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1. Introduction. The sum of multiplicative functions and the value dis-
tribution of multiplicative functions are two central and important problems
in analytic number theory. Two typical examples are

∑

n≤x
µ(n) and

∑

ϕ(n)≤x
1,

where µ(n) is the Möbius function and ϕ(n) the Euler function. The first
one is equivalent to the prime number theorem and the second was studied
by Erdős & Turán [5], Bateman [3] and Balazard & Tenenbaum [2]. Another
interesting aspect is the study of the value distribution restricted to a certain
set of integers, for example, the set of squarefree integers [10] and the set of
integers free of large prime factors [11]. It then seems natural to investigate
a general sum

Fg(x) :=
∑

g(n)≤x
f(n),

where f(n) and g(n) are two multiplicative functions. Problems of similar
fashion have been considered by other authors ([1], [7], [9] and [10]). Gener-
alizing a result of Abbott & Subbarao, Balasubramanian & Ramachandra
[1] studied

∑
ng(n)≤x 1 where g is multiplicative, g(p) equals a fixed positive

constant for all primes p and g(n)� n−1/16 for all integers n ≥ 1. By using
tools of complex analysis, they established an asymptotic formula for this
sum and answered a question of Erdős whether

∑

n/τ(n)≤2x

1 ∼ 2
∑

n/τ(n)≤x
1,

where τ(n) is the divisor function. Using elementary methods, Smati [9]
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showed that there is a positive constant c such that

(1.1)
∑

g(n)≤x
1 = A(g)x+O(x exp{−c

√
log x log2 x}),

where A(g) :=
∏
p(1−p−1)

∑∞
ν=0 g(pν)−1, g is a multiplicative function and

(i) g(pν) is a polynomial of degree ν in p with leading coefficient 1 and all
other coefficients in [−1, B]; (ii) g(n) � n/(log2 n)H for all integers n ≥ 3
(B ≥ −1 and H > 0 are constants).

In this paper, we are concerned with the general sum Fg(x) where both
f and g are multiplicative and satisfy some conditions given below. Based
on the Selberg–Delange method, we obtain an asymptotic formula for Fg(x)
with a very good error term. The error term is sharpest subject to the present
techniques. Any improvement will lead to a better error term in the prime
number theorem. In order to achieve this error term, we need to borrow the
method of Balazard & Tenenbaum [2]. Our result includes a wide class of
multiplicative functions. Moreover, we can derive some new results related
to local densities.

Let κ, θ, θ′, θ′′, θ̃, α, α′, η, ψ, C1, C2, C3 be given constants such that

(1.2)

{
|κ| < 1/η, θ > 0, θ̃ > θ > θ′ > θ′′, α > 0, α′ 6= 0,

η > 0, ψ > 1, C1 ≥ 0, C2 ≥ 0, C3 > 0.

Suppose that f : N→ C and g : N→ (0,∞) are two multiplicative functions
such that for all prime numbers p:

(1) |f(p)− κ| ≤ C1/p
η;

(2) g(p) = αpθ or g(p) = αpθ + α′pθ
′
+ t(p),

where |t(l)(u)| ≤ (C2l + 1)luθ
′′−l (l = 0, 1, . . .);

(3)
∑∞

ν=2 |f(pν)|/g(pν)1/θ̃ ≤ C3/p
ψ.

As usual let τκ(n) be the Piltz function, defined by

ζ(s)κ =
∞∑

n=1

τκ(n)/ns,

where ζ(s) is the Riemann function. In particular τ2(n) = τ(n) is the usual
divisor function. Define

1(n) ≡ 1, j(n) := n, σ(n) :=
∑

d|n
d, Ω(n) :=

∑

pν‖n
ν, ω(n) :=

∑

pν‖n
1.

It is easy to verify that the following function pairs:

(µ, j), (1, ϕ), (µ, ϕ), (1, j/τ), (µ2, σ), (τκ, j), (zΩ, j), (zω, ϕ)

satisfy our assumptions on (f, g) for suitable parameters.
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For the Selberg–Delange method, we introduce the associated Dirichlet
series

Fg(s) :=
∞∑

n=1

f(n)
g(n)s

, F̃g(s) :=
Fg(s)

ζ(θs)κ/αs
.

Under our assumptions (1)–(3), it is not difficult to show that there is a
positive constant %0 such that F̃g(s) is uniformly convergent on any compact
set in the half-plane σ ≥ 1/θ− 10%0 (see Theorem 4(i)). Thus we can write,
for |s− 1/θ| < 10%0,

(1.3) s−1F̃g(s)(ζ(θs)(θs− 1))κ/α
s

=
∞∑

l=0

al(s− 1/θ)l =
∞∑

l=0

al
θl

(θs− 1)l,

where the coefficient al = al(f, g) is given by

(1.4) al :=
1

2πi

�

|s−1/θ|=%0

F̃g(s)(ζ(s)(s− 1))κ/α
s

s(s− 1/θ)l+1 ds� 1
%l0
.

In particular

(1.5) a0 =
∏

p

(1− 1/p)κ/α
1/θ

∞∑

ν=0

f(pν)/g(pν)1/θ.

Let

bm,n :=
∑

n1+...+nm=n

1
(n1 + 1)! . . . (nm + 1)!

(m ≥ 1),

b0,n :=
{

1 if n = 0,
0 if n ≥ 1.

As usual we use Γ (s) to denote the Euler Γ -function and define

1
Γi(a)

:=
[
di

dzi

(
1

Γ (z)

)]

z=a
.

Put L(x) := exp{(log x)3/5/(log2 x)1/5}, where logk is the k-fold iterated
logarithm. Let ci and %i be constants depending at most on θ, θ′, θ′′, θ̃, α,
α′, η, ψ, ψ1, ψ2, C1, C2, C3, C4 (see Theorem 2 below). The %i are small
enough to satisfy the conditions made precise later. The constants implied
in � or O depend at most on these parameters. Finally we define 00 = 1.

Theorem 1. Let f, g satisfy the assumptions (1)–(3). Then for any in-
teger J ≥ 0, we have

(1.6) Fg(x) =
x1/θ

(log x)1−κ/α1/θ

{ J∑

j=0

Pj(log2 x)
(log x)j

+O(RJ,λ(x))
}
,
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where Pj(t) :=
∑j

l=0 λj,lt
l and the coefficient λj,l = λj,l(f, g) is given by

(1.7) λj,l :=
θ−κ/α

1/θ

l!

j∑

m=l

m∑

k=l

k−l∑

i=0

λ∗m,k,i,

where

λ∗m,k,i :=
(− logα)m(κ/α1/θ)k(− log θ)k−l−iaj−mbk,m−k

(k − l − i)!i!Γi(κ/α1/θ − j) .

The error term RJ,λ(x) is defined by

(1.8) RJ,λ(x) :=
(

(c1J + 1)
λ log2 x+ c2

log x

)J+1

+
1

L(x)c3

with λ := %0α
−1/θ|κ logα|e%0|logα| < 1. Moreover ,

(1.9) λj,l � λl(c4j + 1)j/l!.

Remarks. (i) The dominating term in the sum (1.6) is given by
a0

θκ/α1/θΓ (κ/α1/θ)

if a0/θ
κ/α1/θ

Γ (κ/α1/θ) 6= 0. This is true when
∑∞

ν=0 f(pν)/g(pν)1/θ 6= 0 for
all prime numbers p (see (1.5)) and κ/α1/θ 6= 0,−1,−2, . . .

(ii) If α = 1, then λ = 0 and λj,l = 0 for l = 1, . . . , j. Thus the asymptotic
formula (1.6) in Theorem 1 is simplified to

(1.10) Fg(x) =
x1/θ

(log x)1−κ

{ J∑

j=0

λj,0
(log x)j

+O(RJ(x))
}
,

where λj,0 = aj/θ
κΓ (κ− j) and

(1.11) RJ(x) :=
(
J + 1
c5 log x

)J+1

+
1

L(x)c3
.

(iii) If α = 1 and κ = J0 ∈ Z, then λ = 0, λj,l = 0 for l = 1, . . . , j and
λj,0 = 0 for j ≥ J0. Taking J = (log x)3/5/(log2 x)6/5 in (1.10), we obtain

(1.12) Fg(x) =
x1/θ

(logx)1−J0

{ J0−1∑

j=0

λj,0
(log x)j

+O(L(x)−c6)
}
.

