$ obtained from the relation between W_3 and W_5 . In the last part of Section 4, as examples, we shall give equations for $11 \leq N \leq 20$, $N \neq 12$. Let J be the modular invariant function. In Section 5, we shall also show that the pairs (J, W_3) and (J, W_5) of modular functions each generate $A_1(N)$ over \mathbb{C} .

Throughout this paper, we shall use the following notation. For finitely many elements a_1, \ldots, a_m of a unique factorization domain, we denote by $\text{GCD}(a_1, \ldots, a_m)$ the greatest common divisor of a_1, \ldots, a_m . For $x \in \mathbb{R}$, we denote by [x] the greatest integer not exceeding x. For a function $f(\tau)$ on the complex upper half plane and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$, we put

$$f|_{2}[A] = f(A(\tau))(c\tau + d)^{-2},$$

where $A(\tau) = (a\tau + b)/(c\tau + d)$.

2. The function $W_r(\tau)$. Let N be a positive integer greater than 10. For a complex number τ in the complex upper half plane, we denote by L_{τ} the lattice in \mathbb{C} generated by 1 and τ and by $\wp(z; L_{\tau})$ the Weierstrass \wp -function associated with L_{τ} . For a pair (r, s) of integers such that $(r, s) \not\equiv (0, 0) \mod N$, consider the function

$$E(\tau; r, s, N) = \wp\left(\frac{r\tau + s}{N}; L_{\tau}\right)$$

on the complex upper half plane. Then it is easy to see that $E(\tau; r, s, N)$ has the following transformation formula:

$$E(\tau; r, s, N)|_{2}[A] = E(\tau; ar + cs, br + ds, N) \quad \text{for } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}).$$

In particular, for an integer s not congruent to $0 \mod N$, we know that the function

$$\phi_s(\tau) = \frac{1}{(2\pi i)^2} \wp\left(\frac{s}{N}; L_\tau\right) = \frac{1}{(2\pi i)^2} E(\tau; 0, s, N)$$

is a modular form of weight 2 of the group $\Gamma_1(N)$. Further if r and s are integers such that $r \not\equiv \pm s \mod N$, then $\phi_r(\tau) - \phi_s(\tau)$ has neither zeros nor poles on the complex upper half plane, because the function $\wp(z; L_{\tau}) - \wp(s/N; L_{\tau})$ has zeros (resp. poles) only at the points $z \equiv \pm s/N$ (resp. 0) mod L_{τ} . For a positive integer r not congruent to $0, \pm 1, \pm 2 \mod N$, we define a modular function $W_r(\tau)$ with respect to $\Gamma_1(N)$ by

(1)
$$W_r(\tau) = \frac{\phi_2(\tau) - \phi_1(\tau)}{\phi_r(\tau) - \phi_1(\tau)}.$$

The function $W_r(\tau)$ has neither zeros nor poles on the complex upper half plane. We shall determine the order of $W_r(\tau)$ at the cusps of $\Gamma_1(N)$. In Ogg [8], all inequivalent cusps of $\Gamma_1(N)$ are given by the pairs (u, t) of integers such that:

•
$$1 \le t < N/2$$
, $1 \le u \le D$, $GCD(u, D) = 1$, or
• $t = N/2, N$, $1 \le u \le D/2$, $GCD(u, D) = 1$,

where D = GCD(t, N). Let (u, t) be one of the above cusps. Then, since GCD(u, t, N) = 1, we can take a matrix $B(u, t) \in \text{SL}_2(\mathbb{Z})$ such that

(2)
$$B(u,t) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} u & * \\ t & * \end{pmatrix} \mod N.$$

In the following, let $q = \exp(2\pi i\tau/N)$ and $\zeta = \exp(2\pi i/N)$. We know that q^D is the local parameter at the cusp (u, t). Therefore the order of $W_r(\tau)$ at the cusp (u, t) is equal to the order of the q^D -expansion of $W_r(B(u, t)(\tau))$. To describe the order of $W_r(\tau)$ at (u, t), we need the following notation. For an integer s, we denote by $\{s\}$ and $\mu(s)$ the integers uniquely determined by the following conditions:

$$0 \le \{s\} \le N/2, \quad \mu(s) = \pm 1, \quad s \equiv \mu(s)\{s\} \mod N,$$

and further if $\{s\} = 0$ or N/2, then $\mu(s) = 1$.

LEMMA 1. The function $\phi_s|_2[B(u,t)]$ has the following q-expansion:

$$\begin{split} \phi_{s}|_{2}\left[B(u,t)\right] &- \frac{1}{12} \\ = \begin{cases} \frac{\zeta^{s^{*}}}{(1-\zeta^{s^{*}})^{2}} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1-\zeta^{s^{*}n})(1-\zeta^{-s^{*}n})q^{mnN} & \text{if } \{st\} = 0, \\ \sum_{n=1}^{\infty} n\zeta^{s^{*}n}q^{\{st\}n} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(\zeta^{s^{*}n}q^{\{st\}n} + \zeta^{-s^{*}n}q^{-\{st\}n} - 2)q^{mnN} & \text{otherwise}, \end{cases} \end{split}$$

where $s^* = \mu(st)sd$.

Proof. Since $\wp(z; L_{\tau})$ is an L_{τ} -invariant even function, we have

$$\phi_s |_2 [B(u,t)] = \frac{1}{(2\pi i)^2} \wp \left(\frac{st\tau + sd}{N}; L_\tau \right) = \frac{1}{(2\pi i)^2} \wp \left(\frac{\{st\}\tau + s^*}{N}; L_\tau \right).$$

The assertion follows from the well known expansion formula for $\wp(z; L_{\tau})$

(see Robert [10], II, 5):

$$\frac{1}{(2\pi i)^2}\wp(z;L_{\tau}) = \sum_{m=-\infty}^{\infty} \frac{e^{2\pi i z} q^{mN}}{(1 - e^{2\pi i z} q^{mN})^2} + \frac{1}{12} - 2\sum_{m=1}^{\infty} \frac{q^{mN}}{(1 - q^{mN})^2}.$$

(Use the fact $x/(1-x)^2 = \sum_{m=1}^{\infty} mx^m$.)

LEMMA 2. Let s be an integer such that $s \neq 0 \mod N$. Further, for N odd (resp. even), assume $s \not\equiv \pm 1 \mod N$ (resp. N/2). Then the order of the q-expansion of $(\phi_s - \phi_1)|_2 [B(u, t)]$ is $\min(\{st\}, \{t\})$.

