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1. Introduction and statement of the results. The study of the
error term in the average of the sum-of-divisors function is one of the classical
problems (see Walfisz [11], Gronwall [6], Wigert [12] and some more recent
works by Pétermann [8], [9]) in analytic number theory.

Recently, Adhikari and Coppola [3] proved some Ω-results for the error
term in the average of the sum-of-odd-divisors function using a method due
to Pétermann [8], [9]. It should be mentioned that the basic method in these
papers is averaging over arithmetical progressions which could be traced
back to a paper of Hardy and Littlewood. But almost all of the later users
(in [2]–[4], [7]–[10] and several other papers) of the method have picked up
the idea from the paper [5] of Erdős and Shapiro. The underlying philosophy
of the Erdős–Shapiro paper has been described in [1].

In the present paper, we use ideas from another paper of Pétermann [10]
for the corresponding problem for the function σ(p)(n) for a prime p where
σ(p)(n) is defined to be the sum of the divisors of n which are relatively
coprime to p, that is,

σ(p)(n) =
∑

d|n
d6≡0 (p)

d.

We call σ(p)(n) the sum-of-p-prime-divisors function.
More precisely, defining the error terms Rp(x) by

(1) Rp(x) :=
∑

n≤x
σ(p)(n)− π2x2

12

(
1− 1

p

)
,

we prove the following.
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Theorem 1. We have

Rp(x) = Ω±(x log log x).

The present paper is organized as follows: first, in Section 2, we give the
necessary lemmas; then, in Section 3, we prove our theorem.

As usual, [x] indicates the integer part of the real (positive) number x
and {x} = x− [x] its fractional part.

Acknowledgements. The authors would like to thank the referee for
his/her suggestions, including the one which leads to two-sided omega results
in our theorem as compared to the one-sided one in our earlier manuscript.
Also, the authors agree with the referee that the method should be referred
to as “Erdős–Shapiro” method since the above mentioned paper of Erdős
and Shapiro contains in germ mostly everything concerning the technique
for this type of functions.

2. Lemmas. We define R′p(x) by

(2) R′p(x) :=
∑

n≤x

σ(p)(n)
n

− π2x

6

(
1− 1

p

)
.

Lemma 1. For each natural number n we have
σ(p)(n)
n

=
∑

d|n

αp(d)
d

,

where

αp(d) =
{

1 if p - d,
−(p− 1) otherwise.

Proof. Let n = prQ, (p,Q) = 1. Let d1, . . . , dk be the distinct divisors
of Q. Then Q/d1, . . . , Q/dk is a permutation of the divisors of Q. Now for a
particular di, we have

1
di

(
1− p− 1

p
− p− 1

p2 − . . .− p− 1
pr

)
=

1
dipr

.

In the above equation, the left hand side is
1
di
− p− 1

pdi
− p− 1

p2di
− . . .− p− 1

prdi
while the right hand side can be written as

Q/di
n

.

Now if we sum over i the left hand side gives
∑

d|n

αp(d)
d
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and the right hand side gives

1
n

∑

i

Q/di =
1
n

∑

i

di =
1
n

∑

d|n
d6≡0 (p)

d =
1
n
σ(p)(n).

Lemma 2. We have
∑

n≤x

αp(n)
n

= log p+O

(
1
x

)
.

Proof. We have
∑

n≤x

αp(n)
n

=
∑

n≤x
p-n

1
n

+
∑

n≤x
p|n

−(p− 1)
n

=
∑

n≤x

1
n
− p

∑

n≤x
p|n

1
n

= log x− log(x/p) +O(1/x) = log p+O(1/x).

Lemma 3.

R′p(x) = −x
∑

d>x

αp(d)
d2 −

∑

d≤x

αp(d)
d

{
x

d

}
.

Proof. We have
∞∑

d=1

αp(d)
d2 =

∞∑

d=1
p-n

1
d2 − (p− 1)

∞∑

d=1
p|n

1
d2

=
∞∑

d=1

1
d2 −

1
p

∞∑

d=1

1
d2 =

π2

6

(
1− 1

p

)
.

Therefore, from (2) and Lemma 1, we have

R′p(x) =
∑

n≤x

∑

d|n

αp(d)
d
− x

∞∑

d=1

αp(d)
d2 .

The right hand side is

∑

d≤x

αp(d)
d

[
x

d

]
− x

∞∑

d=1

αp(d)
d2 = −x

∑

d>x

αp(d)
d2 −

∑

d≤x

αp(d)
d

{
x

d

}
.