In particular if J0 ≤ 0, then

(1.13) Fg(x)� x1/θ/L(x)c7 .

The next result comes from particular cases of (1.12) and (1.13). The first
assertion is due to Balazard & Tenenbaum ([2], théorème 1), the second one
is equivalent to the prime number theorem and the third one is new.
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Corollary 1. There is a constant c > 0 such that

(i)
∑

ϕ(n)≤x 1 = {ζ(2)ζ(3)/ζ(6)}x+O(x/L(x)c);

(ii)
∑

n≤x µ(n)� x/L(x)c;
(iii)

∑
ϕ(n)≤x µ(n)� x/L(x)c.

Clearly Theorem 1 also improves Smati’s (1.1), Corollaries 1–4 of Scour-
field in [7], contains Selberg’s asymptotic formula for

∑
n≤x τκ(n) [8] and

generalizes the main result of Balasubramanian & Ramachandra [1].
From Theorem 1, we can derive some local density results.

Theorem 2. Let f and g satisfy the assumptions (1), (2) and further-
more assume

(3)′ |f(pν)| ≤ C4g(pν)1/θ̃(ψ1/p)ψ2ν for all primes p and all integers
ν ≥ 2, where θ̃ > θ, ψ1 > 1/2 and ψ2 > 1/2 are given constants.

Let λ and RJ,λ(x) be defined as in Theorem 1. Then for any integer
J ≥ 0 and any ε > 0, we have, uniformly for x ≥ 3 and 1 ≤ k ≤
((2− ε)/ψ1)ψ2 log2 x,

∑

g(n)≤x
Ω(n)=k

f(n) =
x1/θ

log x

{ J∑

j=0

Qj,k(log2 x)
(log x)j

+O

((
log2 x

k

)k
ek|κ|α

−1/θ

√
|%|k + 1

RJ,λ(x)
)}

,

where Qj,k(t) :=
∑j+k−1
n=0 λj,n,kt

n and the coefficient λj,n,k is given by

λj,n,k :=
∑

l+m=n
0≤l≤j, 0≤m≤k

(κα−1/θ)m

2πim! �
|z|=1

λj,l(fzΩ, g)
zk+1−m dz

and λj,l(fzΩ, g) is defined by (1.7).

Theorem 3. Let f, g, λ and RJ,λ(x) be defined as in Theorem 1. Then
for any A > 0 and any integer J ≥ 0, we have, uniformly for x ≥ 3 and
1 ≤ k ≤ A log2 x,

∑

g(n)≤x
ω(n)=k

f(n) =
x1/θ

log x

{ J∑

j=0

Q̃j,k(log2 x)
(log x)j

+OA

((
log2 x

k

)k
ek|κ|α

−1/θ

√
|κ|k + 1

RJ,λ(x)
)}

,
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where Q̃j,k(t) :=
∑j+k−1
n=0 λ̃j,n,kt

n and the coefficient λ̃j,n,k is given by

λ̃j,n,k :=
∑

l+m=n
0≤l≤j, 0≤m≤k

(κα−1/θ)m

2πim! �
|z|=1

λj,l(fzω, g)
zk+1−m dz

and λj,l(fzω, g) is defined by (1.7).

Clearly Theorems 2 and 3 contain Selberg’s classical results [8] on

Nk(x) := |{n ≤ x : Ω(n) = k}| and πk(x) := |{n ≤ x : ω(n) = k}|.

Here we state some consequences, which are new.

Corollary 2. For any δ > 0, we have, uniformly for J ≥ 0, x ≥ 3 and
1 ≤ k ≤ (2− δ) log2 x,

(1.14)
∑

ϕ(n)≤x
Ω(n)=k

1 =
x

log x

{ J∑

j=0

Wj,k(log2 x)
(logx)j

+Oδ

(
(log2 x)k

k!
RJ(x)

)}
,

where

Wj,k(t) :=
k−1∑

n=0

ς
(k−1−n)
j (0)

n!(k − 1− n)!
tn, ςj(z) :=

aj(zΩ, ϕ)
zΓ (z − j)

and aj(zΩ, ϕ) is defined by (1.4). Moreover , under the same conditions,

(1.15)
∑

ϕ(n)≤x
Ω(n)=k

1 =
x

log x
· (log2 x)k−1

(k − 1)!

{
ς0

(
k − 1
log2 x

)
+Oδ

(
k

(log2 x)2

)}
,

where

ς0(z) =
1

Γ (z + 1)

∏

p

(
1 +

pz

(p− 1)(p− z)

)(
1− 1

p

)z
.

Corollary 3. For any A > 0, we have, uniformly for J ≥ 0, x ≥ 3
and 1 ≤ k ≤ A log2 x,

(1.16)
∑

ϕ(n)≤x
ω(n)=k

1 =
x

log x

{ J∑

j=0

W̃j,k(log2 x)
(log x)j

+OA

(
(log2 x)k

k!
RJ(x)

)}
,

where

W̃j,k(t) :=
k−1∑

n=0

ς̃
(k−1−n)
j (0)

n!(k − 1− n)!
tn, ς̃j(z) :=

aj(zω, ϕ)
zΓ (z − j)
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and aj(zω, ϕ) is defined by (1.4). Moreover , under the same conditions,

(1.17)
∑

ϕ(n)≤x
ω(n)=k

1 =
x

log x
· (log2 x)k−1

(k − 1)!

{
ς̃0

(
k − 1
log2 x

)
+OA

(
k

(log2 x)2

)}
,

where

ς̃0(z) =
1

Γ (z + 1)

∏

p

(
1 +

pz

(p− 1)2

)(
1− 1

p

)z
.

In what follows the letter s always denotes a complex number and we
implicitly define the real numbers σ and τ by the relation s = σ + iτ . We
let β(t) := (log t)−2/3(log2 t)

−1/3 for t ≥ 3 and T := |τ |+ 3. The next result
is a generalization of Theorem 2 in [2], which plays a key role in the proof
of Theorem 1.

Theorem 4. Under the above conditions, there is a positive constant %0

such that

(i) F̃g(s) is uniformly convergent on any compact set in the half-plane
σ ≥ 1/θ − 10%0,

(ii) |F̃g(s)| � (log2 T log2 T )
2
3 |κ|α−σ for σ ≥ 1/θ − 10%0β(T ).

Acknowledgements. The authors take pleasure in thanking G. Tenen-
baum for his help during the preparation of this paper. The first named
author is supported by a postdoctoral fellowship of the French Ministry of
Education, Research and Technology. As well, he would express his gratitude
for the hospitality at Institut Élie Cartan.

2. Some preparations. This section is devoted to proving some pre-
liminary lemmas. The following result is a variant of Lemma 1 of [2].

Lemma 1. Let 0< b0 < 1 <b1, δ > 0 be fixed and δ0 := min{
√
δ/4, 1/10}.

Let P ∈ Z, Q ∈ N and D ≥ Qδ. Suppose that h ∈ C∞([P,P + Q], R) and
for all P ≤ u ≤ P +Q and 1 ≤ l ≤ logD/(8δ2

0 logQ) + 1,

(2.1) D/(b1Q)l ≤ |h(l)(u)|/l! ≤ D/(b0Q)l.

Then there exist three positive constants A = A(δ), c = c(δ) and Q0 =

max{b−1/δ2
0

0 , b
1/δ0
1 } such that

max
Q1≤Q

∣∣∣
∑

P<n≤P+Q1

e(h(n))
∣∣∣ ≤ AQ exp{−c(logQ)3/(logD)2} (Q ≥ Q0),

where e(t) = e2πit (t ∈ R).
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Proof. For Q ≥ Q0, we choose K ∈ N such that Q8δ2
0(K−1) ≤ D <

Q8δ2
0K . Then

2 ≤ logD/(8δ2
0 logQ) < K ≤ logD/(8δ2

0 logQ) + 1,

D/(b0Q)K ≤ Q−(1−9δ2
0)K/(b0Qδ

2
0 )K ≤ Q−(1−9δ2

0)K .

