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Imaginary quadratic fields whose

Iwasawa λ-invariant is equal to 1

by

Dongho Byeon (Seoul)

1. Introduction and statement of results. Let D be the funda-
mental discriminant of the quadratic field Q(

√
D) and χD :=

(

D
·

)

the
usual Kronecker character. Let p be a prime, Zp the ring of p-adic integers,

and λp(Q(
√

D)) the Iwasawa λ-invariant of the cyclotomic Zp-extension of

Q(
√

D). In this paper, we shall prove the following:

Theorem 1.1. For any odd prime p,

♯{−X < D < 0 | λp(Q(
√

D)) = 1, χD(p) = 1} ≫
√

X

log X
.

Horie [9] proved that for any odd prime p, there exist infinitely many
imaginary quadratic fields Q(

√
D) with λp(Q(

√
D)) = 0, and the author [1]

gave a lower bound for the number of such imaginary quadratic fields. It
is known that for any prime p which splits in the imaginary quadratic field
Q(

√
D), λp(Q(

√
D)) ≥ 1. So it is interesting to see how often the trivial

λ-invariant appears for such a prime. Jochnowitz [10] proved that for any
odd prime p, if there exists one imaginary quadratic field Q(

√
D0) with

λp(Q(
√

D0)) = 1 and χD0
(p) = 1, then there exist an infinite number of

such imaginary quadratic fields.

For the case of real quadratic fields, Greenberg [8] conjectured that
λp(Q(

√
D)) = 0 for all real quadratic fields and all prime numbers p. Ono

[11] and Byeon [2], [3] showed that for all prime numbers p, there exist in-
finitely many real quadratic fields Q(

√
D) with λp(Q(

√
D)) = 0 and gave a

lower bound for the number of such real quadratic fields.

In Section 3, we shall prove the following:
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Proposition 1.2. For any odd prime p, if there is a negative funda-

mental discriminant D0 < 0 such that λp(Q(
√

D0)) = 1 and χD0
(p) = 1,

then

♯{−X < D < 0 | λp(Q(
√

D)) = 1, χD(p) = 1} ≫
√

X

log X
.

In Section 4, we shall prove the following:

Proposition 1.3. Let p be an odd prime and D0 < 0 be the fundamental

discriminant of the imaginary quadratic field Q(
√

1 − p2). Then χD0
(p) = 1

and λp(Q(
√

D0)) = 1 if and only if 2p−1 6≡ 1 (modp2), that is, p is not a

Wieferich prime.

Proposition 1.4. Let p be a Wieferich prime. If p ≡ 3 (mod4), let

D0 < 0 be the fundamental discriminant of the imaginary quadratic field

Q(
√

1 − p), and if p ≡ 1 (mod4), let D0 < 0 be the fundamental discrim-

inant of the imaginary quadratic field Q(
√

4 − p). Then χD0
(p) = 1 and

λp(Q(
√

D0)) = 1.

From these three propositions, Theorem 1.1 follows.

2. Preliminaries. Let χ be a non-trivial even primitive Dirichlet char-
acter of conductor f which is not divisible by p2. Let Lp(s, χ) be the Kubota–
Leopoldt p-adic L-function and Oχ = Zp[χ(1), χ(2), . . . ]. Then there is a
power series F (T, χ) ∈ Oχ[[T ]] such that

Lp(s, χ) = F ((1 + pd)s − 1, χ),

where d = f if p ∤ f and d = f/p if p | f . Let π be a generator for the ideal
of Oχ above p. Then we may write

F (T, χ) = G(T )U(T ),

where U(T ) is a unit of Oχ[[T ]], and G(T ) is a distinguished polynomial:
that is, G(T ) = a0+a1T +· · ·+T λ with π | ai for i ≤ λ−1. Define λ(Lp(s, χ))
to be the index of the first coefficient of F (T, χ) not divisible by π. Let ω
be the Teichmüller character.

