Gcd-closed sets and determinants of matrices associated with arithmetical functions

by
Shaofang Hong (Chengdu)

1. Introduction. Smith [11] proved that if f is an arithmetical function and $[f(i, j)]$ is the $n \times n$ matrix having f evaluated at the greatest common divisor of i and j as its i, j-entry, then

$$
\operatorname{det}[f(i, j)]=(f * \mu)(1)(f * \mu)(2) \ldots(f * \mu)(n)
$$

where μ is the Möbius function and $f * \mu$ is the Dirichlet convolution of f and μ. Apostol [2] extended Smith's result by showing that if f and g are arithmetical functions and if β is defined for positive integers t and r by $\beta(t, r)=\sum_{d \mid(t, r)} f(d) g(r / d)$, then $\operatorname{det}[\beta(i, j)]=[g(1)]^{n} f(1) \ldots f(n)$. He noted that as a consequence, $\operatorname{det}[C(i, j)]=n$!, where $C(t, r)$ is Ramanujan's sum. Paul McCarthy [8] generalized Smith's and Apostol's results to the class of even functions $(\bmod r)$. He evaluated the determinants of $n \times n$ matrices of the form $[\beta(i, j)]$, where $\beta(t, r)$ is an even function of $t(\bmod r)$. A complex-valued function $\beta(t, r)$ of the positive integral variables t and r is said to be an even function of $t(\bmod r)$ if $\beta(t, r)=\beta((t, r), r)$ for all values of t. The functions considered by Smith and Apostol are even functions of $t(\bmod r)$ for every r. Bourque and Ligh [3] evaluated the determinants of $n \times n$ matrices of the form $\left[\beta\left(x_{i}, x_{j}\right)\right]$, where the set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of distinct positive integers is factor-closed (i.e., S contains every divisor of x for any $x \in S)$ and $\beta(t, r)$ is an even function of $t(\bmod r)$.

Throughout this paper, let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The set S is said to be $g c d$-closed if $\left(x_{i}, x_{j}\right) \in S$ for $1 \leq i, j \leq n$. Clearly, a factor-closed set is gcd-closed but not conversely. Let $f(t), g(t)$ and $h(t)$ be arithmetical functions. The $\Psi(t, r)$ is defined for all positive

[^0]integers t and r as follows:
\[

$$
\begin{equation*}
\Psi(t, r)=\sum_{d \mid(t, r)} f(d) g\left(\frac{t}{d}\right) h\left(\frac{r}{d}\right) \tag{1}
\end{equation*}
$$

\]

Define the class of arithmetical functions $L_{S}=\left\{l(t): l\left(d_{1} / d\right)=l\left(d_{2} / d\right)\right.$ whenever $d \mid d_{1}$ for any $d_{1}, d_{2} \in S$ satisfying $\left.d_{1} \mid d_{2}\right\}$. In 1993, Bourque and Ligh [3] evaluated the determinant of the $n \times n$ matrix $\left[\Psi\left(x_{i}, x_{j}\right)\right]$ if the set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is factor-closed. In this paper we will evaluate the determinant of the $n \times n$ matrix $\left[\Psi\left(x_{i}, x_{j}\right)\right]$, where $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed and $g \in L_{S}$ or $h \in L_{S}$. As applications, we evaluate the determinants of $n \times n$ matrices of the form $\left[C\left(x_{i}, x_{j}\right)\right]$, where $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed, and $C(t, r)$ is Ramanujan's trigonometric sum. These results generalize Bourque and Ligh's results [3]. We also evaluate the determinant of $n \times n$ matrix $\left[\frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right]$, where f is completely multiplicative, $g(m)=\mu(m) h(m), h$ is multiplicative, $f(p) \neq 0$ and $f(p) \neq h(p)$ for all primes p, and $(f * g)(d) \neq 0$ for any positive integer d satisfying $d \mid x, x \in S$, and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed.
2. Determinant of the matrix $\left[\Psi\left(x_{i}, x_{j}\right)\right]$. In the present section, we evaluate the determinant of the $n \times n$ matrix $\Psi\left(x_{i}, x_{j}\right)$, where $g \in L_{S}$ or $h \in L_{S}$ and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed.

Lemma 1 ([3]). Let $T=\left\{y_{1}, \ldots, y_{m}\right\}$ be a factor-closed set containing S. Then $\left[\Psi\left(x_{i}, x_{j}\right)\right]=G \Lambda H^{\mathrm{T}}$, where $\Lambda=\operatorname{diag}\left(f\left(y_{1}\right), \ldots, f\left(y_{m}\right)\right)$ and the $n \times m$ matrices G and H are defined by $G=\left[g\left(x_{i} / y_{j}\right)\right]$ and $H=\left[h\left(x_{i} / y_{j}\right)\right]$, respectively.