Similarly for δ0K ≤ l ≤ 2δ0K, we have

D/(b0Q)l ≤ Q8δ2
0K/(b0Q)l ≤ Q−(1−9δ0)l/(b0Qδ0)l ≤ Q−(1−9δ0)l,

D/(b1Q)l ≥ Q8δ2
0(K−1)/(b1Q)l ≥ Q4δ2

0K/(b1Q)l

≥ Q−(1−δ0)l(Qδ0/b1)l ≥ Q−(1−δ0)l.

Our result follows immediately by Lemma 0 in [2].

Let Λ(n) be the von Mangoldt function and g0(u) := αuθ +α′uθ
′
+ t(u).

Define
SM (τ) := sup

M<N≤2M

∣∣∣
∑

M<n≤N
Λ(n)g0(n)−iτ

∣∣∣.

The next two lemmas are generalizations of Lemmas 2 and 3 in [2], which
play a key role in the proof of Theorem 4.

Lemma 2. There exists a positive constant %1 such that

SM (τ)�M1−%1β(T ) +MT−1 +ML(M)−%1

for T := |τ |+ 3 ≤M θ1(1+%1β(M)), where θ1 := θ − θ′.
Proof. Define

Vτ (z) :=
∑

n≤z

Λ(n)
niτ

, wτ (z) :=
ziθτ

g0(z)iτ log z
.

It is easy to see that
dwτ (z)
dz

� z−θ1T + 1
z log z

.

Thus we can deduce that for M ≤ N ≤ 2M ,
∑

M<p≤N
g0(p)−iτ =

∑

M<n≤N
wτ (n)

Λ(n)
niθτ

+O(1)

=
N�

M

wτ (z) dVθτ (z) +O(1)

� sup
M≤z≤N

|Vθτ (z)|
(

1
logM

+
N�

M

z−θ1T + 1
z log z

dz

)
+ 1

� sup
M≤z≤N

|Vθτ (z)|(M−θ1T + 1) + 1.
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According to (12) in [2], we have Vτ (z) � z1−cβ(T ) + zT−1 + zL(z)−c for
z ≥ 3 and log T ≤ (log z)3/2/(log2 z)2, where c > 0 is an absolute constant.
Hence we deduce that for some suitable constant c8 > 0,
∑

M<p≤N
g0(p)−iτ � (M−θ1T + 1)(M1−c8β(T ) +M/T +M/L(M)c8)

�M1−c8β(T )+θ1%1β(M) +M/T +M1+θ1%1β(M)/L(M)c8 ,

which implies the desired result provided %1 > 0 is suitably small.

Lemma 3. There exist two positive constants %2 and %3 such that

SM (τ)�M{e−%2(logM)3/(log T )2
+ (Mθ1/T )1/2(logM)7/2}

for 3 ≤Mθ1 ≤ T := |τ |+ 3 ≤ exp{%3(logM)2}, where θ1 := θ − θ′.

Proof. Clearly the assertion is trivial if T ≤ 10. Thus we can suppose
that T > 10 and T � |τ |. We define θ2 := θ − θ′′, θ0 := min{3θ1/2, θ2} and

(2.2) δ := min
{

θ0 − θ1

2(3 + θ0 + θ1)
,

1
12(1 + θ1)

}
> 0.

Applying Vaughan’s identity ([4], (24.6)) with U = V = M 1/2−δ , for M ≤
N ≤ 2M we have

(2.3)
∑

n≤N
Λ(n)g0(n)−iτ

�M1/2−δ + S′N (τ) logM + {S′′N (τ)M}1/2(logM)3,

where

S′N (τ) :=
∑

n≤M1−2δ

max
w

∣∣∣
∑

w≤r≤N/n
g0(nr)−iτ

∣∣∣,

S′′N (τ) := max
M1/2−δ≤Q≤N/M1/2−δ

M1/2−δ<j≤N/Q

∑

M1/2−δ<k≤N/Q

∣∣∣∣
∑

Q<m≤2Q
m≤N/max{j,k}

(
g0(km)
g0(jm)

)iτ ∣∣∣∣.

In order to bound the sum S′N (τ), we first observe that

(2.4) S′N (τ) ≤M1−δ

+
∑

n≤M1−2δ

max
Mδ≤w≤N/n

∑

ν≥0

∣∣∣
∑

max{w,N/(2ν+1n)}≤r≤N/(2νn)

g0(nr)−iτ
∣∣∣.

Thus it is sufficient to bound the sum
∑

U<r≤U ′ e(h(r)), where h(u) :=
−(τ/(2π)) log g0(nu), M δ ≤ U ≤ min{N/n,M} and U + M δ ≤ U ′ ≤ 2U .
This will be done by applying Lemma 1. Let v(u) := α′uθ

′
+t(u). We expand
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h(u) in a series form

(2.5) h(u) = − τ

2π

{
logα+ θ log(nu)−

∞∑

ν=1

(−1)ν

ναν

(
v(nu)
(nu)θ

)ν}
.

By the assumption (2), we easily show that |v(l)(u)| ≤ (c9l+ 1)luθ
′−l. Note

that

dl

dul
φ(nu) = nlφ(l)(nu),

dl

dul

ν∏

i=1

φi(u) =
∑

l1+...+lν=l

l!
l1! . . . lν !

ν∏

i=1

φ
(li)
i (u).

Then for l ≥ 1 we have

(2.6)
∣∣∣∣
dl

dul

(
v(nu)
(nu)θ

)ν∣∣∣∣

= nl
∣∣∣∣

∑

l1+...+lν+1=l

(−1)lν+1 l!(θν) . . . (θν + lν+1 − 1)
l1! . . . lν+1!(nu)θν+lν+1

ν∏

i=1

v(li)(nu)
∣∣∣∣

≤ l!
(nu)θ1νul

∑

l1+...+lν+1=l

(θν) . . . (θν + lν+1 − 1)
l1! . . . lν+1!

ν∏

i=1

(c9li + 1)li

≤ l!
(nu)θ1νul

∑

l1+...+lν+1=l

(c10l)l1+...+lν (θν + l)lν+1

l1! . . . lν+1!

≤ (c11νl)l(nu)−θ1νu−l.

Hence if 1 ≤ l ≤ c12 logU and U ≤ u ≤ 2U , we deduce that

dl

dul

∞∑

ν=1

(−1)ν

ναν

(
v(nu)
(nu)θ

)ν
≤
(
c11l

u

)l ∞∑

ν=1

νl−1

(α(nu)θ1)ν
(2.7)

≤
(
c13l

u

)l ∞∑

ν=1

1
(α(nu)θ1)3ν/4

�
(
c14l

u

)l 1
(nu)3θ1/4

.

Inserting this into (2.5) and using the Stirling formula yield, for 1 ≤ l ≤
c12 logU and U ≤ u ≤ 2U ,

T

(b1U)l
≤ 1
l!
|h(l)(u)| = θ|τ |

2πlul
+O

((
c15

u

)l |τ |
uθ1/2

)
≤ T

(b0U)l
,

where bi = bi(α, α′, θ, θ′, θ′′, C) are constants satisfying 0 < b0 < 1 < b1.
Under our assumptions on M,T,U,U ′, it is easy to see that the condition

of Lemma 1 is satisfied with δ = θ1, D = T , P = U , Q = U ′ − U , b0 = b0
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and b1 = b1. Thus Lemma 1 implies
∑

U<r≤U ′
e(h(r))� Ue−c16(logM)3/(log T )2

.

Inserting this estimate into (2.4), we obtain

S′N (τ)�M1−δ +Me−c16(logM)3/(log T )2
logM(2.8)

�Me−c17(logM)3/(log T )2
.

In view of S′′N (τ), it suffices to deal with the sum

S′′N (τ, j,Q) :=
∑

M1/2−δ<k≤N/Q

∣∣∣∣
∑

Q<m≤2Q
m≤N/max{j,k}

(
g0(km)
g0(jm)

)iτ ∣∣∣∣,

where M1/2−δ ≤ Q ≤ N/M1/2−δ and M1/2−δ < j ≤ N/Q.
The contribution of the sum over k such that |j − k| ≤ M 1/2−2δ is

� M1/2−2δQ � M1−δ and the sum over k with N/max{j, k} < Q + Q1/2

is� NQ−1/2 �M3/4+δ/2 �M1−δ. Therefore we have, for N/max{j, k} ≥
Q+Q1/2,

(2.9) S′′N (τ, j,Q)�M1−δ +
∑

M1/2−δ<k≤N/Q
|k−j|>M1/2−2δ

∣∣∣∣
∑

Q<m≤2Q
m≤N/max{j,k}

(
g0(km)
g0(jm)

)iτ ∣∣∣∣.