Proof. By Lemma 1, we know that the q-expansion of $\phi_s |_2 [B(u,t)] - 1/12$ begins with the term:

$$\begin{cases} \frac{\zeta^{sd}}{(1-\zeta^{sd})^2} & \text{if } \{st\} = 0, \\ (\zeta^{\mu(st)sd} + \zeta^{-\mu(st)sd})q^{N/2} & \text{if } N \text{ is even and } \{st\} = N/2, \\ \zeta^{\mu(st)sd}q^{\{st\}} & \text{otherwise.} \end{cases}$$

It is to be noted that the coefficient $(\zeta^{\mu(st)sd} + \zeta^{-\mu(st)sd})$ of $q^{N/2}$ in the second case can be zero and the coefficients in the other cases are not zero. If $\{st\} \neq \{t\}$, then we get easily our assertion. Assume $\{st\} = \{t\}$. We must show that the coefficient C of $q^{\{st\}}$ of the q-expansion of the function $(\phi_s - \phi_1)|_2 [B(u, t)]$ is not zero.

First assume $\{st\} = \{t\} = 0$. Then t = N and the coefficient C is

$$\frac{\zeta^{sd}}{(1-\zeta^{sd})^2} - \frac{\zeta^d}{(1-\zeta^d)^2} = -\frac{\zeta^d(\zeta^{(s-1)d}-1)(\zeta^{(s+1)d}-1)}{(1-\zeta^{sd})^2(1-\zeta^d)^2}$$

Since GCD(d, N) = 1 and $s \not\equiv \pm 1 \mod N$, this is not zero.

Next assume $\{st\} = \{t\} = N/2$. Then we know s is odd, t = N/2, $\mu(st) = \mu(t) = 1$ and the coefficient C is

$$\zeta^{sd} + \zeta^{-sd} - \zeta^d - \zeta^{-d} = \frac{(\zeta^{(s+1)d} - 1)(\zeta^{(s-1)d} - 1)}{\zeta^{sd}}.$$

If this is zero, then $(s\pm 1)d \equiv 0 \mod N$. Since t = N/2, we have GCD(d, N/2) = 1. Therefore, $s \equiv \pm 1 \mod N/2$. This contradicts our assumption.

Finally, assume $\{st\} = \{t\} \neq 0, N/2$. Then $C = \zeta^{\mu(st)sd} - \zeta^{\mu(t)d}$. If C = 0, then $\mu(st)sd \equiv \mu(t)d \mod N$. Furthermore, since $\{st\} = \{t\}$, we have $\mu(st)st \equiv \mu(t)t \mod N$. Since $\operatorname{GCD}(N, t, d) = 1$, these two congruences show $s \equiv \pm 1 \mod N$. This contradicts the assumption.

Since the local parameter at the cusp (u, t) is q^D , by Lemma 2, we have immediately

PROPOSITION 1. Let r be a positive integer such that $r \neq 0, \pm 1, \pm 2 \mod N$. Further, for N even, assume that $r \not\equiv \pm 1 \mod N/2$. Then W_r has

poles or zeros only at the cusps and the order of W_r at the cusp (u, t) is

$$\frac{\min(\{2t\},\{t\}) - \min(\{rt\},\{t\})}{D},$$

where D = GCD(t, N). Furthermore W_r takes the value 1 at the cusps (u, t) for t such that $t < \{2t\}, \{rt\}$. Note that the order is determined only by t and is independent of u.

3. Generators $(W_3, W_4), (W_3, W_5)$. Let $N \ge 11$, $N \ne 12$. In this section, we shall show that the pairs (W_3, W_4) and (W_3, W_5) of functions each generate $A_1(N)$ over \mathbb{C} . Let us consider the representatives (u, t) of inequivalent cusps of $\Gamma_1(N)$ given in Section 1. Since the order of W_r at the cusp (u, t) depends only on t, we denote it by $\nu_t(W_r)$. For a non-negative integer k, if $kN/2 \le rt < (k+1)N/2$, then

$$\{rt\} = \begin{cases} rt - kN/2 & \text{if } k \text{ is even,} \\ (k+1)N/2 - rt & \text{if } k \text{ is odd.} \end{cases}$$

Let D = GCD(t, N). Then by Proposition 1 we obtain the following:

$$(3) \qquad \nu_t(W_3) = \begin{cases} 0 & \text{if } t \le N/4, \\ (4t-N)/D & \text{if } N/4 \le t \le N/3, \\ (2N-5t)/D & \text{if } N/3 \le t \le N/2, \\ -1 & \text{if } t = N/2, \\ 0 & \text{if } t = N; \end{cases} \\ (4) \qquad \nu_t(W_4) = \begin{cases} 0 & \text{if } t \le N/5, \\ (5t-N)/D & \text{if } N/5 \le t \le N/4, \\ (N-3t)/D & \text{if } N/4 \le t \le 2N/5, \\ (2t-N)/D & \text{if } 2N/5 \le t \le N/2, \\ 0 & \text{if } t = N; \end{cases} \\ (5) \qquad \nu_t(W_5) = \begin{cases} 0 & \text{if } t \le N/6, \\ (6t-N)/D & \text{if } N/6 \le t \le N/2, \\ 0 & \text{if } N/4 \le t \le N/4, \\ 0 & \text{if } N/4 \le t \le N/4, \\ 0 & \text{if } N/4 \le t \le N/4, \\ 0 & \text{if } N/4 \le t \le N/4, \\ 0 & \text{if } N/4 \le t \le N/4, \\ (3t-N)/D & \text{if } N/3 \le t \le 2N/5, \\ (3N-7t)/D & \text{if } 2N/5 \le t \le N/2, \\ -1 & \text{if } t = N, \end{cases} \end{cases}$$

We find easily that W_3 has poles only at the cusps (u, t) such that $2N/5 < t \le N/2$, W_4 has poles only at the cusps such that N/3 < t < N/2, and W_5 has poles only at the cusps such that $3N/7 < t \le N/2$. In particular,

(6) W_5 has poles only at the points where W_3 does.

We shall make use of this property in the following section.

THEOREM 1. Let the notation be as above. Then

$$A_1(N) = \mathbb{C}(W_3, W_4) = \mathbb{C}(W_3, W_5).$$

Proof. Since we can prove $A_1(N) = \mathbb{C}(W_3, W_4)$ and $A_1(N) = \mathbb{C}(W_3, W_5)$ in the same way, we shall prove $A_1(N) = \mathbb{C}(W_3, W_4)$ in detail, and for $A_1(N) = \mathbb{C}(W_3, W_5)$ we shall only sketch the proof. For a non-constant function f of $A_1(N)$, denote by d(f) the total degree of the poles of f. Then $d(f) = [A_1(N) : \mathbb{C}(f)]$. Therefore if we can find finitely many functions f_1, \ldots, f_n in $\mathbb{C}(W_3, W_4)$ such that $\operatorname{GCD}(d(f_1), \ldots, d(f_n)) = 1$, we will have $A_1(N) = \mathbb{C}(W_3, W_4)$.