Lemma 2. Let the set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of distinct positive integers be gcd-closed. If $g \in L_{S}$ or $h \in L_{S}$ then there exist $n \times n$ lower triangular matrices M and N with diagonal elements 1 and an $n \times n$ lower triangular matrix P with diagonal elements

$$
\sum_{d \mid x_{1}} f(d) g\left(\frac{x_{1}}{d}\right) h\left(\frac{x_{1}}{d}\right), \sum_{\substack{d \mid x_{2} \\ d \nmid x_{1}}} f(d) g\left(\frac{x_{2}}{d}\right) h\left(\frac{x_{2}}{d}\right), \ldots, \sum_{\substack{d \mid x_{n} \\ d \nmid x_{l}, x_{l}<x_{n}}} f(d) g\left(\frac{x_{n}}{d}\right) h\left(\frac{x_{n}}{d}\right),
$$

such that $\left[\Psi\left(x_{i}, x_{j}\right)\right]=M P N^{\mathrm{T}}$.
Proof. Without loss of generality we may let $1 \leq x_{1}<\ldots<x_{n}$. Let $S_{k}=\left\{d: d \in \mathbb{Z}^{+}, d \mid x_{k}, d \nmid x_{t}, t<k\right\}, 1 \leq k \leq n$. Clearly $S_{k_{1}} \cap S_{k_{2}}=\emptyset$ for $1 \leq k_{1}, k_{2} \leq n, k_{1} \neq k_{2}$ and $S_{1} \cup \ldots \cup S_{n}=\bar{S}$, where \bar{S} is the minimal factor-closed set containing S (the factor closure of S). Let $S_{k}=$ $\left\{y_{k, 1}, \ldots, y_{k, p_{k}}\right\} \quad(1 \leq k \leq n)$ and $m=p_{1}+\ldots+p_{n}$ where $y_{k, 1}<\ldots<$
$y_{k, p_{k}}=x_{k}$. For $1 \leq j \leq m$, let

$$
y_{j}= \begin{cases}y_{1, j} & \text { if } 1 \leq j \leq p_{1} \\ y_{k, t} & \text { if } j=p_{1}+\ldots+p_{k-1}+t\left(k \geq 2,1 \leq t \leq p_{k}\right)\end{cases}
$$

Thus $\bar{S}=\left\{y_{1}, \ldots, y_{m}\right\}$. Let the $n \times m$ matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be defined as follows:

$$
a_{i j}= \begin{cases}g\left(x_{i} / y_{j}\right) \sqrt{f\left(y_{j}\right)} & \text { if } y_{j} \mid x_{i} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
b_{i j}= \begin{cases}h\left(x_{i} / y_{j}\right) \sqrt{f\left(y_{j}\right)} & \text { if } y_{j} \mid x_{i} \\ 0 & \text { otherwise }\end{cases}
$$

It follows immediately from Lemma 1 that

$$
\begin{equation*}
\left[\Psi\left(x_{i}, x_{j}\right)\right]=A B^{\mathrm{T}} \tag{2}
\end{equation*}
$$

Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ denote the systems of row vectors of A and B respectively. Let $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ and $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ denote the orthogonalization systems obtained from $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ respectively by using the Gram-Schmidt orthogonalization process (see [7]), then we have (where $\langle\beta, \beta\rangle$ denotes the inner product)

$$
\left\{\begin{aligned}
\gamma_{1} & =\alpha_{1} \\
\gamma_{2} & =\alpha_{2}-\frac{\left\langle\alpha_{2}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} \gamma_{1} \\
& \vdots \\
\gamma_{n} & =\alpha_{n}-\frac{\left\langle\alpha_{n}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} \gamma_{1}-\ldots-\frac{\left\langle\alpha_{n}, \gamma_{n-1}\right\rangle}{\left\langle\gamma_{n-1}, \gamma_{n-1}\right\rangle} \gamma_{n-1}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\delta_{1} & =\beta_{1} \\
\delta_{2} & =\beta_{2}-\frac{\left\langle\beta_{2}, \delta_{1}\right\rangle}{\left\langle\delta_{1}, \delta_{1}\right\rangle} \delta_{1} \\
& \vdots \\
\delta_{n} & =\beta_{n}-\frac{\left\langle\beta_{n}, \delta_{1}\right\rangle}{\left\langle\delta_{1}, \delta_{1}\right\rangle} \delta_{1}-\ldots-\frac{\left\langle\beta_{n}, \delta_{n-1}\right\rangle}{\left\langle\delta_{n-1}, \delta_{n-1}\right\rangle} \delta_{n-1}
\end{aligned}\right.
$$