Define hj,k(u) := (τ/(2π)) log(g0(ku)/g0(ju)). Similarly to (2.5), we
write

hj,k(u) =
τ

2π

{
θ log

k

j
+

v(ku)
α(ku)θ

− v(ju)
α(ju)θ

−
∞∑

ν=2

(−1)ν

ναν

[(
v(ku)
(ku)θ

)ν
−
(
v(ju)
(ju)θ

)ν]}
.

Recall that v(u) = α′uθ
′

+ t(u). By (2.6) with t(nu) in place of v(nu) and
ν = 1, we have

dl

dul

(
v(ku)
(ku)θ

− v(ju)
(ju)θ

)

= α′
l∏

i=1

(1− θ1 − i)(k−θ1 − j−θ1)u−θ1−l +
dl

dul

(
t(ku)
(ku)θ

− t(ju)
(ju)θ

)

= α′
l∏

i=1

(1− θ1 − i)(k−θ1 − j−θ1)u−θ1−l +O

(
(c11l)lu−θ2−l

min{k, j}θ2
)
.
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Similarly to (2.7), we can deduce that for 1 ≤ l ≤ c18 logQ,

h
(l)
j,k(u)

l!
=

τ

2παl!

{
dl

dul

(
v(ku)
(ku)θ

− v(ju)
(ju)θ

)

+O((c19l)l min{k, j}−3θ1/2u−3θ1/2−l)
}

=
τ

2παl!

{
α′

l∏

i=1

(1− θ1 − i)(k−θ1 − j−θ1)u−θ1−l

+O((c19l)l min{k, j}−3θ1/2u−3θ1/2−l

+ (c11l)l min{k, j}−θ2u−θ2−l)
}

=
α′τ
2πα

{ l∏

i=1

(
1− θ1

i
− 1
)

(k−θ1 − j−θ1)u−θ1−l

+O(cl20 min{k, j}−θ0u−θ0−l)
}
.

Since M1/2−δ ≤ j, k ≤M1/2+δ , we have, in view of (2.2),

|k−θ1 − j−θ1 | ≥M (1/2+δ)(−θ1−1)|k − j| ≥M (1/2+δ)(−θ1−1)+1/2−2δ

= M−(3+θ1)δ−θ1/2 ≥M−(1/2−δ)θ0 ≥ min{k, j}−θ0 .
Thus for 1 ≤ l ≤ c18 logQ, we have

|h(l)
j,k(u)|
l!

=
|α′τ(k−θ1 − j−θ1)|u−θ1−l

2πα

{ l∏

i=1

∣∣∣∣
1− θ1

i
− 1
∣∣∣∣+O(cl20u

−(θ0−θ1))
}
.

Since θ0 > θ1, there exists b′i = b′i(α, α
′, θ, θ′, θ′′, C) with 0 < b′0 < 1 < b′1

such that we have, for 1 ≤ l ≤ c18 logQ and Q ≤ u ≤ 2Q,

(2.10)
T |k−θ1 − j−θ1 |Q−θ1

(b′1Q)l
≤
|h(l)
j,k(u)|
l!

≤ T |k−θ1 − j−θ1 |Q−θ1
(b′0Q)l

.

We then consider the following two cases according to the size of T . Let
Θ := (1 + 2δ)θ1 + 4δ.

Case 1: MΘ ≤ T ≤ exp{%3(logM)2}. We appeal to Lemma 1. In view
of (2.10), we take

D = T |k−θ1 − j−θ1 |Q−θ1 .
Since max{j, k,Q} ≤M1/2+δ and |j − k| ≥M1/2−2δ , we have

D ≥M (1+2δ)θ1+4δ−(1/2+δ)(1+θ1)+1/2−2δQ−θ1 = M δ+θ1/2+θ1δQ−θ1

≥ Q(δ+θ1/2+θ1δ)/(1/2+δ)−θ1 = Qδ/(1/2+δ) ≥ Qδ,
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and

logD/(8δ2
0 logQ) + 1 ≤ log T/(4δ2

0 logQ)

≤ %3(logM)2/(4δ2
0 logQ) ≤ c18 logQ.

Lemma 1 yields

(2.11)
∑

Q<m≤2Q
m≤N/max{j,k}

(
g0(km)
g0(jm)

)iτ
� Q exp

{
−c20

log3 M

log2 T

}
.

Case 2: Mθ1 ≤ T ≤ MΘ. We apply van der Corput’s classical result
([6], Theorem 2.9): if h ∈ C2[Q, 2Q] satisfies h(l)(u) � H/Ql for l = 1, 2 and
Q ≤ u ≤ 2Q, then

sup
Q≤Q1≤2Q

∣∣∣
∑

Q<n≤Q1

e(h(n))
∣∣∣� H1/2Q1/2 +H−1Q.

The relation (2.10) shows that this result is applicable to h = hj,k with
H = T |k−θ1 − j−θ1 |Q−θ1 . Since min{j, k,Q} ≥ M1/2−δ and max{j, k} ≤
N/Q ≤ 2M/Q, we have

{
H ≥ T max{j, k}−θ1−1|j − k|Q−θ1 � TQ|k − j|/M1+θ1 ,

H ≤ 2M (1+2δ)θ1+4δ−2θ1(1/2−δ) = M4(1+θ1)δ ≤M1/3.

Thus we obtain

(2.12)
∑

Q<m≤2Q
m≤N/max{j,k}

(
g0(km)
g0(jm)

)iτ
�M1/6Q1/2 +

M1+θ1

T |k − j| .

Now combining (2.11) and (2.12) with (2.9), we find

S′′N (τ, j,Q)�M1−δ +Me−c21(logM)3/(log T )2
(2.13)

+M23/24 + T−1M1+θ1 logM

�Me−c21(logM)3/(log T )2
+ T−1M1+θ1 logM.

Finally inserting (2.8) and (2.13) into (2.3), we get
∑

n≤N
Λ(n)g0(n)−iτ �M{e−c22(logM)3/(log T )2

+ (Mθ1/T )1/2(logM)7/2},

which implies the desired result. Our proof is complete.

The fourth lemma is an asymptotic formula on page 248 of [2]. Since the
proof given there is quite sketchy, we present a detailed proof for convenience
of the reader. The proof was provided by Balazard & Tenenbaum and we
reproduce it here with their permission.
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Lemma 4. For any positive constants, given φ1 and φ2, there exists a
positive constant %′0 = %′0(φ1, φ2) such that

∑

n≤z

Λ(n)
n1+iτ = −ζ

′

ζ
(1 + iτ) +O(z−%

′
0β(|τ |+3) log z)

for eφ1/(β(|τ |+3)) ≤ z ≤ (|τ |+ 3)φ2 .