Let us consider the function $W_3^i + W_4^j$ for some (i, j). First, we assume N is odd. In this case, we take two pairs of (i, j) = (4, N - 10), (4, N - 9). Let (i, j) = (4, N - 10). Then for 2N/5 < t < N/2,

$$\begin{split} \nu_t(W_4^{N-10}) &- \nu_t(W_3^4) \\ &= (N-10)(2t-N)/D + 4(5t-2N)/D = 2N\left(t-\frac{N-2}{2}\right) \Big/ D \\ &\left\{ \begin{array}{l} < 0 & \text{if } t < (N-1)/2, \\ = 0 & \text{if } t = (N-1)/2. \end{array} \right. \end{split}$$

Therefore, by (3) and (4) we obtain

$$d(W_3^4 + W_4^{N-10}) = (N-10) \left\{ \sum_{N/3 < t \le 2N/5} \frac{3t - N}{D} \cdot \varphi(D) + \sum_{2N/5 < t < N/2} \frac{N - 2t}{D} \cdot \varphi(D) \right\}$$
$$- (N-10) \left(N - 2 \cdot \frac{N-1}{2} \right) + 4 \left(5 \cdot \frac{N-1}{2} - 2N \right)$$
$$= (N-10)d(W_4) + N.$$

It is noted that D = (t, N) = 1 for t = (N - 1)/2. Let (i, j) = (4, N - 9). Then

$$4(5t-2N)/D - (N-9)(N-2t)/D = 2(N+1)\left(t - \frac{N(N-1)}{2(N+1)}\right)/D.$$

Since we see easily that

$$\frac{N-3}{2} < \frac{N(N-1)}{2(N+1)} < \frac{N-1}{2},$$

we deduce similarly

$$d(W_3^4 + W_4^{N-9}) = (N-9)d(W_4) + N - 1.$$

Consequently, for N odd we have

$$\operatorname{GCD}(d(W_4), d(W_3^4 + W_4^{N-10}), d(W_3^4 + W_4^{N-9})) = \operatorname{GCD}(d(W_4), N, N-1) = 1.$$

Next, we assume N is even, and $N \ge 16$ for the present. In this case, we take three pairs of (i, j) = (1, N - 2), (6, N - 15), (3, (N - 14)/2). Firstly, let (i, j) = (1, N - 2). Since

$$(5t-2N)/D - (N-2)(N-2t)/D = (2N+1)\left(t - \frac{N^2}{2N+1}\right) / D$$

and

$$\frac{N-2}{2} < \frac{N^2}{2N+1} < \frac{N}{2},$$

we obtain

$$d(W_3 + W_4^{N-2}) = (N-2) \left\{ \sum_{N/3 < t \le 2N/5} \frac{3t - N}{D} \cdot \varphi(D) + \sum_{2N/5 < t < N/2} \frac{N - 2t}{D} \cdot \varphi(D) \right\} + \frac{\varphi(N/2)}{2} = (N-2)d(W_4) + \frac{\varphi(N/2)}{2}.$$

Let (i, j) = (6, N - 15). Since

$$6(5t - 2N)/D - (N - 15)(N - 2t)/D = 2N\left(t - \frac{N - 3}{2}\right)/D$$

and $\delta = ((N-2)/2, N) = 1$ (resp. 2) if $N \equiv 0 \mod 4$ (resp. $N \equiv 2 \mod 4$), we obtain

$$d(W_3^6 + W_4^{N-15}) = (N-15)d(W_4) - (N-15)\left(N-2 \cdot \frac{N-2}{2}\right) / \delta + 6\left(5 \cdot \frac{N-2}{2} - 2N\right) / \delta + 6 \cdot \frac{\varphi(N/2)}{2} = (N-15)d(W_4) + \frac{N}{\delta} + 6 \cdot \frac{\varphi(N/2)}{2}.$$

Let us the take (i, i) = (3, (N-14)/2). Then

Lastly, take (i, j) = (3, (N - 14)/2). Then

$$3(5t-2N)/D - \frac{N-14}{2}(N-2t)/D = (N+1)\left(t - \frac{N(N-2)}{2(N+1)}\right)/D.$$

Since

$$\frac{N-4}{2} < \frac{N(N-2)}{2(N+1)} < \frac{N-2}{2},$$

we conclude similarly that

$$d(W_3^3 + W_4^{(N-14)/2}) = \frac{N-14}{2}d(W_4) + \frac{N-2}{2\delta} + 3 \cdot \frac{\varphi(N/2)}{2}.$$

Consequently,

$$GCD(d(W_4), d(W_3 + W_4^{N-2}), d(W_3^6 + W_4^{N-15}), d(W_3^3 + W_4^{(N-14)/2})) = GCD\left(d(W_4), \frac{\varphi(N/2)}{2}, \frac{N}{\delta}, \frac{N-2}{2\delta}\right) = 1.$$

For the remaining case of N = 14, we have $\text{GCD}(d(W_4), d(W_3 + W_4^{12})) = 1$. This completes the proof of $A_1(N) = \mathbb{C}(W_3, W_4)$.

To prove $A_1(N) = \mathbb{C}(W_3, W_5)$, we may take (i, j) = (N - 14, N - 10)and ((N - 13)/2, (N - 9)/2) for N odd, and (i, j) = (N - 3, N - 2),(N - 21, N - 15) and ((N - 20)/2, (N - 14)/2) for N even.