Therefore

$$
\left(\begin{array}{c}
\alpha_{1} \tag{3}\\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\frac{\left\langle\alpha_{2}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
\frac{\left\langle\alpha_{n}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} & \frac{\left\langle\alpha_{n}, \gamma_{2}\right\rangle}{\left\langle\gamma_{2}, \gamma_{2}\right\rangle} & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\beta_{1} \tag{4}\\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\frac{\left\langle\beta_{2}, \delta_{1}\right\rangle}{\left\langle\delta_{1}, \delta_{1}\right\rangle} & 1 & \ldots & 0 \\
\cdots & \ldots & \cdots & \cdots \\
\frac{\left\langle\beta_{n}, \delta_{1}\right\rangle}{\left\langle\delta_{1}, \delta_{1}\right\rangle} & \frac{\left\langle\beta_{n}, \delta_{2}\right\rangle}{\left\langle\delta_{2}, \delta_{2}\right\rangle} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\vdots \\
\delta_{n}
\end{array}\right) .
$$

Let M and N be the left matrices on the right-hand sides of equations (3) and (4) respectively. Then

$$
\left(\begin{array}{c}
\alpha_{1} \tag{5}\\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)\left(\begin{array}{llll}
\beta_{1}^{\mathrm{T}} & \beta_{2}^{\mathrm{T}} & \ldots & \beta_{n}^{\mathrm{T}}
\end{array}\right)=M\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right)\left(\begin{array}{llll}
\delta_{1}^{\mathrm{T}} & \delta_{2}^{\mathrm{T}} & \ldots & \delta_{n}^{\mathrm{T}}
\end{array}\right) N^{\mathrm{T}}
$$

It follows from (2) and (5) that

$$
\left[\Psi\left(x_{i}, x_{j}\right)\right]=M\left(\begin{array}{c}
\gamma_{1} \tag{6}\\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right)\left(\begin{array}{llll}
\delta_{1}^{\mathrm{T}} & \delta_{2}^{\mathrm{T}} & \ldots & \delta_{n}^{\mathrm{T}}
\end{array}\right) N^{\mathrm{T}}
$$

Since $x_{1}<\ldots<x_{n}$, it is easy to see that

$$
\left(\alpha_{1}\right)^{(i)}= \begin{cases}g\left(x_{1} / y_{1, i}\right) \sqrt{f\left(y_{1, i}\right)} & \text { if } 1 \leq i \leq p_{1} \\ 0 & \text { if } i>p_{1}\end{cases}
$$

and

$$
\left(\beta_{1}\right)^{(i)}= \begin{cases}h\left(x_{1} / y_{1, i}\right) \sqrt{f\left(y_{1, i}\right)} & \text { if } 1 \leq i \leq p_{1} \\ 0 & \text { if } i>p_{1}\end{cases}
$$

and for $k \geq 2, i>p_{1}+\ldots+p_{k-1}$, we have

$$
\left(\alpha_{k}\right)^{(i)}= \begin{cases}g\left(x_{k} / y_{k, t}\right) \sqrt{f\left(y_{k, t}\right)} & \text { if } i=p_{1}+\ldots+p_{k-1}+t\left(1 \leq t \leq p_{k}\right) \\ 0 & \text { if } i>p_{1}+\ldots+p_{k}\end{cases}
$$

and

$$
\left(\beta_{k}\right)^{(i)}= \begin{cases}h\left(x_{k} / y_{k, t}\right) \sqrt{f\left(y_{k, t}\right)} & \text { if } i=p_{1}+\ldots+p_{k-1}+t\left(1 \leq t \leq p_{k}\right) \\ 0 & \text { if } i>p_{1}+\ldots+p_{k}\end{cases}
$$

Thus for $i=p_{1}+\ldots+p_{k-1}+t\left(k \geq 2,1 \leq t \leq p_{k}\right)$, we have

$$
\left(\gamma_{k}\right)^{(i)}=g\left(\frac{x_{k}}{y_{k, t}}\right) \sqrt{f\left(y_{k, t}\right)} \quad \text { and } \quad\left(\delta_{k}\right)^{(i)}=h\left(\frac{x_{k}}{y_{k, t}}\right) \sqrt{f\left(y_{k, t}\right)}
$$

To complete the proof of Lemma 2, we need the following:

Lemma 3. With the above notations, let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be gcd-closed. If $g \in L_{S}$, then

$$
\gamma_{1}=\left(g\left(\frac{x_{1}}{y_{1,1}}\right) \sqrt{f\left(y_{1,1}\right)}, \ldots, g\left(\frac{x_{1}}{y_{1, p_{1}}}\right) \sqrt{f\left(y_{1, p_{1}}\right)}, 0, \ldots, 0\right)
$$

and for $k \geq 2$, we have

$$
\gamma_{k}=(\underbrace{0, \ldots, 0}_{p_{1}+\ldots+p_{k-1}}, g\left(\frac{x_{k}}{y_{k, 1}}\right) \sqrt{f\left(y_{k, 1}\right)}, \ldots, g\left(\frac{x_{k}}{y_{k, p_{k}}}\right) \sqrt{f\left(y_{k, p_{k}}\right)}, 0, \ldots, 0) .
$$

Similarly, if $h \in L_{S}$, then

$$
\delta_{1}=\left(h\left(\frac{x_{1}}{y_{1,1}}\right) \sqrt{f\left(y_{1,1}\right)}, \ldots, h\left(\frac{x_{1}}{y_{1, p_{1}}}\right) \sqrt{f\left(y_{1, p_{1}}\right)}, 0, \ldots, 0\right)
$$

and for $k \geq 2$, we have

$$
\delta_{k}=(\underbrace{0, \ldots, 0}_{p_{1}+\ldots+p_{k-1}}, h\left(\frac{x_{k}}{y_{k, 1}}\right) \sqrt{f\left(y_{k, 1}\right)}, \ldots, h\left(\frac{x_{k}}{y_{k, p_{k}}}\right) \sqrt{f\left(y_{k, p_{k}}\right)}, 0, \ldots, 0)
$$

Proof. Since the case $h \in L_{S}$ is similar to the case $g \in L_{S}$, we only consider the latter. We argue by induction on k. Clearly Lemma 3 is true for $\gamma_{1}\left(\right.$ since $\left.\gamma_{1}=\alpha_{1}\right)$. Since S is gcd-closed, $\left(x_{2}, x_{1}\right)=x_{1}$. Note that $g \in L_{S}$ implies

$$
g\left(\frac{x_{2}}{y_{1, j}}\right)=g\left(\frac{x_{1}}{y_{1, j}}\right) \quad \text { for } 1 \leq j \leq p_{1}
$$

Thus

$$
\begin{array}{r}
\alpha_{2}=\left(g\left(\frac{x_{1}}{y_{1,1}}\right) \sqrt{f\left(y_{1,1}\right)}, \ldots, g\left(\frac{x_{1}}{y_{1, p_{1}}}\right) \sqrt{f\left(y_{1, p_{1}}\right)}, g\left(\frac{x_{2}}{y_{2,1}}\right) \sqrt{f\left(y_{2,1}\right)}, \ldots,\right. \\
\left.g\left(\frac{x_{2}}{y_{2, p_{2}}}\right) \sqrt{f\left(y_{2, p_{2}}\right)}, 0, \ldots, 0\right) .
\end{array}
$$

Then $\left\langle\alpha_{2}, \gamma_{1}\right\rangle=\left\langle\gamma_{1}, \gamma_{1}\right\rangle$. Therefore

$$
\begin{aligned}
\gamma_{2} & =\alpha_{2}-\frac{\left\langle\alpha_{2}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} \gamma_{1}=\alpha_{2}-\gamma_{1} \\
& =(\underbrace{0, \ldots, 0}_{p_{1}}, g\left(\frac{x_{2}}{y_{2,1}}\right) \sqrt{f\left(y_{2,1}\right)}, \ldots, g\left(\frac{x_{2}}{y_{2, p_{2}}}\right) \sqrt{f\left(y_{2, p_{2}}\right)}, 0, \ldots, 0)
\end{aligned}
$$

So the assertion is true for γ_{2}. Suppose that it is true for $\gamma_{l}, 1 \leq l \leq k-1$ $(k \geq 3)$. Now consider γ_{k}. Since $g \in L_{S}$, we have

$$
\left(\alpha_{k}-\frac{\left\langle\alpha_{k}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} \gamma_{1}\right)^{(i)}=0, \quad 1 \leq i \leq p_{1}
$$

We claim that for each $e \in\{2, \ldots, k-1\}$ and each i with $p_{1}+\ldots+p_{e-1}$ $<i \leq p_{1}+\ldots+p_{e}$, we have

$$
\left(\alpha_{k}-\frac{\left\langle\alpha_{k}, \gamma_{e}\right\rangle}{\left\langle\gamma_{e}, \gamma_{e}\right\rangle} \gamma_{e}\right)^{(i)}=0
$$