Proof. Let F (s) := −ζ ′(s)/ζ(s). By the Perron formula ([12], Theo-
rem II.2.3), we can write

(2.14) U(z) :=
∑

n≤z

Λ(n)
n1+iτ log

(
z

n

)
=

1
2πi

ξ+i∞�

ξ−i∞
F (1 + iτ + w)

zw

w2 dw,

where ξ := 1/log z. According to Vinogradov–Korobov’s well known bound,
we have

(2.15) F (1+iτ+w)� 1/(β(|τ+Imw|+3)), Rew ≥ −%′′0β(|τ+Imw|+3),

where %′′0 > 0 is a constant. We truncate the integral in (2.14) to |Imw| = √z
with an error

�

Rew=ξ
|Imw|≥√z

F (1 + iτ + w)
zw

w2 dw �
log z√
z
,

where we have used (2.15) in the form

F (1 + iτ + w)� max{1/(β(|τ |+ 3)), 1/(β(|Imw|+ 3))}
� max{log z, log(|Imw|+ 3)}

for Rew = ξ and eφ1/(β(|τ |+3)) ≤ z. We move the segment of integration
from [ξ − i√z, ξ + i

√
z ] to Rew = −2%′0β(|τ | + 3), where %′0 ≤ %′′0/10 is a

suitable positive constant depending on φ1 and φ2. The contribution of the
vertical segment is

� z−2%′0β(|τ |+3)

β(|τ |+ 3)

√
z�

0

dt

t2 + β(|τ |+ 3)2 �
z−2%′0β(|τ |+3)

β(|τ |+ 3)2 � z−2%′0β(|τ |+3) log2 z

and the contribution of the horizontal segments is

� 1
zβ(|τ |+ 3)

(
1

log z
+ β(|τ |+ 3)

)
� 1

z
,

where we have used eφ1/(β(|τ |+3)) ≤ z ≤ (|τ | + 3)φ2 . Hence the residue
theorem gives

U(z) = F (1 + iτ) log z + F ′(1 + iτ) +O(z−2%′0β(|τ |+3) log2 z).
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From this, we deduce that for
√
z ≤ y ≤ z2,

U(z + y)− U(z) = log
(

1 +
y

z

)∑

n≤z

Λ(n)
n1+iτ +

∑

z<n≤z+y

Λ(n)
n1+iτ log

(
z + y

n

)

= log(1 + y/z)F (1 + iτ) +O(z−2%′0β(|τ |+3) log2 z).

Thus for
√
z ≤ y ≤ z2 we obtain

(2.16)
∑

n≤z

Λ(n)
n1+iτ = F (1 + iτ) +O

(
z−2%′0β(|τ |+3) log2 z

log(1 + y/z)
+

∑

z<n≤z+y

Λ(n)
n

)
.

It remains to estimate the last sum in (2.16). Defining

ψ(t) :=
∑

n≤t
Λ(n)

and using the Brun–Titchmarsh inequality ([12], Theorem I.4.9), we can
deduce that for

√
z ≤ y ≤ z2,

∑

z<n≤z+y

Λ(n)
n

=
z+y�

z

dψ(t)
t

=
ψ(z + y)
z + y

− ψ(z)
z

+
z+y�

z

ψ(t)
t2

dt

=
ψ(z + y)− ψ(z)

z + y
− ψ(z)y

(z + y)z
+
z+y�

z

ψ(t)
t2

dt

� y

z + y
+ log

(
1 +

y

z

)
� log

(
1 +

y

z

)
.

Take y such that log(1 + y/z) = z−%
′
0β(|τ |+3) log z, i.e.

y = z(zz
−%′0β(|τ|+3) − 1).

It is easy to see that
√
z ≤ z1−%′0β(|τ |+3) log z ≤ y ≤ z2. This completes the

proof.

The last lemma is a variant of Hankel’s formula ([12], Theorem II.5.2).
For a ∈ R and r > 0, we use H(a, r) to denote the Hankel contour

surrounding the point s = a with radius r, which is defined as the path
formed from the circle |s − a| = r excluding the point s = a − r, together
with the half-line (−∞, a − r] traced twice, with respective arguments +π
and −π. For each X > |a − r| + 1, let HX(a, r) be the part of the Hankel
contour H(a, r) situated in the half-plane σ > −X.

Lemma 5. For X > 1, z ∈ C and k ∈ Z+, we have

1
2πi

�

HX(0,r)

s−zes(log s)k ds = (−1)k
dk

dzk

(
1

Γ (z)

)
+Ek,z(X),
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where

(2.17) |Ek,z(X)| ≤ eπ|Im z|

2π

∞�

X

σ−Re ze−σ(log σ + π)k dσ.

Proof. According to the Hankel formula ([12], Theorem II.5.2), we have

1
2πi

�

H(0,r)

s−zes ds =
1

Γ (z)
.

Since the integral on the left-hand side is absolutely and uniformly con-
vergent on any compact set in the z-plane, we can differentiate under the
integral sign to obtain

1
2πi

�

H(0,r)

s−zes(log s)k ds = (−1)k
dk

dzk

(
1

Γ (z)

)
.

For σ > 1 and s = σe±iπ, we have

|s−zes(log s)k| ≤ σ−Re zeπ|Im z|−σ(log σ + π)k.

This implies the desired estimate for Ek,z(X).

3. Proof of Theorem 4. From the assumptions (1)–(3), we deduce
that for σ ≥ 1/θ −min{η/(2θ), 1/θ − 1/θ̃, 1/(4θ)},

F̃g(s) =
∏

p

{
1 +

κ

g(p)s
+O

(
1

p1+η/2
+

1
pψ

)}{
1− κ

(αpθ)s
+O

(
1
p3/2

)}

=
∏

p

{
1 + κ

(
1

g(p)s
− 1

(αpθ)s

)
+O

(
1

p1+η/2
+

1
pψ

+
1
p3/2

)}
,

which implies, for σ ≥ 1/θ −min{η/(2θ), 1/θ − 1/θ̃, 1/(4θ)},

(3.1) F̃g(s) = exp
{
κ
∑

p

(g(p)−s − (αpθ)−s) +O(1)
}
.

Noticing that g(p) = αpθ{1 +O(p−θ1)}, we have

g(p)−s − (αpθ)−s � |s|p−θσ−θ1 � |s|p−1−θ1/2.

This proves the assertion (i) provided %0≤ 1
10 min{η/(2θ), 1/θ−1/θ̃, 1/(4θ)}.

In view of (3.1), in order to prove (ii), it suffices to show that for σ ≥
1/θ − 10%0β(T ),

(3.2)
∣∣∣
∑

p

(g(p)−s − (αpθ)−s)
∣∣∣ ≤ α−σ

{
4
3

log2 T +
2
3

log3 T +O(1)
}
.

We only need to consider the case of g(p) = αpθ + α′pθ
′
+ t(p) = g0(p).



Sums of multiplicative functions 381

Let T0 := e1/(10θ%0β(T )) and T1 := T (1+20θθ−1
1 %0β(T ))/θ1 . Then we have

∑

p>T1

|g0(p)−s − (αpθ)−s| � |s|
∑

p>T1

p−(θσ+θ1)

� T
∑

p>T1

p−(1+θ1−10θ%0β(T )) � 1

provided %0 ≤ θ1/(20θβ(3)). Noticing that

|g0(p)−s − (αpθ)−s| ≤ 2(αpθ{1 +O(p−θ1)})−σ

≤ 2α−σp−1+10θ%0β(T ){1 +O(p−θ1)},

we deduce
∣∣∣
∑

p≤T0

(g0(p)−s − (αpθ)−s)
∣∣∣ ≤ 2α−σ

{ ∑

p≤T0

1 +O(β(T ) log p)
p

+O(1)
}

≤ α−σ
{

4
3

log2 T +
2
3

log3 T +O(1)
}
.

By using Lemma 4, we have

∑

T0<p≤T1

1
(αpθ)s

= α−s
∑

T0<n≤T1

Λ(n)
nθs log n

+O(1)

= α−s
T1�

T0

z1−θσ

log z
d

(∑

n≤z

Λ(n)
n1+iθτ

)
+O(1)

= α−s
T1�

T0

z1−θσ

log z
dO(z−2c23β(T ) log z) +O(1)

� α−σ
{

1 +
(
|1− θσ|+ 1

log T0

) T1�

T0

dz

z1+c23β(T )

}
� 1,

provided %0 ≤ c23/(10θ).
Our remaining task is to show

(3.3)
∑

T0<p≤T1

g0(p)−s � 1.

We divide this sum into two parts according as T0 < p ≤ T ′ or T ′ < p ≤ T1,
where T ′ := T (1−%2

1β(T ))/θ1 and %1 is the constant determined by Lemma 2.
We use W1 and W2 to denote the corresponding contribution and apply
Lemmas 3 and 2 to treat them.
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Let Mj := min{2jT ′, T1} and J ∈ N such that 2JT ′ ≤ T1 < 2J+1T ′. We
have

W2 =
J∑

j=0

Mj+1�

Mj

1
g0(z)σ log z

d
( ∑

Mj<n≤z
Λ(n)g0(n)−iτ

)
+O(1)

�
J∑

j=0

M−θσj SMj (τ) + 1.