4. The defining equation of $A_1(N)$. We shall study the minimal equation of W_5 over $\mathbb{C}(W_3)$, which is a defining equation of $A_1(N)$ and gives an affine model of the curve $X_1(N)$. To simplify the notation, we write d_r instead of $d(W_r)$. Since W_3, W_5 have q-expansions at the cusp $i\infty$ with $\mathbb{Q}(\zeta)$ -coefficients and $[A_1(N) : \mathbb{C}(W_3)] = d_3$, the minimal equation $F_N(W_3, Y) = 0$ of W_5 over $\mathbb{C}(W_3)$ can be of the form

$$F_N(X,Y) = \Phi_{d_3}(X)Y^{d_3} + \Phi_{d_3-1}(X)Y^{d_3-1} + \ldots + \Phi_1(X)Y + \Phi_0(X),$$

where $\Phi_j(X) \in \mathbb{Q}(\zeta)[X]$ for all j, the leading coefficient of $\Phi_{d_3}(X)$ is equal to 1, and $\Phi_{d_3}(X), \ldots, \Phi_1(X)$ and $\Phi_0(X)$ have no common factors except nonzero constants. Because we shall use a similar argument to that in Section 3 of Ishida and Ishii [4], we shall be brief. For details see [4]. Assume F and Ggenerate $A_1(N)$ over \mathbb{C} , that is, $A_1(N) = \mathbb{C}(F,G)$. Let $\Phi(X,Y) \in \mathbb{C}[X,Y]$ be the polynomial such that $\Phi(F,Y) = 0$ is the minimal equation of Gover \mathbb{C} . It has degree d = d(F) as a polynomial of Y. Let R_1 denote the Riemann surface associated with $A_1(N)$. Then the inclusion of $\mathbb{C}(F)$ into $A_1(N)$ induces a morphishm φ of R_1 onto the projective space $\mathbb{P}^1(\mathbb{C})$ of dimension 1 such that

$$\varphi(Q) = \begin{cases} [F(Q), 1] & \text{if } F(Q) \neq \infty, \\ [1, 0] & \text{otherwise.} \end{cases}$$

For every point $\alpha \in \mathbb{P}^1(\mathbb{C})$, its inverse image $\varphi^*(\alpha)$ under φ is a divisor on R_1 given by

(7)
$$\varphi^*(\alpha) = \sum_{i=1}^M e_i Q_i,$$

where Q_i are all the distinct points of R_1 such that $F(Q_i) = \alpha$ and e_i is the absolute value of the order of F at the point Q_i . Let T be an indeterminate and $\mathbb{C}[[T]]$ the ring of formal power series in T and $\mathbb{C}((T))$ its fractional field. Put $U = T + \alpha$ (resp. 1/T) if $\alpha \neq \infty$ (resp. $\alpha = \infty$). We can write

 $\Phi(U, Y) = h(T)\Psi(Y)$, where

$$h(T) \in \mathbb{C}((T)),$$

 $\Psi(Y) = T^m Y^d + \Psi_{d-1}(T) Y^{d-1} + \ldots + \Psi_1(T) Y + \Psi_0(T),$

m is a non-negative integer and $\Psi_j(T) \in \mathbb{C}[[T]]$ for all *j*. Further if $m \geq 1$ then at least one of $\Psi_j(T)(0 \leq j \leq d-1)$ is not divisible by *T*. By (7), we know that $\Psi(Y)$ decomposes into a product of *M* irreducible polynomials $G_i(Y)$ of degree e_i with coefficients in $\mathbb{C}[[T]]$. Let | | be a valuation on $\mathbb{C}((T))$ defined by $|T| = \lambda$ for a $\lambda \in \mathbb{R}$, $0 < \lambda < 1$. Let f_i be the order of *G* at the point Q_i . Then we know that $G_i(Y)$ is pure of type $(e_i, -(f_i/e_i)\log \lambda)$. Further if we put

$$G_i(Y) = g_{i,e_i}(T)Y^{e_i} + \ldots + g_{i,1}(T)Y + g_{i,0}(T),$$

where $g_{i,k}(T) \in \mathbb{C}[[T]]$ for all k and $\text{GCD}(g_{i,e_i}(T),\ldots,g_{i,0}(T)) = 1$, then (2.6) of [4] gives

(8) G has a pole (resp. zero) at Q_i if and only if

 $|g_{i,e_i}(T)|$ (resp. $|g_{i,0}(T)|$) < 1.

LEMMA 3. Let the notation be as above. Assume that the coefficients of $\Phi(X, Y)$ as a polynomial of Y have no common factors. Let P_1, \ldots, P_m be all the distinct points of R_1 where F has zeros. Let e_i be the order of the zero of F at P_i . Further assume that G takes the value $\infty, 0, 1$ at P_i for $1 \leq i \leq k, k+1 \leq i \leq l, l+1 \leq i \leq m$ respectively. Then

$$\Phi(0,Y) = c^* Y^a (Y-1)^b,$$

where c^* is a non-zero constant and

$$a = \sum_{k+1 \le i \le l} e_i, \quad b = \sum_{l+1 \le i \le m} e_i.$$

Proof. Write $\Phi(T, Y) = h(T)\Psi(Y)$ as above. Then by assumption $h(0) \neq 0$. Decompose $\Psi(Y)$ into irreducible factors $G_i(Y)$ which correspond to P_i . Put

$$G_i(Y) = g_{i,e_i}(T)Y^{e_i} + \ldots + g_{i,1}(T)Y + g_{i,0}(T).$$

By assumption and (8), we have:

• if $1 \leq i \leq k$, then

$$|g_{i,0}(T)| = 1, \quad |g_{i,j}(T)| < 1 \quad \text{for } j \neq 0,$$

• if $k+1 \leq i \leq l$, then

$$|g_{i,e_i}(T)| = 1, \quad |g_{i,j}(T)| < 1 \quad \text{for } j \neq e_i.$$

For $l+1 \leq i \leq m$, since G takes the value 1, $G_i(Y)$ is written as a polynomial of Y-1 in

$$G_i(Y) = g_{i,e_i}^*(T)(Y-1)^{e_i} + \ldots + g_{i,1}^*(T)(Y-1) + g_{i,0}^*(T),$$

where $|g_{i,e_i}^*(T)| = 1, |g_{i,j}^*(T)| < 1$ for $j \neq e_i$. Since, for any power series $\omega(T) \in \mathbb{C}[[T]]$,

$$\omega(T)| < 1$$
 if and only if $\omega(0) = 0$,

we have

$$\begin{split} \varPhi(0,Y) &= h(0) \prod_{1 \le i \le k} g_{i,0}(0) \prod_{k+1 \le i \le l} g_{i,e_i}(0) Y^{e_i} \prod_{l+1 \le i \le m} g_{i,e_i}^*(0) (Y-1)^{e_i} \\ &= c^* Y^a (Y-1)^b. \quad \bullet \end{split}$$

In the following, to simplify the notation, we write $g_{i,k}$ instead of $g_{i,k}(T)$ if it is unnecessary to say explicitly that $g_{i,k}(T)$ is a power series of T.

THEOREM 2. Let the assumption and the notation be as above, and let $N \ge 11, \neq 12$. Then:

(i)
$$\Phi_{d_3}(X) = 1$$
.
(ii) $\max_{0 \le j \le d_3} \deg \Phi_j(X) = d_5$. Furthermore, if $7 \nmid N$, then
 $\deg \Phi_j(X) < \deg \Phi_a(X) = d_5$ for all $j \ne a$,

where

$$a = \sum_{2N/5 < t < 3N/7} \frac{5t - 2N}{D} \cdot \varphi(D) \quad and \quad D = \operatorname{GCD}(t, N).$$

(iii) If N is odd, then

$$\deg \Phi_j(X) \le \min\left(d_5, \frac{(N-7)(d_3-j)}{N-5}\right).$$

If N is even, then

$$\deg \Phi_j(X) \le \min(d_5, d_3 - j).$$

(iv) $\Phi_j(X) \in \mathbb{Q}[X]$ for all j.