In fact, if $\left(x_{k}, x_{e}\right)=x_{e}$, then $x_{e} \mid x_{k}$. Note that $g \in L_{S}$ implies $g\left(x_{k} / y_{e, i}\right)=$ $g\left(x_{e} / y_{e, i}\right)$ for $1 \leq i \leq p_{e}$. Thus $\left\langle\alpha_{k}, \gamma_{e}\right\rangle=\left\langle\gamma_{e}, \gamma_{e}\right\rangle$. Hence for each i with $p_{1}+\ldots+p_{e-1}<i \leq p_{1}+\ldots+p_{e}$, we have

$$
\left(\alpha_{k}-\frac{\left\langle\alpha_{k}, \gamma_{e}\right\rangle}{\left\langle\gamma_{e}, \gamma_{e}\right\rangle} \gamma_{e}\right)^{(i)}=\left(\alpha_{k}-\gamma_{e}\right)^{(i)}=0 .
$$

If $\left(x_{k}, x_{e}\right)=x_{r}$ for some $1 \leq r<e$, then $y_{e, i} \nmid x_{k}$ for all $1 \leq i \leq p_{e}$. Otherwise, there exists $i, 1 \leq i \leq p_{e}$, such that $y_{e, i} \mid x_{k}$. So $y_{e, i} \mid x_{r}$. However, as $r<e$ we have $y_{e, i} \nmid x_{r}$. This is a contradiction. Thus for $p_{1}+\ldots+p_{e-1}<$ $i \leq p_{1}+\ldots+p_{e},\left(\alpha_{k}\right)^{(i)}=0$. So $\left\langle\alpha_{k}, \gamma_{e}\right\rangle=0$. Hence for $p_{1}+\ldots+p_{e-1}<$ $i \leq p_{1}+\ldots+p_{e}$, we have

$$
\left(\alpha_{k}-\frac{\left\langle\alpha_{k}, \gamma_{e}\right\rangle}{\left\langle\gamma_{e}, \gamma_{e}\right\rangle} \gamma_{e}\right)^{(i)}=\left(\alpha_{k}\right)^{(i)}=0
$$

This completes the proof of the claim.
Thus it follows from the induction hypothesis and the claim that

$$
\begin{aligned}
\gamma_{k} & =\alpha_{k}-\frac{\left\langle\alpha_{k}, \gamma_{1}\right\rangle}{\left\langle\gamma_{1}, \gamma_{1}\right\rangle} \gamma_{1}-\ldots-\frac{\left\langle\alpha_{k}, \gamma_{k-1}\right\rangle}{\left\langle\gamma_{k-1}, \gamma_{k-1}\right\rangle} \gamma_{k-1} \\
& =(\underbrace{0, \ldots, 0}_{p_{1}+\ldots+p_{k-1}}, g\left(\frac{x_{k}}{y_{k, 1}}\right) \sqrt{f\left(y_{k, 1}\right)}, \ldots, g\left(\frac{x_{k}}{y_{k, p_{k}}}\right) \sqrt{f\left(y_{k, p_{k}}\right)}, 0, \ldots, 0) .
\end{aligned}
$$

The proof of Lemma 3 is complete.
Now we continue to prove Lemma 2. Since $g \in L_{S}$ or $h \in L_{S}$, it follows from Lemma 3 that

$$
\begin{align*}
& \left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right)\left(\begin{array}{lllll}
\delta_{1}^{\mathrm{T}} & \delta_{2}^{\mathrm{T}} & \ldots & \left.\delta_{n}^{\mathrm{T}}\right) & \\
\sum_{j=1}^{\mathrm{T}_{1}} f\left(y_{1, j}\right) g\left(\frac{x_{1}}{y_{1, j}}\right) h\left(\frac{x_{1}}{y_{1, j}}\right) & 0 & & \\
* & \sum_{j=1}^{p_{2}} f\left(y_{2, j}\right) g\left(\frac{x_{2}}{y_{2, j}}\right) h\left(\frac{x_{2}}{y_{2, j}}\right) & \ldots & 0 \\
\vdots & \vdots & \vdots & 0 \\
* & & * & \ldots \sum_{j=1}^{p_{n}} f\left(y_{n, j}\right) g\left(\frac{x_{n}}{y_{n, j}}\right) h\left(\frac{x_{n}}{y_{n, j}}\right)
\end{array}\right) \tag{7}
\end{align*}
$$

$$
=\left(\begin{array}{cclc}
\sum_{d \mid x_{1}} f(d) g\left(\frac{x_{1}}{d}\right) h\left(\frac{x_{1}}{d}\right) & 0 & \cdots & 0 \\
* & \sum_{\substack{d \mid x_{2} \\
d \nmid x_{1}}} f(d) g\left(\frac{x_{2}}{d}\right) h\left(\frac{x_{2}}{d}\right) & \cdots & 0 \\
& \vdots & \vdots & \vdots \\
\vdots & * & \cdots & \sum_{d \mid x_{n}} f(d) g\left(\frac{x_{n}}{d}\right) h\left(\frac{x_{n}}{d}\right)
\end{array}\right) .
$$

