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Imaginary quadratic fields whose
Iwasawa A-invariant is equal to 1

by

DONGHO BYEON (Seoul)

1. Introduction and statement of results. Let D be the funda-
mental discriminant of the quadratic field Q(v/D) and xp := (Q) the
usual Kronecker character. Let p be a prime, Z, the ring of p-adic integers,
and \,(Q(v/D)) the Iwasawa A-invariant of the cyclotomic Z,-extension of
Q(v/D). In this paper, we shall prove the following:

THEOREM 1.1. For any odd prime p,

VX
log X~

H{-X <D < 0| A(Q(WD)) =1, xp(p) =1} >

Horie [9] proved that for any odd prime p, there exist infinitely many
imaginary quadratic fields Q(v/D) with \,(Q(v/D)) = 0, and the author [1]
gave a lower bound for the number of such imaginary quadratic fields. It
is known that for any prime p which splits in the imaginary quadratic field
Q(VD), \p(Q(V/D)) > 1. So it is interesting to see how often the trivial
A-invariant appears for such a prime. Jochnowitz [10] proved that for any
odd prime p, if there exists one imaginary quadratic field Q(y/Dy) with
A(Q(V/Dg)) = 1 and xp,(p) = 1, then there exist an infinite number of
such imaginary quadratic fields.

For the case of real quadratic fields, Greenberg [8] conjectured that
M (Q(VD)) = 0 for all real quadratic fields and all prime numbers p. Ono
[11] and Byeon [2], [3] showed that for all prime numbers p, there exist in-
finitely many real quadratic fields Q(v/D) with \,(Q(v/D)) = 0 and gave a
lower bound for the number of such real quadratic fields.

In Section 3, we shall prove the following:
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PROPOSITION 1.2. For any odd prime p, if there is a negative funda-
mental discriminant Dy < 0 such that A\,(Q(v/Dyp)) = 1 and xp,(p) = 1,

then
VX

#H{—-X <D <0|\QWD)) =1, xp(p) =1} > g X

In Section 4, we shall prove the following:

PROPOSITION 1.3. Let p be an odd prime and Dy < 0 be the fundamental
discriminant of the imaginary quadratic field Q(\/1 — p?). Then xp,(p) =1
and \p(Q(v/Do)) = 1 if and only if 21 # 1 (mod p?), that is, p is not a
Wieferich prime.

PROPOSITION 1.4. Let p be a Wieferich prime. If p = 3 (mod4), let
Doy < 0 be the fundamental discriminant of the imaginary quadratic field
QW1 —=p), and if p = 1 (mod4), let Dy < 0 be the fundamental discrim-
inant of the imaginary quadratic field Q(v/4—p). Then xp,(p) = 1 and
M(Q(VDo)) = 1.

From these three propositions, Theorem 1.1 follows.

2. Preliminaries. Let x be a non-trivial even primitive Dirichlet char-
acter of conductor f which is not divisible by p?. Let L, (s, x) be the Kubota—
Leopoldt p-adic L-function and Oy = Z,[x(1), x(2),...]. Then there is a
power series F'(T, x) € Oy [[T]] such that

LP(S7X) = F((l +pd)8 - 17X)7
where d = f if ptf and d = f/p if p| f. Let m be a generator for the ideal
of Oy above p. Then we may write
F(T,x) = G(IU(T),

where U(T') is a unit of O,[[T]], and G(T) is a distinguished polynomial:
that is, G(T) = ag+a;T+- - -+T* with 7 | a; for i < A—1. Define A\(L,(s, x))
to be the index of the first coefficient of F(T, x) not divisible by 7. Let w
be the Teichmiiller character.

LeEMMA 2.1 (Dummit, Ford, Kisilevsky and Sands [6, Proposition 5.1]).
Let D < 0 be the fundamental discriminant of the imaginary quadratic field

Q(vVD). Then
Ap(Q(VD)) = A(Lp(s, xpw)).

LEMMA 2.2 (Washington [13, Lemma 1]). Let D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/D). Then

MLy(s,xpw)) =1 & Lp(0, xpw) # Ly(1,xpw) (modp?).