Proof. Let $(F, G) = (W_3, W_5)$ in the above explanation. By (6), W_5 has poles only at the points where W_3 does. Therefore the same argument as in Lemma 2 of [4] shows (i).

Next we prove (ii). By applying the latter part of Lemma 3 of [4] to the functions W_3 , W_5 and the polynomial $F_N(X,Y)$, we obtain, by (i), $\max_j \deg \Phi_j(X) = d_5$. Let $\alpha = \infty$ and consider the decomposition

$$\Psi(Y) = T^{d_5} F_N(1/T, Y) = \prod_t G_{(u,t)}(Y)$$

Here $G_{(u,t)}(Y)$ are the irreducible factors corresponding to the cusps (u,t)where W_3 has poles, thus, the product runs through all the cusps (u,t) such that

(9) $2N/5 < t \le N/2$, and if t < N/2 (resp. t = N/2), then $1 \le u \le D$ (resp. $1 \le u \le D/2$), GCD(u, D) = 1.

Since the degree of $G_{(u,t)}$ and the order of W_5 at the cusp (u,t) depend only on t by Proposition 1, we denote them by e_t and f_t respectively. Now let $7 \nmid N$. Since W_5 has zeros (resp. poles) at the cusp (u,t) for 2N/5 < t < 3N/7(resp. $3N/7 < t \le N/2$), by (8) and (2.6) of [4], for the coefficients $g_{(u,t),j}$ of $G_{(u,t)}$, we have

(10)
$$\begin{cases} |g_{(u,t),e_t}| = 1, & |g_{(u,t),j}| < 1, & j \neq e_t & \text{for } 2N/5 < t < 3N/7, \\ |g_{(u,t),0}| = 1, & |g_{(u,t),j}| < 1, & j \neq 0 & \text{for } 3N/7 < t \le N/2. \end{cases}$$

Therefore

$$T^{d_5}F_N(1/T,Y) = \left(\prod_{2N/5 < t < 3N/7} \prod_u g_{(u,t),e_t} \prod_{3N/7 < t \le N/2} \prod_u g_{(u,t),0}\right) Y^a + TH(Y),$$

where H(Y) is an element of $\mathbb{C}[[T]](Y)$ and for each t, the u-product runs over all integers u such that the pair (u, t) satisfies (9). This shows (ii).

To prove (iii), let $\alpha = \infty$ again. By (5), $G_{(u,t)}(Y)$ is pure of type (e_t, γ_t) , where

$$e_t = 5t - 2N, \quad \gamma_t = -\frac{f_t}{e_t} \log \lambda = \frac{7t - 3N}{5t - 2N} \log \lambda.$$

Since $\gamma_t < \gamma_{t'}$ for t > t', $\gamma_{(N-1)/2}$ (resp. $\gamma_{N/2}$) is the smallest slope among γ_t 's if N is odd (resp. even). Put

$$c = \begin{cases} \exp(-\gamma_{(N-1)/2}) & \text{if } N \text{ is odd,} \\ \exp(-\gamma_{N/2}) & \text{if } N \text{ is even.} \end{cases}$$

Further extend the valuation || to the valuation $|| \|_c$ of $\mathbb{C}((T))(Y)$. See Cassels [1] for the definition of $|| \|_c$. Then, from the choice of c, we know that $\log(|g_{(u,t),e_t}|c^{e_t}) \geq \log(|g_{(u,t),j}|c^j)$ for all j. Thus, by (10), we have

$$\max_{j} \left(\left| \Phi_{j} \left(\frac{1}{T} \right) T^{d_{5}} \right| c^{j} \right) = \| \Psi(Y) \|_{c} = \prod \| G_{(u,t)}(Y) \|_{c} = \prod \| g_{(u,t),e_{t}} | c^{e_{t}} \|_{c}$$
$$= \lambda^{d_{5}} c^{d_{3}}.$$

This shows

$$\lambda^{d_5 - \deg \Phi_j(X)} c^j \le \lambda^{d_5} c^{d_3}.$$

By taking log on both sides, we have (iii).

To prove (iv), we shall transform W_3 and W_5 by the Atkin–Lehner involution. Put $V_3(\tau) = W_3(-1/(N\tau))$ and $V_5(\tau) = W_5(-1/(N\tau))$. Note that $A_1(N) = \mathbb{C}(V_3, V_5)$ and $F_N(V_3, Y) = 0$ is the minimal equation of V_5 over $\mathbb{C}(V_3)$. By the definition of the form $\phi_s(\tau)$ and the transformation formula for $E(\tau; r, s, N)$, we have

$$\phi_s\left(\frac{-1}{N\tau}\right)(N\tau)^{-2} = \frac{1}{(2\pi i)^2}\wp(s\tau, L_{N\tau}).$$

Furthermore by the expansion formula for the \wp -function given in Lemma 1, $\frac{1}{(2\pi i)^2} \wp(s\tau, L_{N\tau})$ has a q-expansion with Q-coefficients. Thus the q-expansion of V_r lies in $\mathbb{Q}(q)$. Let us extend any element $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ to an automorphism of $\mathbb{Q}(\zeta)((q))$ by the mapping $\sum c_n q^n \mapsto \sum c_n^{\sigma} q^n$. Then, since $V_r^{\sigma} = V_r \ (r = 3, 5),$ we have

$$F_N(V_3, V_5)^{\sigma} = F_N^{\sigma}(V_3^{\sigma}, V_5^{\sigma}) = F_N^{\sigma}(V_3, V_5) = 0.$$

This implies that $F_N^{\sigma}(V_3, Y) = 0$ is the minimal equation of V_5 . Thus we have $F_N^{\sigma}(X,Y) = F_N(X,Y)$. Hence $\Phi_j(X) \in \mathbb{Q}[X]$ for all j.

From Lemma 3 we obtain some properties of $F_N(X, Y)$.

THEOREM 3. Let the notation be as above. Further assume N is prime. Then:

(i)
$$F_N(0,Y) = F_N(1,Y) = Y^{\alpha}(Y-1)^{d_3-\alpha}$$
.
(ii) $F_N(X,0) = c_1 X^{\beta} (X-1)^{\gamma-\beta}$.
(iii) $F_N(X,1) = c_2 X^{\delta} (X-1)^{d_5-\delta}$.
(iv) $F_N(X,X) = X^{\varepsilon} (X-1)^{d_3-\varepsilon}$.