The choice of T ′ and the fact that T 1/(2θ1) ≤ T ′ ≤ Mj ≤ T1 ≤ T 2/θ1

guarantee that Lemma 2 is applicable. Thus we deduce that, provided %0 ≤
%1/(20θ),

W2 �
J∑

j=0

M
10θ%0β(T )
j (M−%1β(T )

j + T−1 + L(Mj)−%1) + 1

�
J∑

j=0

(2jT ′)−%1β(T )/2 + 1� 1.

Let Nk := min{2kT0, T
′} and K ∈ N such that 2KT0 ≤ T ′ < 2K+1T0.

As before we have

W1 �
K∑

k=0

N−θσk SNk(τ) + 1.

Assume that %0 ≤ %2/3
3 /(10θ), where %3 is given in Lemma 3. Since

Nθ1
k ≤ T ′θ1 ≤ T
≤ exp{(10θ%0 log T0)3/2}
≤ exp{%3(log T0)2} ≤ exp{%3(logNk)2},

Lemma 3 is applicable. Thus

W1 �
K∑

k=0

N
10θ%0β(T )
k (e−%2(logNk)3/(log T )2

+ (Nθ1
k /T )1/2(logNk)4)

� (log T )4
K∑

k=0

210θ%0β(T )k(e−%2(logNk)3/(log T )2
+ T−%

2
1β(T )/2).

Noticing that

(logNk)3/(log T )2 ≥ k3/(4(log T )2) + log2 T/(10θ%0)3

for 0 ≤ k ≤ K, we deduce
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W1 � (log T )5{(log T )−%2/(10θ%0)3
sup
k≥0

210θ%0β(T )ke−%2k
3/(4(log T )2)

+ T (10θ%0/θ1−%2
1/2)β(T )}

� (log T )5−%2/(10θ%0)3
+ T (10θ%0/θ1−%2

1/2)β(T )(log T )5 � 1,

provided %0 ≤ min{(%2/10)1/3/(10θ), θ1%
2
1/(40θ)}. This completes the

proof.

4. Proof of Theorem 1. For simplicity, we introduce the notations:

zj := κ/α1/θ − j, M(x) := x1/θ(log x)κ/α
1/θ−1,

1
Γi(a)

:=
[
di

dzi

(
1

Γ (z)

)]

z=a
.

Let ξ = 1/θ + 1/log x. By Theorem II.2.3 in [12], we can write

(4.1)
x�

0

Fg(t) dt =
1

2πi

ξ+i∞�

ξ−i∞
Fg(s)

xs+1

s(s+ 1)
ds.

Let %4 < %0 be a positive number small enough that

(4.2)
{ |(θs− 1) log(θs− 1)| ≤ θ%0/2
|log(θs− 1)| ≥ 1

(|s− 1/θ| ≤ 10%4).

Let U > 1 be a parameter to be chosen later. The residue theorem allows
us to deform the segment of integration [ξ − iU, ξ + iU ] into the following
path symmetrically with respect to the real axis. Its upper part is made up
of: the upper portion (above the real axis) of the truncated Hankel contour
H1 = H4%4β(3)−1/θ(1/θ, %4/log x), the curve σ = 1/θ − 4%4β(τ + 3) for
0 ≤ τ ≤ U ; and the horizontal segment [1/θ − 4%4β(U + 3) + iU, ξ + iU ].

From Theorem 4(ii) and the classic bound for ζ(s) ([12], Note of Chapter
II.3), we have

(4.3) Fg(s)� (log(|τ |+ 3))c24 (σ > 1/θ − 10%0β(|τ |+ 3)).

Using this estimate, we easily see that the contribution from the vertical
half-lines [ξ ± iU, ξ ± i∞] and from the horizontal segments

[1/θ − 4%4β(U + 3)± iU, ξ ± iU ]

is � x1+1/θ/
√
U .

Finally the integral over the arcs σ = 1/θ− 4%4β(|τ |+ 3) (0≤ |τ | ≤U) is

� x1+1/θ−4%4β(U+3)
U�

0

(log(τ + 3))c24

(τ + 1)2 dτ � x1+1/θ−4%4β(U+3).
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Inserting these estimates into (4.1) and taking U = L(x)c25 , we can ob-
tain

(4.4)
x�

0

Fg(t) dt = Ψ(x) +O(x1+1/θ/L(x)c26),

where

Ψ(x) =
1

2πi

�

H1

Fg(s)
xs+1

s(s+ 1)
ds.

Next we need to study the function Ψ(x). Clearly it is an infinitely dif-
ferentiable function of x on R+, and we have

Ψ ′(x) =
1

2πi

�

H1

Fg(s)
xs

s
ds, Ψ ′′(x) =

1
2πi

�

H1

Fg(s)xs−1 ds.

Now for s 6∈ (−∞, 1/θ], we can write

(θs− 1)−κ/α
s+z0 = exp{z0(1− α−(θs−1)/θ) log(θs− 1)}

=
∞∑

m=0

(z0(θs− 1) log(θs− 1))m

m!

(
1− α−(θs−1)/θ

θs− 1

)m
.

Note that for m ≥ 0 we have
(

1− α−(θs−1)/θ

θs− 1

)m
=
(

logα
θ

)m ∞∑

n=0

bm,n

(
− logα

θ

)n
(θs− 1)n,

where bm,n is defined as in Section 1. Obviously

(4.5) bm,n ≤
∑

n1+...+nm=n

1
n1! . . . nm!

=
mn

n!
.

It follows that

(θs− 1)−κ/α
s+z0

=
∞∑

m=0

(z0 log(θs− 1))m

m!

∞∑

n=0

(−1)nbm,n

(
logα
θ

)m+n

(θs− 1)m+n

=
∞∑

m=0

{(
logα
θ

)m m∑

k=0

(−1)m−kbk,m−k
k!

(z0 log(θs− 1))k
}

(θs− 1)m.

Noticing that s−1Fg(s) = s−1F̃g(s){ζ(θs)(θs − 1)}κ/αs(θs − 1)−κ/α
s

and
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using (1.3) and (1.4), we deduce that, for s 6∈ (−∞, 1/θ] and |s−1/θ| < 10%0,

(4.6)
Fg(s)
s

=
∞∑

j=0

{ j∑

m=0

aj−m(logα)m

θj

m∑

k=0

(−1)m−kbk,m−k
k!

(z0 log(θs−1))k
}

(θs−1)−zj

=
∞∑

j=0

j∑

k=0

ej,k
θj

(θs− 1)−zj (log(θs− 1))k,

where

ej,k :=
zk0
k!

j∑

m=k

(−1)m−k(logα)maj−mbk,m−k(4.7)

� |z0|k
k!

j∑

m=k

|logα|m
%j−m0

· km−k

(m− k)!

� (%0|z0 logα|)k
%j0k!

j−k∑

n=0

(%0k|logα|)n
n!

� %−j0
(%0|z0 logα|e%0|logα|)k

k!

� %−j0
λk

k!
.

For any integer J ≥ 0, we split the double sum in (4.6) into two parts to
obtain

(4.8) Ψ ′(x) = MJ (x) +ΞJ (x),

where

MJ (x) :=
J∑

j=0

j∑

k=0

ej,k
θj
· 1

2πi

�

H1

xs(θs− 1)−zj (log(θs− 1))k ds,

ΞJ (x) :=
1

2πi

�

H1

xs
∞∑

j=J+1

j∑

k=0

ej,k
θj

(θs− 1)−zj (log(θs− 1))k ds.

Observing that H1 is contained in the disc |s− 1/θ| ≤ 10%4, the inequal-
ities (4.2) and (4.7) allow us to deduce that the double sum in ΞJ (x) is, for
s ∈ H1,

� |θs− 1|−Re z0
∑

j>J

∑

k≤j

|λ log(θs− 1)|k
k!

· |θs− 1|j
(θ%0)j
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� |θs− 1|−Re z0
∑

j>J

(1 + |λ log(θs− 1)|j) |θs− 1|j
(θ%0)j

� |θs− 1|−Re z0

( |θs− 1|J+1

(θ%0)J+1 +
|λ(θs− 1) log(θs− 1)|J+1

(θ%0)J+1

)
.