From these lemmas, we can show the following:
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PROPOSITION 2.3. Let p be an odd prime and D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/D) such that xp(p) = 1.
Then L(1 —p,xp)/p is p-integral and
L(1—p,xp)

p
where L(s, xp) is the Dirichlet L-function.

MQWD) =1 < 20 (modp),

Proof. By the construction of the p-adic L-function Ly(s, xp),
Ly(0, xpw) = —(1 = xpw - w ™ (1) By ypww-t = —(1 = x0(0)) Bixp,
where B, ,,, is the generalized Bernoulli number. Since xp(p) =1,
L,(0,xpw) = 0.
Similarly,
Ly(1 = p,xpw) = —(1 = xpw - & ()" ") By s puvr»/D
= —(1=xp®)P" ) Bpxp/p= (1= ") L(1 = p,xD)
— L(1 - p. xp) (modp?).

Since xypw # 1 is not a character of the second kind, L,(1 — p, xpw) and
L(1 —p, xp) are p-integral (see [14]). By the congruence of Ly (s, xp),

Lp(1, xpw) = Lp(0, xpw) = 0 (mod p)
and
Ly(1,xpw) = Lyp(1 = p, xpw) (mod p?).
Thus L(1 — p, xp)/p is p-integral and
L —-p,xp
n  Hcew

From (1) and Lemmas 2.1, 2.2, the proposition follows. =

20 (modp) < Ly(1,xpw) Z 0 (mod p?).

3. Proof of Proposition 1.2. Let My(IH(N),x) denote the space of
modular forms of weight k on I'h(/V) with character x. For a positive integer
r>2,let

Fr(z) = Z H(T, N)qN € MT+1/2<F0(4)7 XO)
N#£0
be the Cohen modular form [4], where ¢ := €>™*. We note that if Dn? =
(—1)"N, then

(2) H(r,N) = L(1 = r,xp) )_ u(d)xp(d)d" ' o2,—1(n/d),
d|n
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where o, (n) := 3y, d”. From Fj(z), we can construct the modular form

H(p,n) ,
Gy(2) = T2 1 € My o (10410, o),

(F1)=1,(5%)=-1
where @ is a prime such that Q # p. From Proposition 2.3 and equation (2),

if D < 0 is the fundamental discriminant of the imaginary quadratic field
Q(v/D) such that xyp(p) = 1, then

H(p,—D) L(1—p,xp)

p p

is p-integral. Using similar methods to Ono [11] and Byeon [2], that is,
applying a theorem of Sturm [12] to the following two modular forms:

wiene = % et ().

e = 3 EER e (nuten, (7)),

where [ # p is a suitable prime, and comparing the coefficients of q_D(’l3 in
these modular forms, where Dy < 0 is a fundamental discriminant of the
imaginary quadratic field Q(v/Dy) such that xp,(p) = 1 and H(p, —Dy)/p #
0 (modp), we can obtain the following:

PROPOSITION 3.1. Let p be an odd prime. Assume that there is a funda-
mental discriminant Dy < 0 of the imaginary quadratic field Q(v/Dy) such
that

(1) xpo(p) =1,
(ii) H(p,—Do)/p # 0 (modp).

Then there is an arithmetic progression ry, (mod pt,) with (rp,pt,) =1 and
(%”) =1, and a constant k(p) such that for each prime | = r, (modpt,)
there is an integer 1 < d; < k(p)l for which

(i) D;:= —djl is a fundamental discriminant,
(i) H(p,—Dy)/p # 0 (modp).

Proof of Proposition 1.2. Let D; < 0 be the fundamental discriminant
in Proposition 3.1. Then xp,(p) =1 and H(p,—D;)/p = L(1 —p,xp,)/p #
0 (modp). By Proposition 2.3, \,(Q(v/D;)) = 1. By Dirichlet’s theorem
on primes in arithmetic progression, the number of such D; < X is >

VX/log X. u
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4. Proof of Propositions 1.3 and 1.4. To prove these propositions,
we shall use the following criterion of Gold.

LEMMA 4.1 (Gold [7]). Let p be an odd prime and D < O be the fun-
damental discriminant of the imaginary quadratic field @(\/E) such that
xp(p) = 1. Let (p) = PP in Q(v/D). Suppose that P" = (m) is principal
for some integer r not divisible by p. Then \y(Q(v'D)) = 1 if and only if
7P~1 £ 1 (mod P?).