Let

$$
P=\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right)\left(\begin{array}{llll}
\delta_{1}^{\mathrm{T}} & \delta_{2}^{\mathrm{T}} & \ldots & \delta_{n}^{\mathrm{T}}
\end{array}\right)
$$

By (6) we have $\left[\Psi\left(x_{i}, x_{j}\right)\right]=M P N^{\mathrm{T}}$. Clearly the matrices M and N are lower triangular matrices with diagonal elements 1 . By (7), P is a lower triangular matrix with diagonal elements

$$
\sum_{\substack{d \mid x_{k} \\ \uparrow x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right) h\left(\frac{x_{k}}{d}\right), \quad k=1, \ldots, n .
$$

This completes the proof of Lemma 2.
Now we are ready to give the main result of this paper.
Theorem 1. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be gcd-closed. If $g \in L_{S}$ or $h \in L_{S}$, then

$$
\begin{equation*}
\operatorname{det}\left[\Psi\left(x_{i}, x_{j}\right)\right]=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right) h\left(\frac{x_{k}}{d}\right) \tag{8}
\end{equation*}
$$

Proof. Since $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed and $g \in L_{S}$ or $h \in L_{S}$, by Lemma 2 there exist $n \times n$ lower triangular matrices M and N with diagonal elements 1 and an $n \times n$ lower triangular matrix P with diagonal elements

$$
\sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right) h\left(\frac{x_{k}}{d}\right), \quad k=1, \ldots, n,
$$

such that $\left[\Psi\left(x_{i}, x_{j}\right)\right]=M P N^{\mathrm{T}}$. Thus

$$
\operatorname{det}\left[\Psi\left(x_{i}, x_{j}\right)\right]=(\operatorname{det} M)(\operatorname{det} P)\left(\operatorname{det} N^{\mathrm{T}}\right)
$$

Note that $\operatorname{det} M=\operatorname{det} N=1$. So $\operatorname{det} N^{\mathrm{T}}=1$. Note also that

$$
\operatorname{det} P=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right) h\left(\frac{x_{k}}{d}\right)
$$

It follows that (8) holds.

Remark 1. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be gcd-closed. If $g \in L_{S}$ or $h \in L_{S}$, then (8) gives a formula for $\operatorname{det}\left[\Psi\left(x_{i}, x_{j}\right)\right]$. If $g, h \notin L_{S}$, then we also expect to have a formula for $\operatorname{det}\left[\Psi\left(x_{i}, x_{j}\right)\right]$. This problem remains open.
3. Applications. In this section, we give some interesting applications of our main result.

Theorem 2. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be gcd-closed. If β is defined for positive integers t and r by

$$
\beta(t, r)=\sum_{d \mid(t, r)} f(d) g\left(\frac{r}{d}\right)
$$

then

$$
\operatorname{det}\left[\beta\left(x_{i}, x_{j}\right)\right]=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right)
$$

Proof. Let $h=\zeta$, where ζ is defined by $\zeta(d)=1$ for all integers d. Clearly $\zeta \in L_{S}$. Then $\Psi(t, r)=\beta(t, r)$. Thus the result follows immediately from Theorem 1.

Remark 2. If $S=\{1, \ldots, n\}$, then Theorem 2 becomes Apostol's result [2].

Corollary 1. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is $g c d$-closed, then

$$
\operatorname{det}\left[C\left(x_{i}, x_{j}\right)\right]=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} d \mu\left(\frac{x_{k}}{d}\right)
$$

Proof. Ramanujan's trigonometric sum $C(t, r)$ is defined by

$$
C(t, r)=\sum_{\substack{k(\bmod r) \\(k, r)=1}} \exp \left(\frac{2 \pi i t}{k}\right)=\sum_{d \mid(t, r)} d \mu\left(\frac{r}{d}\right)
$$

So if we set $f(d)=d$ for all $d, g=\mu$, then this corollary follows from Theorem 2.