Lemma 4 (Montgomery [7]). If b, r (> 0) are integers such that (b, r) =
1 and β is a real number , then

r∑

n=1

{
nb

r
+ β

}
=
r − 1

2
+ {rβ}.
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Lemma 5 (Montgomery [7]). With notations as in the last lemma, for
any positive integer N , we have

N∑

n=1

{
nb

r
+ β

}
=
N

r
{rβ}+

N

2

(
r − 1
r

)
+O(r).

Lemma 6.
Rp(x)
x
−R′p(x) = O(1).

Proof. From (1) and (2) we have

Rp(x)
x
−R′p(x) =

1
x

∑

n≤x
σ(p)(n)−

∑

n≤x

σ(p)(n)
n

+
π2x

12

(
1− 1

p

)
.

Using Lemma 1, the right hand side can be seen to be equal to

x

2

∑

d>x

αp(d)
d2 +

1
2

∑

d≤x

αp(d)
d
− 1

2x

∑

d≤x
αp(d)

({
x

d

}
−
{
x

d

}2)
.

Since
∑∞
d=1 αp(d)/d is convergent and |αp(d)| ≤ p−1, the lemma follows.

Lemma 7.

R′p(x) = −
∑

d≤y

αp(d)
d

{
x

d

}
+O(1)

uniformly for x ≥ 2, y ≥ √x.

Proof. From Lemma 3,

R′p(x) = −x
∑

d>x

αp(d)
d2 −

∑

d≤x

αp(d)
d

{
x

d

}
.

Since
∑

d>x

αp(d)
d2 = O

(
1
x

)
,

we only have to show that
∑

y<d≤x

αp(d)
d

{
x

d

}
= O(1)

for
√
x ≤ y ≤ x. We choose K such that 1 ≤ K ≤ x/y. In the range

x/K < d ≤ x/(K − 1), {x/d} is monotone. Hence by Lemma 2,
∑

x/K<d≤x/(K−1)

αp(d)
d

{
x

d

}
= O

(
K

x

)
.
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Summing up over K such that 2 ≤ K ≤ x/y, we obtain
∑

y≤d≤x

αp(d)
d

{
x

d

}
= O

(
1
x

∑

1≤K≤x/y
K

)
= O

(
1
x
· x

2

y2

)
= O(1),

as y ≥ √x.

3. Proof of Theorem 1. For q ∼
√
N , β ≤ q and y = (N + 1)q/

√
N

∼ N, from Lemma 7, we have
N∑

n=1

R′p(nq + β) = −
N∑

n=1

∑

d≤y

αp(d)
d

{
nq + β

d

}
+O(N)

= −
∑

d≤y

αp(d)
d

N∑

n=1

{
nq + β

d

}
+O(N)

= −
∑

d≤y

αp(d)
d

N∑

n=1

{
q/(d, q)
d/(d, q)

n+
β

d

}
+O(N)

= −
∑

d≤y

αp(d)
d
· N
d

(d, q)
({

β

(d, q)

}
− 1

2

)
+O(N),

using Lemma 5 in the last step.
We should remark that in Theorem 1 of [10], the identity has been es-

tablished for a large class of functions. Our lemmas show that our function
falls in that class and we get such an identity from that theorem as well.

Now, following the application (d) in [10] (with a slight modification as
in [4], which is helpful because αp(d) is negative or positive according as p
divides d or not), we make our choices of q and β. More precisely, we take

q =
m!
pr
, where pr ‖m!.

For the choice β = 0,

1
N

N∑

n=1

R′p(nq + β) =
∑

d≤q2

p|d

− (p− 1)(d, q)
2d2 +

∑

d≤q2

p-d

(d, q)
2d2 +O(1)

=
∑

d≤q2

p|d

−p(d, q)
2d2 +

∑

d≤q2

(d, q)
2d2 +O(1)

=
(

1− 1
2p

) ∑

l≤q2/p

(l, q)
2l2

+
∑

q2/p<d≤q2

(d, q)
2d2 +O(1).
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In the last line, the first sum is greater than C logm for some positive
number C and the second sum is O(1). This gives R′p(x) = Ω+(log log x).
Similarly, for the choice β = q − 1, we obtain R′p(x) = Ω−(log log x).

Therefore, from Lemma 6 we get

Rp(x) = Ω±(x log log x).
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[5] P. Erdős and H. N. Shapiro, On the changes of sign of a certain error function,
Canad. J. Math. 3 (1951), 375–385.

[6] T. H. Gronwall, Some asymptotic expressions in the theory of numbers, Trans.
Amer. Math. Soc. 14 (1913), 113–122.

[7] H. L. Montgomery, Fluctuations in the mean of Euler’s phi function, Proc. Indian
Acad. Sci. (Math. Sci.) 97 (1987), 239–245.
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