Lemma 2.1 (Dummit, Ford, Kisilevsky and Sands [6, Proposition 5.1]).
Let D < 0 be the fundamental discriminant of the imaginary quadratic field

Q(
√

D). Then

λp(Q(
√

D)) = λ(Lp(s, χDω)).

Lemma 2.2 (Washington [13, Lemma 1]). Let D < 0 be the fundamental

discriminant of the imaginary quadratic field Q(
√

D). Then

λ(Lp(s, χDω)) = 1 ⇔ Lp(0, χDω) 6≡ Lp(1, χDω) (modp2).

From these lemmas, we can show the following:
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Proposition 2.3. Let p be an odd prime and D < 0 be the fundamental

discriminant of the imaginary quadratic field Q(
√

D) such that χD(p) = 1.
Then L(1 − p, χD)/p is p-integral and

λp(Q(
√

D)) = 1 ⇔ L(1 − p, χD)

p
6≡ 0 (modp),

where L(s, χD) is the Dirichlet L-function.

Proof. By the construction of the p-adic L-function Lp(s, χD),

Lp(0, χDω) = −(1 − χDω · ω−1(p))B1,χDω·ω−1 = −(1 − χD(p))B1,χD
,

where Bn,χD
is the generalized Bernoulli number. Since χD(p) = 1,

Lp(0, χDω) = 0.

Similarly,

Lp(1 − p, χDω) = −(1 − χDω · ω−p(p)pp−1)Bp,χDω·ω−p/p

= −(1 − χD(p)pp−1)Bp,χD
/p = (1 − pp−1)L(1 − p, χD)

≡ L(1 − p, χD) (modp2).

Since χDω 6= 1 is not a character of the second kind, Lp(1 − p, χDω) and
L(1 − p, χD) are p-integral (see [14]). By the congruence of Lp(s, χD),

Lp(1, χDω) ≡ Lp(0, χDω) = 0 (modp)

and

Lp(1, χDω) ≡ Lp(1 − p, χDω) (mod p2).

Thus L(1 − p, χD)/p is p-integral and

L(1 − p, χD)

p
6≡ 0 (modp) ⇔ Lp(1, χDω) 6≡ 0 (mod p2).(1)

From (1) and Lemmas 2.1, 2.2, the proposition follows.

3. Proof of Proposition 1.2. Let Mk(Γ0(N), χ) denote the space of
modular forms of weight k on Γ0(N) with character χ. For a positive integer
r ≥ 2, let

Fr(z) :=
∑

N 6=0

H(r, N)qN ∈ Mr+1/2(Γ0(4), χ0)

be the Cohen modular form [4], where q := e2πiz. We note that if Dn2 =
(−1)rN , then

H(r, N) = L(1 − r, χD)
∑

d|n

µ(d)χD(d)dr−1σ2r−1(n/d),(2)
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where σν(n) :=
∑

d|n dν . From Fp(z), we can construct the modular form

Gp(z) :=
∑

(−n
p

)=1, ( n
Q

)=−1

H(p, n)

p
qn ∈ Mp+1/2(Γ0(4p4Q4), χ0),

where Q is a prime such that Q 6= p. From Proposition 2.3 and equation (2),
if D < 0 is the fundamental discriminant of the imaginary quadratic field
Q(

√
D) such that χD(p) = 1, then

H(p,−D)

p
=

L(1 − p, χD)

p

is p-integral. Using similar methods to Ono [11] and Byeon [2], that is,
applying a theorem of Sturm [12] to the following two modular forms:

(Ul|Gp)(z) =
∑

(−n
p

)=1, ( n
Q

)=−1

H(p, ln)

p
qn ∈ Mp+1/2

(

Γ0(4p4Q4l),

(

4l

·

))

,

(Vl|Gp)(z) =
∑

(−n
p

)=1, ( n
Q

)=−1

H(p, n)

p
qln ∈ Mp+1/2

(

Γ0(4p4Q4l),

(

4l

·

))