Define the quotient function $\frac{f}{g}$ by

$$
\frac{f}{g}(m)=\frac{f(m)}{g(m)} \quad \text { for positive integers } m
$$

Lemma 4 ([1, Theorem 8.8]). Let f be completely multiplicative. Let $g(m)=\mu(m) h(m)$, where h is multiplicative. Assume that $f(p) \neq 0$ and
$f(p) \neq h(p)$ for all primes p. Then

$$
\sum_{d \mid(t, k)} f(d) g\left(\frac{k}{d}\right)=F(k) \frac{g}{F}(N)
$$

where $F=f * g$, and $N=k /(t, k)$.
Theorem 3. Let f be completely multiplicative. Let $g(m)=\mu(m) h(m)$, where h is multiplicative. Assume that $f(p) \neq 0$ and $f(p) \neq h(p)$ for all primes p. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed and $(f * g)(d) \neq 0$ for any positive integer d satisfying $d \mid x, x \in S$, then

$$
\operatorname{det}\left[\frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right]=\prod_{k=1}^{n} \frac{1}{(f * g)\left(x_{k}\right)} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} f(d) g\left(\frac{x_{k}}{d}\right) .
$$

Proof. Let $s(k, t)=\sum_{d \mid(t, k)} f(d) g(k / d)$. From Lemma 4, one can deduce that

$$
\begin{aligned}
{\left[s\left(x_{i}, x_{j}\right)\right] } & =\left[(f * g)\left(x_{i}\right) \cdot \frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right] \\
& =\operatorname{diag}\left((f * g)\left(x_{1}\right), \ldots,(f * g)\left(x_{n}\right)\right) \cdot\left[\frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right] .
\end{aligned}
$$

Thus we have

$$
\operatorname{det}\left[\frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right]=\operatorname{det}\left[s\left(x_{i}, x_{j}\right)\right] \prod_{k=1}^{n} \frac{1}{(f * g)\left(x_{k}\right)}
$$

Therefore the result follows from the above equation and Theorem 2.
Corollary 2. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be factor-closed, and let the arithmetical functions f and g be as in Theorem 3. Then

$$
\operatorname{det}\left[\frac{g}{f * g}\left(\frac{x_{i}}{\left(x_{i}, x_{j}\right)}\right)\right]=[g(1)]^{n} \prod_{k=1}^{n} \frac{f}{f * g}\left(x_{k}\right)
$$

Corollary 3. Let the arithmetical functions f and g be as in Theorem 3. Then

$$
\operatorname{det}\left[\frac{g}{f * g}\left(\frac{i}{(i, j)}\right)\right]=[g(1)]^{n} \prod_{k=1}^{n} \frac{f}{f * g}(k)
$$

An arithmetical function $f(t)$ is said to be quadratic if it is the Dirichlet convolution of two completely multiplicative functions [9, 12]. In what follows we use Theorem 1 and the following result of Vaidyanathaswamy, concerning quadratic functions, to evaluate the determinants of $n \times n$ matrices of the form $\left[f\left(x_{i} x_{j}\right)\right]$, where $f(t)$ is a quadratic function.

Lemma 5 (Vaidyanathaswamy [12]). If $f=g * h$ where g and h are completely multiplicative functions, then f satisfies the identity

$$
f(t, r)=\sum_{d \mid(t, r)} f\left(\frac{t}{d}\right) f\left(\frac{r}{d}\right) g(d) h(d) \mu(d)
$$

ThEOREM 4. Let $f=g * h$, where g and h are completely multiplicative. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is $g c d$-closed and $f \in L_{S}$, then

$$
\operatorname{det}\left[f\left(x_{i} x_{j}\right)\right]=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}} g(d) h(d) \mu(d)\left[f\left(\frac{x_{k}}{d}\right)\right]^{2}
$$

Proof. This result follows from Lemma 5 and Theorem 1.
Lemma 6 ([10]). The arithmetical function f is a semi-multiplicative function if and only if for any positive integers m and $n, f(m) f(n)=$ $f((m, n)) f([m, n])$.

Lemma 7. Let f be an arithmetical function. Then for any positive integer n,

$$
\sum_{d \mid n}(f * \mu)(d)=f(n)
$$

Proof. Let the arithmetical function I be defined for any positive integer m as follows: $I(m)=[1 / m]$, where $[x]$ denotes the greatest integer not greater than x. Since $\mu * \zeta=I$ (see [1]) and $f=f * I$, one has

$$
\begin{aligned}
f(n) & =(f * I)(n)=(f *(\mu * \zeta))(n)=((f * \mu) * \zeta)(n) \\
& =\sum_{d \mid n}(f * \mu)(d) \zeta\left(\frac{n}{d}\right)=\sum_{d \mid n}(f * \mu)(d),
\end{aligned}
$$

as desired. The proof of Lemma 7 is complete.
Theorem 5. Let f be a semi-multiplicative function and $f[t, r]$ denote f evaluated at the least common multiple of t and r. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is gcd-closed, then

$$
\begin{equation*}
\operatorname{det}\left(f\left[x_{i}, x_{j}\right]\right)=\prod_{k=1}^{n}\left[f\left(x_{k}\right)\right]^{2} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}}\left(\frac{1}{f} * \mu\right)(d) \tag{9}
\end{equation*}
$$