Noticing that |log(θs− 1)| ≤ log2 x+ c27 (s ∈ H1), we find that for s ∈ H1,

∞∑

j=J+1

j∑

k=0

ej,k
θj

(θs− 1)−zj (log(θs− 1))k

� |θs− 1|−Re z0

(
λ log2 x+ c28

θ%0
|θs− 1|

)J+1

.

From this we deduce that

ΞJ(x)� (λ log2 x+ c28)J+1Ξ∗J(x),

where

Ξ∗J(x) :=
1

(θ%0)J+1

1/θ−r�

1/θ−4%4β(3)

xσ|1− θσ|J+1−Re z0 dσ +
x1/θ+r

rRe z0−J−2

� |M(x)|
(θ%0 log x)J+1

{ 4%4β(3) log x�

%4

tJ+1−Re z0e−t dt+ 1
}

� |M(x)|
(θ%0 log x)J+1 {Γ (J + 2− Re z0) + 1}

� |M(x)|
(
c29J + 1

log x

)J+1

.

Thus

(4.9) ΞJ(x)� |M(x)|
(

(c29J + 1)
λ log2 x+ c28

log x

)J+1

.

Using the change of variable w = (s− 1/θ) log x and Lemma 5, we have,
with the notation H0 := HX(0, %4) and X := 4%4β(3) logx,

MJ (x) = M(x)
J∑

j=0

θ−z0

(log x)j

j∑

k=0

ej,k
2πi

�

H0

ew{logw + log(θ/log x)}k
wzj

dw

= M(x)
J∑

j=0

θ−z0

(log x)j

j∑

k=0

ej,k

k∑

i=0

(
k

i

)(
log

θ

log x

)k−i

×
{

(−1)i

Γi(zj)
+ Ek,zj (X)

}
.



Sums of multiplicative functions 387

The contribution of (−1)i/Γi(zj) to MJ (x) is

M(x)
J∑

j=0

θ−z0

(log x)j

j∑

k=0

ej,k

k∑

i=0

(
k

i

)(
log

θ

log x

)k−i (−1)i

Γi(zj)

= M(x)
J∑

j=0

Pj(log2 x)
(log x)j

,

where

Pj(t) :=
1
θz0

j∑

k=0

ej,k

k∑

i=0

(−1)i
(
k

i

)
(log θ − t)k−i

Γi(zj)

=
1
θz0

j∑

k=0

ej,k

k∑

i=0

(−1)i
(
k

i

) k−i∑

l=0

(
k − i
l

)
(log θ)k−i−l

Γi(zj)
(−t)l

=
1
θz0

j∑

k=0

ej,k

k∑

l=0

k−l∑

i=0

(−1)i
(
k

i

)(
k − i
l

)
(log θ)k−i−l

Γi(zj)
(−t)l

=
1
θz0

j∑

l=0

j∑

k=l

ej,k

k−l∑

i=0

(−1)i
(
k

i

)(
k − i
l

)
(log θ)k−i−l

Γi(zj)
(−t)l

=
j∑

l=0

λj,lt
l

and from (4.7),

λj,l :=
(−1)l

θz0

j∑

k=l

ej,k

k−l∑

i=0

(−1)i
(
k

i

)(
k − i
l

)
(log θ)k−l−i

Γi(zj)

=
θ−z0

l!

j∑

k=l

(κα−1/θ)k

×
j∑

m=k

(− logα)maj−mbk,m−k
k−l∑

i=0

(− log θ)k−l−i

(k − l − i)!i!Γi(zj)

=
θ−κ/α

1/θ

l!

j∑

m=l

m∑

k=l

k−l∑

i=0

λ∗m,k,i,

where

λ∗m,k,i :=
(− logα)m(κα−1/θ)k(− log θ)k−l−iaj−mbk,m−k

(k − l − i)!i!Γi(κ/α1/θ − j) .
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The contribution of Ek,zj (X) to MJ (x) is, via (2.17),

� |M(x)|
J∑

j=0

j∑

k=0

|ej,k|
(log x)j

k∑

i=0

(
k

i

)(
log

θ

log x

)k−i

×
∞�

X

σ|zj |(logσ + π)ie−σ dσ

� |M(x)|
J∑

j=0

1
(%0 log x)j

j∑

k=0

λk

k!

∞�

X

(2 log2 x+ 2 log σ)kσ|zj |e−σ dσ

� |M(x)|
J∑

j=0

1
(%0 log x)j

∞�

X

e2λ log2 x+2λ log σσ|zj |e−σ dσ

� |M(x)|
J∑

j=0

(log x)2λ

(%0 log x)j

∞�

X

σ|zj |+2λe−σ dσ.

Since ∞�

X

σ|zj |+2λe−σ dσ � e−X/2
∞�

X

σ|zj |+2λe−σ/2 dσ

� e−X/22j
∞�

X/2

σ|zj |+2λe−σ dσ

� e−X/22jΓ (j + [|z0|+ 2λ] + 2)

� e−X/2(|2z0|+ 4λ+ 4)j(j + 1)!,

the contribution of Ek,zj (X) to MJ(x) is

� |M(x)|e−X/4
J∑

j=0

( |2z0|+ 4λ+ 4
%0 log x

)j
(j + 1)!

� |M(x)|e−X/4
J∑

j=0

(
8
X

)j
(j + 1)!

� |M(x)|e−X/4
(

8
X

)J J∑

j=0

(
X

8

)J−j (J + 1)!
(J − j)!

� |M(x)|e−X/8
(

8
X

)J
(J + 1)!� |M(x)|

(
c29J + 1

log x

)J+1

provided %4 ≤ %0/(β(3)(|z0|+ 2λ+ 2)). Combining these estimates yields

(4.10) MJ (x) = M(x)
{ J∑

j=0

Pj(log2 x)
(log x)j

+O

((
c29J + 1

log x

)J+1)}
.
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Inserting (4.9) and (4.10) into (4.8), we obtain

(4.11) Ψ ′(x)

= M(x)
{ J∑

j=0

Pj(log2 x)
(log x)j

+O

((
(c29J + 1)

λ log2 x+ c28

log x

)J+1)}
.

Obviously, we have

Ψ ′′(x) =
1

2πi

�

H1

Fg(s)xs−1 ds� x1/θ−1(log x)|κ|/α
1/θ
.

Assume that f(n) ≥ 0 for all integers n. Then, with (4.4), we have

hFg(x) ≤
x+h�

x

Fg(t) dt(4.12)

= Ψ(x+ h)− Ψ(x) +O(x1+1/θL(x)−c26)

= hΨ ′(x) + h2
1�

0

(1− t)Ψ ′′(x+ th) dt

+O(x1+1/θL(x)−c26)

= hΨ ′(x) +O(h2x1/θ−1(logx)|κ|/α
1/θ

+ x1+1/θL(x)−c26).

Taking h = xL(x)−c30 , we obtain

Fg(x) ≤ Ψ ′(x) +O(x1/θL(x)−c3).

Similarly, we can prove

Fg(x) ≥ 1
h

x�

x−h
Fg(t) dt ≥ Ψ ′(x) +O(x1/θL(x)−c3).

This proves the desired asymptotic formula in the case of f(n) ≥ 0.
For the general case, write |Fg|(x) =

∑
g(n)≤x |f(n)|. We first check that

the conditions in Theorem 1 are satisfied by |Fg|. Since
∣∣∣∣Fg(x)− 1

h

x+h�

x

Fg(t) dt
∣∣∣∣ ≤

1
h

x+h�

x

|Fg|(t) dt− |Fg|(x),

the desired asymptotic formula then follows from (4.11) and (4.12).
Finally we prove (1.9). Noticing that for 0 ≤ α ≤ β,

∞�

1

e−σσβ(log σ)α dσ � (log(α+ 2))α
∞�

1

e−σ/2σβ dσ

� (log(α+ 2))α(c31β + 1)β,
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we deduce
1

|Γn(zj)|
=
∣∣∣∣

1
2πi

�

H(0,1)

s−zjes(log s)n ds
∣∣∣∣

�
∞�

1

σ|z0|+je−σ(log σ + π)n dσ + πn

� (log(n+ 2))n(c32j + 1)j .