,

where l 6= p is a suitable prime, and comparing the coefficients of q−D0l3 in
these modular forms, where D0 < 0 is a fundamental discriminant of the
imaginary quadratic field Q(

√
D0) such that χD0

(p) = 1 and H(p,−D0)/p 6≡
0 (modp), we can obtain the following:

Proposition 3.1. Let p be an odd prime. Assume that there is a funda-

mental discriminant D0 < 0 of the imaginary quadratic field Q(
√

D0) such

that

(i) χD0
(p) = 1,

(ii) H(p,−D0)/p 6≡ 0 (mod p).

Then there is an arithmetic progression rp (mod ptp) with (rp, ptp) = 1 and
(−rp

p

)

= 1, and a constant κ(p) such that for each prime l ≡ rp (mod ptp)

there is an integer 1 ≤ dl ≤ κ(p)l for which

(i) Dl := −dll is a fundamental discriminant ,
(ii) H(p,−Dl)/p 6≡ 0 (mod p).

Proof of Proposition 1.2. Let Dl < 0 be the fundamental discriminant
in Proposition 3.1. Then χDl

(p) = 1 and H(p,−Dl)/p = L(1 − p, χDl
)/p 6≡

0 (modp). By Proposition 2.3, λp(Q(
√

Dl)) = 1. By Dirichlet’s theorem
on primes in arithmetic progression, the number of such Dl < X is ≫√

X/log X.
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4. Proof of Propositions 1.3 and 1.4. To prove these propositions,
we shall use the following criterion of Gold.

Lemma 4.1 (Gold [7]). Let p be an odd prime and D < 0 be the fun-

damental discriminant of the imaginary quadratic field Q(
√

D) such that

χD(p) = 1. Let (p) = PP in Q(
√

D). Suppose that Pr = (π) is principal

for some integer r not divisible by p. Then λp(Q(
√

D)) = 1 if and only if

πp−1 6≡ 1 (modP2).

Proof of Proposition 1.3. We note that 1 − p2 is not a square. Let P =
(p, 1 +

√

1 − p2) and P = (p, 1 −
√

1 − p2). Then (p) = PP and P2 =

(1 +
√

1 − p2), P2 = (1 −
√

1 − p2). From Lemma 4.1, λp(Q(
√

D0)) = 1 if
and only if

(1 +
√

1 − p2)p−1 6≡ 1 (mod1 −
√

1 − p2).

This is equivalent to

(3) (1 +
√

1 − p2)p − (1 +
√

1 − p2) 6≡ 0

(modp2 = (1 −
√

1 − p2)(1 +
√

1 − p2)).

We see that

(1 +
√

1 − p2)p − (1 +
√

1 − p2)

≡
(p−1)/2
∑

n=0

(

p

2n

)

+

( (p−1)/2
∑

n=0

(

p

2n + 1

))

√

1 − p2 − (1 +
√

1 − p2)

≡
( (p−1)/2

∑

n=0

(

p

2n

)

− 1

)

+

( (p−1)/2
∑

n=0

(

p

2n + 1

)

− 1

)

√

1 − p2

≡ (2p−1 − 1)(1 +
√

1 − p2) (modp2),

where we have used the fact that
(p−1)/2
∑

n=0

(

p

2n

)

=

(p−1)/2
∑

n=0

(

p

2n + 1

)

= 2p−1.

Thus (3) is true if and only if 2p−1 6≡ 1 (modp2), that is, p is not a Wieferich
prime, and the proposition follows.