Proof of Proposition 1.5. We note that 1 — p? is not a square. Let P =
(p,1 4+ /1 —p2) and P = (p,1 — /1 —p?). Then (p) = PP and P? =
(1++/1-p?), P2 = (1 — /1 —p?). From Lemma 4.1, \,(Q(v/Dy)) = 1 if

and only if
(L+V1I-p2)P ' #£1 (mod1 - /1 -p?).
This is equivalent to
3) (I+V1I-p)P=QQ+V1-p*)#0
(modp? = (1 = VT= )1 + VI —1)).
We see that

I+ VI=p)’ = (14 V1= )
(p—1)/2 (p—1)/2
=3 (2)+( X ()R- as Vit

n=0 n=0 2n+1

(p—1)/2 » (p—1)/2 »
— _ _ 2
(2 () ) (S (h)vie

= (21 = 1)(1+ VI= ) (mod?),

where we have used the fact that

w2, w2,
= = op—1
> () 2 (2741)

n=0

Thus (3) is true if and only if 2P~ % 1 (mod p?), that is, p is not a Wieferich
prime, and the proposition follows. m

Proof of Proposition 1.4. We note that 1 — p is not a square if p = 3
(mod4) and 4 — p is not a square if p = 1 (mod4). We also note that
XD, (p) = 1. First we consider the case p = 3 (mod4). Let P = (1+ /1 —p)
and P = (1 — /T —p). Then (p) = PP and P? = ((1 + /1 —p)?), P? =
((1 — /T =p)?). Now, from Lemma 4.1, \,(Q(+/Dp)) = 1 if and only if

(14++/1—p)*P D £1 (mod (1 — /1 —p)?).
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This is equivalent to
4 (A+V1-p*—(1+/T—p*#0

(modp® = (1= /1= p)*(1+ /1 -p)?).
We see that

(14 Visp»

Il
3
-
o

-1

tVi-p (iz;:: <2n2f— 1) _p':2"<2n2i 1>> (modp®),

where we have used the fact that (1 — p)” =1 — np (mod p?). Now, since
—1

()£ ) -

n=0

P 2p
Z”( ) =p- 2772
2n

n=1
p—1
2p 2p—2
=(p—1)-2%
"<2n+ 1> (p—=1) ’
n=1
we find that
1+/1-p?P =211 /T —p- (2271 +p-22%72) (modp?).
Hence

(1+/1-p)? —(1++/1-p)?
=2 4p—2)+ (22 4 p.2%72 - 2)/1 — p (modp?).
Thus (4) is true if and only if
(5) 22714 p—22£0 (modp?) or 2271 4p.2%%72 _2£( (modp?).
But it is easy to see that (5) is true if 22~! = 1 (mod p?). Hence if p is a
Wieferich prime, then A,(Q(+v/Dg)) should be equal to 1.
Now we consider the case p = 1 (mod4). Let P = (2 + /4 —p) and

P = (2—-4—p). Then (p) = PP and P? = ((2 + 4—p)?), P? =
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((2 — v/A=p)?). Then from Lemma 4.1, \,(Q(v/Dy)) = 1 if and only if

(2+V4-p*P" Y #£1 (mod (2 - /4 -p)*).
This is equivalent to
(6) @+vA-p)? =2+ V4-p?#0
(modp® = (2— /4 - p)* 2+ /4 -p)?).
By a computation similar to the above, we have
2+V4-p)* - (2+/4-p)

=Pty p—g)+ (2P 24 p. 270 — 4)@ (mod p?).
Thus (6) is true if and only if
(7) 2% 4 p—8#0 (modp®) or 2%7%+4p 270 — 40 (modp?).

)
But it is also easy to see that (7) is true if 271 = 1 (mod p?). Hence if p
is a Wieferich prime, then \,(Q(v/Dy)) should be equal to 1, and we have
proved the proposition. =

REMARK. It seems interesting that Propositions 1.3 and 1.4 give criteria
for the Wieferich primes. We know that the Wieferich primes are very rare.
The only Wieferich primes for p < 4 -10'? are p = 1093 and p = 3511
(see [5]).
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