Proof. Since f is semi-multiplicative, it follows from Lemma 6 that

$$
\left(f\left[x_{i}, x_{j}\right]\right)=D\left(g\left(x_{i}, x_{j}\right)\right) D
$$

where $g=1 / f$ and $D=\operatorname{diag}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Thus

$$
\begin{equation*}
\operatorname{det}\left(f\left[x_{i}, x_{j}\right]\right)=\operatorname{det}\left[g\left(x_{i}, x_{j}\right)\right] \prod_{k=1}^{n}\left[f\left(x_{k}\right)\right]^{2} \tag{10}
\end{equation*}
$$

Let $g=h=\zeta$ and substitute $g * \mu$ for f in Theorem 1. By Lemma 7, one has $\Psi\left(x_{i}, x_{j}\right)=g\left(x_{i}, x_{j}\right)$. Thus it follows from Theorem 1 that

$$
\begin{equation*}
\operatorname{det}\left(g\left[x_{i}, x_{j}\right]\right)=\prod_{k=1}^{n} \sum_{\substack{d \mid x_{k} \\ d \nmid x_{l}, x_{l}<x_{k}}}(g * \mu)(d) \tag{11}
\end{equation*}
$$

It then follows from (10) and (11) that (9) holds.
Remark 3. If we set $f(d)=d$ for all integers d, then Theorem 5 reduces to Bourque and Ligh's result [4]. Bourque and Ligh [4] conjectured that the LCM matrix $\left(\left[x_{i}, x_{j}\right]\right)$ defined on a gcd-closed set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is nonsingular. We showed [5] that the Bourque-Ligh conjecture is true for a certain class of gcd-closed sets $S=\left\{x_{1}, \ldots, x_{n}\right\}$. We proved [6] that the Bourque-Ligh conjecture is true if $n \leq 7$, but not true if $n \geq 8$. We believe that this result is true for general positive integer power LCM matrices. We conclude this paper by raising the following conjecture.

Conjecture. Let m be a given positive integer and n any positive integer. Then there is a positive integer $k(m)$, depending only on m, such that if $n \leq k(m)$, then the power LCM matrix $\left(\left[x_{i}, x_{j}\right]^{m}\right)$ defined on any gcd-closed set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is nonsingular. But for $n \geq k(m)+1$, there exists a gcd-closed set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ so that the power LCM matrix $\left(\left[x_{i}, x_{j}\right]^{m}\right)$ defined on S is singular.

From [6], one knows that the above conjecture holds when $m=1$. In fact, $k(1)=7$. In a similar way to [6], one can show that for any integer $m \geq 2$, one has $k(m) \geq 7$.

Acknowledgements. The author wishes to thank the referee for his careful reading of the manuscript and helpful suggestions.

References

[1] T. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] -, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
[3] K. Bourque and S. Ligh, Matrices associated with classes of arithmetical functions, J. Number Theory 45 (1993), 367-376.
[4] -, —, On GCD and LCM matrices, Linear Algebra Appl. 174 (1992), 65-74.
[5] S. F. Hong, On LCM matrices on GCD-closed sets, Southeast Asian Bull. Math. 22 (1998), 381-384.
[6] -, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra 218 (1999), 216-228.
[7] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, New York, 1985.
[8] P. J. McCarthy, A generalization of Smith's determinant, Canad. Math. Bull. 29 (1988), 109-113.
[9] K. G. Ramanathan, Multiplicative arithmetic functions, J. Indian Math. Soc. 7 (1943), 111-116.
[10] D. Rearick, Semi-multiplicative functions, Duke Math. J. 33 (1966), 49-53.
[11] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-76), 208-212.
[12] R. Vaidyanathaswamy, The identical equations of the multiplicative function, Bull. Amer. Math. Soc. 36 (1930), 762-772.

Mathematical College
Sichuan University
Chengdu 610064
P.R. China

E-mail: hongsf@263.net

[^0]: 2000 Mathematics Subject Classification: 11C20, 11A25.
 Key words and phrases: gcd-closed set, arithmetical function, Ramanujan's trigonometric sum, determinant.

 Supported partially by the NNSF of China (Grant No. 10101015), the Postdoctoral Science Foundation of China and the YSRF of Sichuan University.