Proof of Proposition 1.4. We note that 1 − p is not a square if p ≡ 3
(mod4) and 4 − p is not a square if p ≡ 1 (mod4). We also note that
χD0

(p) = 1. First we consider the case p ≡ 3 (mod4). Let P = (1 +
√

1 − p)
and P = (1 − √

1 − p). Then (p) = PP and P2 = ((1 +
√

1 − p)2), P2 =
((1 −√

1 − p)2). Now, from Lemma 4.1, λp(Q(
√

D0)) = 1 if and only if

(1 +
√

1 − p)2(p−1) 6≡ 1 (mod (1 −
√

1 − p)2).
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This is equivalent to

(4) (1 +
√

1 − p)2p − (1 +
√

1 − p)2 6≡ 0

(modp2 = (1 −
√

1 − p)2(1 +
√

1 − p)2).

We see that

(1 +
√

1 − p)2p

≡
p

∑

n=0

((

2p

2n

)

(1 − p)n

)

+
√

1 − p ·
p−1
∑

n=0

((

2p

2n + 1

)

(1 − p)n

)

≡
p

∑

n=0

((

2p

2n

)

(1 − np)

)

+
√

1 − p ·
p−1
∑

n=0

((

2p

2n + 1

)

(1 − np)

)

≡
p

∑

n=0

(

2p

2n

)

− p ·
p

∑

n=0

n

(

2p

2n

)

+
√

1 − p ·
( p−1

∑

n=0

(

2p

2n + 1

)

− p ·
p−1
∑

n=0

n

(

2p

2n + 1

))

(mod p2),

where we have used the fact that (1 − p)n ≡ 1 − np (mod p2). Now, since

p
∑

n=0

(

2p

2n

)

=

p−1
∑

n=0

(

2p

2n + 1

)

= 22p−1,

p
∑

n=1

n

(

2p

2n

)

= p · 22p−2,

p−1
∑

n=1

n

(

2p

2n + 1

)

= (p − 1) · 22p−2,

we find that

(1 +
√

1 − p)2p ≡ 22p−1 +
√

1 − p · (22p−1 + p · 22p−2) (mod p2).

Hence

(1 +
√

1 − p)2p − (1 +
√

1 − p)2

≡ (22p−1 + p − 2) + (22p−1 + p · 22p−2 − 2)
√

1 − p (modp2).

Thus (4) is true if and only if

22p−1 + p − 2 6≡ 0 (modp2) or 22p−1 + p · 22p−2 − 2 6≡ 0 (modp2).(5)

But it is easy to see that (5) is true if 2p−1 ≡ 1 (modp2). Hence if p is a
Wieferich prime, then λp(Q(

√
D0)) should be equal to 1.

Now we consider the case p ≡ 1 (mod4). Let P = (2 +
√

4 − p) and
P = (2 − √

4 − p). Then (p) = PP and P2 = ((2 +
√

4 − p)2), P2 =
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((2 −√
4 − p)2). Then from Lemma 4.1, λp(Q(

√
D0)) = 1 if and only if

(2 +
√

4 − p)2(p−1) 6≡ 1 (mod (2 −
√

4 − p)2).

This is equivalent to

(6) (2 +
√

4 − p)2p − (2 +
√

4 − p)2 6≡ 0

(modp2 = (2 −
√

4 − p)2(2 +
√

4 − p)2).

By a computation similar to the above, we have

(2 +
√

4 − p)2p − (2 +
√

4 − p)2

≡ (24p−1 + p − 8) + (24p−2 + p · 24p−5 − 4)
√

4 − p (modp2).

Thus (6) is true if and only if

24p−1 + p − 8 6≡ 0 (modp2) or 24p−2 + p · 24p−5 − 4 6≡ 0 (mod p2).(7)

But it is also easy to see that (7) is true if 2p−1 ≡ 1 (mod p2). Hence if p
is a Wieferich prime, then λp(Q(

√
D0)) should be equal to 1, and we have

proved the proposition.

Remark. It seems interesting that Propositions 1.3 and 1.4 give criteria
for the Wieferich primes. We know that the Wieferich primes are very rare.
The only Wieferich primes for p ≤ 4 · 1012 are p = 1093 and p = 3511
(see [5]).
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