Here c_1, c_2 are non-zero constants and

$$\begin{aligned} \alpha &= \sum_{N/3 < t < 2N/5} (2N - 5t), \quad \beta = \sum_{N/3 < t < 2N/5} (3t - N), \\ \gamma &= \sum_{2N/5 < t < N/2} (7t - 3N), \\ \delta &= \sum_{N/4 < t < 2N/7} (4t - N) + \sum_{2N/7 < t < N/3} (N - 3t), \\ \varepsilon &= \sum_{N/3 < t < 3N/8} (3t - N) + \sum_{3N/8 < t < 2N/5} (2N - 5t). \end{aligned}$$

Proof. The assertions for $F_N(0, Y), F_N(X, 0)$ are obtained from Proposition 1, (3) and (5) by applying Lemma 3 to the pairs $(F,G) = (W_3, W_5)$ and $(F,G) = (W_5, W_3)$ respectively.

Next we shall prove the assertion for $F_N(1, Y)$. Consider the function

$$V = W_3 - 1 = \frac{\phi_2 - \phi_3}{\phi_3 - \phi_1}.$$

Then all the points where V has zeros are the cusps (1,t) for t < N/4. Further for t < N/4, W_5 takes the value 1 (resp. 0) for t < N/6 (resp. N/6 < t < N/4). Put Z = X - 1 and $\Psi(Z, Y) = F_N(Z + 1, Y)$. Then $\Psi(V,Y) = 0$ is the minimal equation of W_5 over $\mathbb{C}(V)$. Apply Lemma 3 to $(F,G) = (V,W_5)$. Because the order of V at (1,t) is t for t < N/6 and

(

 $d(V) = d_3$, we see that

$$F_N(1,Y) = \Psi(0,Y) = Y^{d_3-h}(Y-1)^h,$$

where $h = \sum_{t < N/6} t$. Furthermore it is easy to see that

$$h = \sum_{N/4 < t < N/3} (4t - N) = d_3 - \alpha.$$

This completes the proof of (i). Applying Lemma 3 to $(F, G) = (W_5 - 1, W_3)$, similarly, we can show (iii).

Finally, we prove (iv). Let $V_1 = W_5 - W_3$. Since

$$V_1 = \frac{(\phi_2 - \phi_1)(\phi_3 - \phi_5)}{(\phi_5 - \phi_1)(\phi_3 - \phi_1)},$$

by (3) and (5) all points where V_1 has zeros (resp. poles) are the cusps (1, t) for t < N/6, N/3 < t < 2N/5 (resp. t > 2N/5) and

$$\nu_t(V_1) = \begin{cases} 3t - N & \text{if } N/3 < t < 3N/8, \\ 2N - 5t & \text{if } t > 3N/8. \end{cases}$$

Since $A_1(N) = \mathbb{C}(V_1, W_3)$, $d(V_1) = d_3$ and G(X, Z) = F(X, Z + X) is a polynomial of X of degree d_3 , $G(X, V_1) = 0$ is the minimal equation of W_3 over $\mathbb{C}(V_1)$. The function W_3 takes the value 1 (resp. 0) at the cusps (1, t) for t < N/6 (resp. N/3 < t < 2N/5). If we apply Lemma 3 to $(F, G) = (V_1, W_3)$, we have

$$F(X,X) = G(X,0) = X^{\varepsilon}(X-1)^{d_3-\varepsilon}. \blacksquare$$

Let N be a prime. Since d_3 is also equal to the total degree of zeros of W_3 , we have, by (3),

$$d_3 = \alpha + \sum_{N/4 < t < N/3} (4t - N).$$

Thus $0 < \alpha < d_3$ and $F_N(0,0) = F_N(1,1) = F_N(1,0) = F_N(0,1) = 0$. From this, the polynomials $F_N(X,X)$, $F_N(0,X)$, $F_N(X,0)$, and $F_N(X,1)$ are each divisible by X(X-1). Put

$$R(X) = \frac{F_N(X, X) - F_N(0, X) - F_N(X, 0)}{X(X - 1)},$$

$$S(X) = \frac{F_N(X, 0) - F_N(X, 1)}{X - 1}.$$

Then Theorem 3 yields

PROPOSITION 2. Let N be a prime. Then the polynomial $F_N(X,Y)$ can be written in the form:

$$F_N(X,Y) = F_N(X,X) + F_N(0,Y) - F_N(0,X) + (Y - X)\{(Y + X - 1)R(X) + YS(X)\} + X(X - 1)Y(Y - 1)(Y - X)U(X,Y),$$

where $U(X, Y) \in \mathbb{Q}[X, Y]$.

Proof. This is obtained by simple computation. We omit the proof. \blacksquare We can generalize the results of Theorem 3 to N composite as follows.

THEOREM 4. (i) If
$$3 \nmid N$$
, then $F_N(0, Y) = Y^{\alpha}(Y-1)^{d_3-\alpha}$
(ii) If $6 \nmid N$, then $F_N(1, Y) = Y^{\alpha'}(Y-1)^{d_3-\alpha'}$.
(iii) If $5 \nmid N$, then $F_N(X, 0) = c_1 X^{\beta} (X-1)^{\gamma}$.
(iv) $F_N(X, 1) = c_2 X^{\delta} (X-1)^{d_5-\delta}$.
(v) $F_N(X, X) = c_3 X^{\varepsilon} (X-1)^{d_3-\varepsilon}$.

Here c_1, c_2 and c_3 are non-zero constants and

$$\begin{aligned} \alpha &= \sum_{N/3 < t < 2N/5} ((2N - 5t)/D)\varphi(D), \\ \alpha' &= \sum_{N/6 < t \le N/5} (t/D)\varphi(D) + \sum_{N/5 < t \le N/4} ((N - 4t)/D)\varphi(D), \\ \beta &= \sum_{N/3 < t < 2N/5} ((3t - N)/D)\varphi(D), \\ \gamma &= \sum_{N/6 < t \le N/5} ((6t - N)/D)\varphi(D) + \sum_{N/5 < t < N/4} ((N - 4t)/D)\varphi(D), \\ \delta &= \sum_{N/4 < t \le 2N/7} ((4t - N)/D)\varphi(D) + \sum_{2N/7 < t < N/3} ((N - 3t)/D)\varphi(D), \\ \varepsilon &= \sum_{N/3 < t \le 3N/8} ((3t - N)/D)\varphi(D) + \sum_{3N/8 < t < 2N/5} ((2N - 5t)/D)\varphi(D). \end{aligned}$$

Proof. The proof is the same as in the case of N prime so we omit it. Finally we give some examples.