Now from this and (4.7), we have

|λj,l| �
j∑

k=l

%−j0
λk

k!

k−l∑

i=0

(
k

i

)(
k − i
l

)
(log θ)k−l−i(log(i+ 2))i(c32j + 1)j

� (c32j + 1)j

l!

j∑

k=l

λk

(k − l)!
k−l∑

i=0

(
k − l
i

)
(log θ)k−l−i(log(i+ 2))i

� λl(c32j + 1)j

l!

j∑

k=l

λk−l

(k − l)! (log θ + log(k − l + 2))k−l

� λl(c32j + 1)j(j + 2)λ

l!
� λl(c4j + 1)j

l!
.

This completes the proof.

5. Proofs of Theorems 2 and 3. We only prove Theorem 2. The
other one can be treated completely in the same way.

It is easy to show that the assumption (3)′ and |z| ≤ ((2−ε)/ψ1)ψ2 imply
that f(n)zΩ(n), g(n) satisfy the assumption (3) with ψ = 2ψ2 > 1. Thus
Theorem 1 allows us to deduce that, uniformly for |z| ≤ ((2− ε)/ψ1)ψ2 ,

(5.1)
∑

g(n)≤x
f(n)zΩ(n) =

x1/θ

(log x)1−κz/α1/θ

{ J∑

j=0

Pj(log2 x)
(log x)j

+O(RJ,λ(x))
}
,

where Pj(t) :=
∑j

l=0 λj,l(z)tl and the coefficient λj,l(z) = λj,l(fzΩ, g) is
given by

λj,l(z) :=
θ−κz/α

1/θ

l!

j∑

m=l

m∑

k=l

k−l∑

i=0

λ∗m,k,i(z),

where

λ∗m,k,i(z) :=
(− logα)m(κzα−1/θ)k(− log θ)k−l−iaj−m(fzΩ, g)bk,m−k

Γi(κz/α1/θ − j)(k − l − i)!i! .
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Obviously λj,l(z) is analytic in the disc |z| < ((2 − ε)/ψ1)ψ2 and we can
write, in this disc and for any 0 < r < ((2− ε)/ψ1)ψ2 ,

λj,l(z) =
∞∑

n=0

χj,l(n)zn, χj,l(n) =
1

2πi

�

|z|=r

λj,l(z)
zn+1 dz.

Thus

(log x)κz/α
1/θ
λj,l(z)(log2 x)l

= (log2 x)l
∞∑

m=0

(κα−1/θ log2 x)m

m!

∞∑

n=0

χj,l(n)zm+n

=
∞∑

k=0

zk
k∑

m=0

χj,l(k −m)(κα−1/θ)m

m!
(log2 x)l+m.

Notice that
∑

g(n)≤x
Ω(n)=k

f(n) =
1

2πi

�

|z|=r

∑

g(n)≤x
f(n)zΩ(n) dz

zk+1 ,

hence the contribution of the main term in (5.1) is

x1/θ

log x

J∑

j=0

1
(logx)j

j∑

l=0

k∑

m=0

χj,l(k −m)(κα−1/θ)m

m!
(log2 x)l+m

=
x1/θ

log x

J∑

j=0

Qj,k(log2 x)
(log x)j

.

It remains to estimate the error term. Taking r = k/log2 x and writing
κ = |κ|eiφ show that this is

�A
x1/θRJ,λ(x)

log x �
|z|=r

(log x)Re(κz/α1/θ)

|z|k+1 |dz|

�A
x1/θRJ,λ(x)

log x

(
log2 x

k

)k 2π�

0

ek|κ|α
−1/θ cos(φ+ϑ) dϑ.

Denote the last integral by I. Then

I ≤ 4
π/2�

0

ek|κ|α
−1/θ cosϑ dϑ = 4

1�

0

ek|κ|α
−1/θt

√
1− t2

dt

≤ 4ek|κ|α
−1/θ

1�

0

e−k|κ|α
−1/θ(1−t)

√
1− t dt� ek|κ|α

−1/θ

√
|κ|k + 1

.

This completes the proof.
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6. Proofs of Corollaries 2 and 3. As before, we only prove Corollary
2 and the other one will follow by the same argument.

We choose ε = ε(δ) > 0 so small that {(2−ε)/(1/2+10ε)}1/2+ε > 2−δ. It
is easy to verify that f(n) ≡ 1 and ϕ(n) satisfy the assumptions (1)–(3)′ with
ψ1 = 1/2+10ε and ψ2 = 1/2+ε. Thus Theorem 2 is applicable. Next we show
that the main term can take the simple form as stated. In view of Remarks
(ii), we have λj,l(z) = 0 for l = 1, . . . , j and λj,0(z) = aj(zΩ, ϕ)/Γ (z − j).
Observing that λj,0(0) = 0, we see that ςj(z) := aj(zΩ, ϕ)/(zΓ (z − j)) is
analytic in the disc |z| ≤ 2− δ. Thus Theorem 2 implies (1.14).

Now we prove (1.15). If k = 1, the formula (1.15) can be obtained directly
from Theorem 2 with J = 0. Next suppose k ≥ 2. Similarly to (5.1) with
J = 0, we have, uniformly for |z| ≤ 2− δ,

∑

ϕ(n)≤x
zΩ(n) =

x

(logx)1−z

{
zς0(z) +O

(
1

log x

)}
.

Dividing both sides by 2πizk+1 and integrating over |z| = r yields, for any
r ≤ 2− δ,

(6.1)
∑

ϕ(n)≤x
Ω(n)=k

1 =
x

log x
· 1

2πi

�

|z|=r

ς0(z)(logx)z

zk
dz +Oδ(R),

where

R :=
x

(log x)2

�

|z|=r

(log x)Re z

|z|k+1 |dz|.

To evaluate the principal term in (6.1), we write

ς0(z) = ς0(r) + (z − r)ς ′0(r) + (z − r)2
1�

0

(1− t)ς ′′0 (r + t(z − r)) dt.

Taking r := (k − 1)/log2 x, the Cauchy formula gives

1
2πi

�

|z|=r

(z − r)(logx)z

zk
dz =

(log2 x)k−2

(k − 2)!
− r (log2 x)k−1

(k − 1)!
= 0.

Therefore it follows that

1
2πi

�

|z|=r

ς0(z)(logx)z

zk
dz =

1
2πi

�

|z|=r

ς0(r)(logx)z

zk
dz +Oδ(R′)(6.2)

=
(log2 x)k−1

(k − 1)!
ς0

(
k − 1
log2 x

)
+Oδ(R′),
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where

R′ :=
�

|z|=r

∣∣∣(z − r)2
1�

0

(1− t)ς ′′0 (r + t(z − r)) dt
∣∣∣(log x)Re z|z|−k|dz|.

Since |r + t(z − r)| ≤ (1 − t)r + tr = r (0 ≤ t ≤ 1, |z| = r), we have
ς ′′0 (r + t(z − r))�δ 1 and

R′ �δ

2π�

0

|eiϑ − 1|2r3−ker log2 x cosϑ dϑ(6.3)

�δ r
3−k

2π�

0

e(k−1) cosϑ(1− cosϑ) dϑ

�δ r
3−k
( 1�

0

e(k−1)t
√

1− t dt+ 2π
)
�δ r

3−kek−1(k − 1)−3/2

�δ
(log2 x)k−1

(k − 1)!
· k − 1

(log2 x)2 .

Similarly, we have

(6.4) R�δ
x

(logx)2 e
k−1r−k(k − 1)−1/2 �δ

x

log x
· (log2 x)k−1

(k − 1)!
· k − 1

(log2 x)2 .

The estimate (1.15) now follows from (6.2)–(6.4). This completes the proof.
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[5] P. Erdős, Some remarks on Euler’s ϕ-function and some related problems, Bull.

Amer. Math. Soc. 51 (1945), 540–544.
[6] S. W. Graham and G. Kolesnik, Van der Corput’s Method of Exponential Sums,

Cambridge Univ. Press, 1991.
[7] E. Scourfield, On some sums involving the largest prime divisor of n, Acta Arith.

59 (1991), 339–363.
[8] A. Selberg, Note on the paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83–87.
[9] A. Smati, Une formule asymptotique pour une classe de fonctions multiplicatives,

Publ. Inst. Math. (Beograd) (N.S.) 49 (1991), 83–91.
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