EXAMPLE. (I) N prime:

$$F_{11}(X,Y) = Y^{2}(Y-1) - X(X-1).$$

$$F_{13}(X,Y) = Y(Y-1)^{3} + X(X-1)Y + X^{2}(X-1).$$

$$F_{17}(X,Y) = Y^{4}(Y-1)^{3} - 4X(X-1)Y^{4} - X(X-1)(X-10)Y^{3}$$

$$+ 3(X^{4} - X^{3} - 3X^{2} + 3X)Y^{2}$$

$$- (X^{5} - 5X^{2} + 4X)Y + X(X-1)^{2}.$$

$$F_{19}(X,Y) = Y^{3}(Y-1)^{6} + 4X(X-1)Y^{6} - 5X(X-1)(X-2)Y^{5}$$

- 3X(X-1)(X² - 5X - 3)Y⁴
+ X(X-1)(4X³ + X² - 16X - 3)Y³
- X²(X-1)(X³ + 2X² + 3X - 9)Y²
+ 3X²(X-1)²Y + X²(X-1)³.

(II) N composite:

$$\begin{split} F_{14}(X,Y) &= Y^4 - (X+1)Y^3 - (2X^2 - 3X)Y^2 + (X^3 - X)Y + X(X-1)^2.\\ F_{15}(X,Y) &= Y^5 - 3Y^4 - 3(X-2)Y^3 + (6X-7)Y^2\\ &\quad + (X-1)(2X^2 - X - 4)Y - (X-1)^2(X^2 + X + 1).\\ F_{16}(X,Y) &= Y^5 + (2X-4)Y^4 - (X^2 + 4X - 6)Y^3 + (4X-4)Y^2\\ &\quad + (X^2 - 2X + 1)Y + X(X-1)^2.\\ F_{18}(X,Y) &= Y^5 - 3Y^4 - (X^2 - X - \frac{10}{3})Y^3 + (\frac{1}{3}X^3 + X^2 - \frac{4}{3}X - \frac{5}{3})Y^2\\ &\quad - (\frac{2}{3}X^3 - \frac{1}{3}X^2 - \frac{1}{3}X - \frac{1}{3})Y + \frac{1}{3}X^3(X-1).\\ F_{20}(X,Y) &= Y^7 - (3X+2)Y^6 + (X^2 + 8X + 1)Y^5 - 10XY^4\\ &\quad - (5X^2 - 10X)Y^3 - (2X^3 - 10X^2 + 9X)Y^2\\ &\quad + (2X^4 - 2X^3 - 4X^2 + 4X)Y - X(X-1)^2(X^2 + 1). \end{split}$$

Comparing our result with Reichert's [9], our equations seem to correspond to "raw forms" of Reichert.

5. Generators $(J, W_3), (J, W_5)$. Let J be the modular invariant function. We shall show that the pairs (J, W_3) and (J, W_5) are generators of $A_1(N)$ over \mathbb{C} .

THEOREM 5. Let N = 11 or be an integer ≥ 13 . Then $A_1(N) = \mathbb{C}(J, W_3) = \mathbb{C}(J, W_5)$.

Proof. Let r = 3, 5. We know that A(N) is a Galois extension over $\mathbb{C}(J)$ with Galois group $\mathrm{SL}_2(\mathbb{Z})/\pm\Gamma(N)$ and $A_1(N)$ is the invariant field associated with the subgroup $\pm\Gamma_1(N)/\pm\Gamma(N)$. Therefore to prove $A_1(N) = \mathbb{C}(J, W_r)$, it is sufficient to show that for $A \in \mathrm{SL}_2(\mathbb{Z})$, $W_r(A(\tau)) = W_r(\tau)$ implies $A \in \Gamma_1(N) \{\pm 1\}$. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ be such that $W_r(A(\tau)) = W_r(\tau)$.

First of all, we show that c is divisible by N. Assume that $c \not\equiv 0 \mod N$. Without loss of generality, we can regard the matrix A as one of the matrices B(u, t) given by (2) with $c \equiv t \mod N$. Let C_r be the constant term of the q-extension of W_r . By Lemma 2,

(11)
$$C_r = \frac{(\zeta^r - 1)^2(\zeta^3 - 1)(\zeta - 1)}{(\zeta^{r+1} - 1)(\zeta^{r-1} - 1)(\zeta^2 - 1)^2} \neq 0.$$

Proposition 1 shows that the order of the q-extension of $W_r(A(\tau))$ is $\min(\{2c\}, \{c\}) - \min(\{rc\}, \{c\})$. Since $W_r(A(\tau)) = W_r(\tau)$, we see that

$$\min(\{2c\}, \{c\}) = \min(\{rc\}, \{c\})$$

and the coefficient L_r of the leading term of $W_r(A(\tau))$ is equal to C_r .

First consider the case $\{2c\} = \{c\}$. Then $3c \equiv 0 \mod N$ and $3 \mid N$. Thus $\{c\} = \{2c\} = N/3, \ \mu(2c) = -\mu(c), \ \{3c\} = 0, \ \{5c\} = N/3, \ \mu(5c) = -\mu(c).$ Therefore for r = 3 we have a contradiction. Let r = 5. Since, in Lemma 2, we know that the coefficient of the leading term of the function $(\phi_s - \phi_1) \mid_2 [A]$ is $\zeta^{\mu(sc)sd} - \zeta^{\mu(c)d}$ in the case $\{c\} = \{sc\} \neq 0, N/2$ (line 19 in the proof of Lemma 2), we have

$$L_5 = \frac{\zeta^{\mu(2c)2d} - \zeta^{\mu(c)d}}{\zeta^{\mu(5c)5d} - \zeta^{\mu(c)d}} = \frac{1}{1 + \zeta^{-\mu(c)3d}}.$$

Since $L_5 = C_5$, we have $|1/C_5 - 1| = 1$. Replacing C_5 by the value given by (11) for r = 5, we get

$$\begin{aligned} |1/C_5 - 1|^2 \\ &= \frac{(\zeta^6 + \zeta^5 + \zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1)(\zeta^{-6} + \zeta^{-5} + \zeta^{-4} + \zeta^{-3} + \zeta^{-2} + \zeta^{-1} + 1)}{(\zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1)^2(\zeta^{-4} + \zeta^{-3} + \zeta^{-2} + \zeta^{-1} + 1)^2} \\ &= 1. \end{aligned}$$

Since this equation is symmetric with respect to ζ and ζ^{-1} , after some elementary computation, we can obtain the following equation for $\xi = \zeta + \zeta^{-1}$:

$$\xi^8 + 4\xi^7 + \xi^6 - 10\xi^5 - 2\xi^4 + 14\xi^3 - 8\xi = 0.$$

However, since the irreducible equation of ξ over \mathbb{Q} has degree $\varphi(N)/2$, we have a contradiction for N such that $\varphi(N)/2 > 7$. Further for N such that $\varphi(N)/2 \leq 7$, by direct computation, we can show ξ does not satisfy the above equation. Thus we also have a contradiction.

Next consider the case $\{2c\} > \{c\}$. Then $\{c\} = \min(\{rc\}, \{c\})$, thus $\{rc\} \ge \{c\}$. If $\{rc\} > \{c\}$, then we have $C_r = 1$. From this, we have an equation for ζ , but we see immediately that ζ cannot satisfy it. Assume $\{rc\} = \{c\}$. If $\{c\} = N/2$, then $\{2c\} = 0 < \{c\}$. This contradicts the assumption. If $\{c\} < N/2$, then by Lemma 2,

$$L_r = \frac{-\zeta^{\mu(c)d}}{\zeta^{\mu(rc)rd} - \zeta^{\mu(c)d}},$$

Thus $|1/C_r - 1| = 1$. Arguing as above, we get a contradiction.

Finally, consider the case $\{2c\} < \{c\}$. Then we must have $\{rc\} = \{2c\}$. If $\{2c\} = 0$, we have $\{c\} = 0$, because r is odd. If $\{2c\} = N/2$, then $\{2c\} \ge \{c\}$.

Therefore $\{rc\} = \{2c\} \neq 0, N/2$. By Lemma 2,

$$L_r = \frac{\zeta^{\mu(2c)2d}}{\zeta^{\mu(rc)rd}},$$

thus $|C_5| = 1$. However similarly we can show this equation is impossible. Hence at last we obtain $c \equiv 0 \mod N$.

Now we show $d \equiv \pm 1 \mod N$. By Proposition 1, W_3 (resp. W_5) has poles only at the cusps (u, t) such that $2N/5 \leq t \leq N/2$ (resp. $3N/7 \leq t \leq N/2$) and the order of the pole at $(u, t), t \neq N/2$, is (5t - 2N)/D (resp. (7t - 3N)/D), while the order of the pole at (u, N/2) is 1. Note that the order is determined only by t and is independent of u. Thus we denote by $\nu_r(W_r)$ the order of the pole of the function W_r at the cusp (u, t).

If N is odd (resp. $N \equiv 0 \mod 4$), then we see at once that $\nu_r(t)$ has the maximal value only at the cusp $(1, t_0)$, where $t_0 = (N - 1)/2$ (resp. N/2 - 1). Since $c \equiv 0 \mod N$, the matrix A transforms a cusp (u, t) to a cusp $(*, \{dt\})$. Therefore $dt_0 \equiv \pm t_0 \mod N$. This shows that $d \equiv \pm 1 \mod N$ and $A \in \{\pm 1\} \Gamma_1(N)$.

Let $N \equiv 2 \mod 4$. Then $\nu_r(t)$ takes the maximal value at the cusp (1, N/2 - 1) or (1, N/2 - 2). We must compare $\nu_r(N/2 - 1)$ with $\nu_r(N/2 - 2)$. If r = 3 (resp. r = 5), then $\nu_r(N/2 - 2) > \nu_r(N/2 - 1)$ if and only if N > 30 (resp. N > 42). Thus $d(N/2 - 2) \equiv \pm (N/2 - 2) \mod N$ if N > 30 (resp. N > 42), and $d(N/2 - 1) \equiv \pm (N/2 - 1) \mod N$ if N < 30 (resp. N < 42). The former implies $d \equiv \pm 1 \mod N$. The latter implies $d \equiv \pm 1 \mod N/2$ but since d is odd, we know $d \equiv \pm 1 \mod 2$, hence $d \equiv \pm 1 \mod N$.

If r = 3, N = 30 or r = 5, N = 42, then $\nu_r(N/2 - 2) = \nu_r(N/2 - 1)$ and one of the following congruences holds true: $d(N/2-2) \equiv \pm (N/2-2) \mod N$, $d(N/2 - 1) \equiv \pm (N/2 - 1) \mod N$, $d(N/2 - 2) \equiv \pm (N/2 - 1) \mod N$. The third congruence is impossible because N, N/2 - 1 are even and d, N/2 - 2are odd. Hence also in this case $d \equiv \pm 1 \mod N$.

Acknowledgements. The authors would like to express their hearty thanks to the referee for valuable suggestions and comments.

References

- J. W. S. Cassels, *Local Fields*, London Math. Soc. Stud. Texts 3, Cambridge Univ. Press, London, 1986.
- H. Darmon, Notes on a polynomial of Emma Lehmer, Math. Comp. 56 (1991), 795–800.
- [3] N. Ishida, Generators and equations for modular function fields of principal congruence subgroups, Acta Arith. 85 (1998), 197–207.
- [4] N. Ishida and N. Ishii, The equations for modular function fields of principal congruence subgroups of prime level, Manuscripta Math. 90 (1996), 271–285.

- [5] N. Ishida and N. Ishii, The equation for the modular curve $X_1(N)$ derived from the equation for the modular curve X(N), Tokyo J. Math. 22 (1999), 167–175.
- [6] D. Kubert and S. Lang, Units in the modular function fields, Math. Ann. 218 (1975), 175–189.
- [7] O. Lecacheux, Unité d'une famille de corps cycliques réels de degré 6 lié à la courbe modulaire X₁(13), J. Number Theory 31 (1989), 54–63.
- [8] A. Ogg, Rational points on certain elliptic modular curves, in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., 1973, 221–231.
- M. A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), 637–658.
- [10] A. Robert, *Elliptic Curves*, Lecture Notes in Math. 326, Springer, 1973.
- [11] L. C. Washington, A family of cyclic quartic fields arising from modular curves, Math. Comp. 196 (1991), 763–775.

Nobuhiko Ishida	Noburo Ishii
Sanpo jyuutaku	Department of Mathematics and Information Sciences
2-4-9, Shinonome-higashi-machi	College of Integrated Arts and Sciences
Sakai, Osaka 591-8041, Japan	Osaka Prefecture University
E-mail: ishida@an.email.ne.jp	1-1 Gakuen-cho
	Sakai, Osaka 599-8531, Japan
	E-mail: ishii@mi.cias.osakafu-u.ac.jp

Received on 10.4.2000 and in revised form on 25.4.2001

(3803)