Note on the fractional parts of $\lambda \theta^{n}$

by
Masayoshi Hata (Kyoto)

Let S be the set of Pisot numbers (also known as Pisot-Vijayaraghavan numbers), that is, real algebraic integers greater than 1 whose other conjugates have modulus strictly less than 1. Then S is a closed set (Salem [10]) and the smallest element of S is the positive zero of $x^{3}-x-1$ (Siegel [11]).

For real numbers $\lambda>0$ and $\theta>1$ we put $\lambda \theta^{n}=a_{n}+\varepsilon_{n}$ where $a_{n} \in \mathbb{Z},-1 / 2<\varepsilon_{n} \leq 1 / 2$ for $n \geq 0$. The interesting relations between arithmetical properties of λ, θ and the asymptotic behaviour of ε_{n} have been studied by several researchers as exceptional cases of uniform distribution. In 1912 Thue [12] showed that, if ε_{n} decays faster than an exponential rate, then θ must be algebraic. Moreover Hardy [5] showed that $\theta \in S$ and λ must belong to the field $\mathbb{Q}(\theta)$ if θ is algebraic and ε_{n} tends to 0 as $n \rightarrow \infty$.

In 1938 Pisot [7] proved that the condition

$$
\sum_{n=0}^{\infty} \varepsilon_{n}^{2}<\infty
$$

implies that $\theta \in S$ and $\lambda \in \mathbb{Q}(\theta)$. In particular, $\sum_{n=0}^{\infty} \varepsilon_{n}^{2}=\infty$ if θ is transcendental. Later Pisot and Salem [9] asked whether there exists a transcendental number θ with the property that ε_{n} tends to 0 as $n \rightarrow \infty$ for some $\lambda>0$, which is still an open and major question.

In 1946 Pisot [8] also proved that $\theta \in S \cup T$ and $\lambda \in \mathbb{Q}(\theta)$ if the condition

$$
\sup _{n \geq 0}\left|\varepsilon_{n}\right| \leq \frac{1}{2 e \theta(\theta+1)(1+\log \lambda)}
$$

is fulfilled when $\lambda \geq 1$, where T is the set of Salem numbers, that is, real algebraic integers greater than 1 whose other conjugates have modulus at most 1 , one at least having a modulus equal to 1 . It is known that a Salem number must be a unit of even degree at least equal to 4 . The above ℓ^{∞} -

[^0]condition was weakened by Cantor [2] (see also [3, Corollaire 5.2] or [1, Theorem 5.1.3]) to
$$
\sup _{n \geq 0}\left|\varepsilon_{n}\right| \leq \frac{1}{e(\theta+1)^{2}(2+\sqrt{\log \lambda})}
$$

Pisot's ℓ^{2}-condition on $\left\{\varepsilon_{n}\right\}$ mentioned above can be replaced by an inequality of the type $\left|\varepsilon_{n}\right| \leq c / \sqrt{n}$ for all sufficiently large n with some constant $c>0$. This type of inequality was first discussed by Gelfond [4] in a more general situation and his result was generalized by Környei [6]. An effective inequality was given by Decomps-Guilloux and Grandet-Hugot [3, Théorème 3.1]; they showed that, if

$$
\left|\varepsilon_{n}\right| \leq \frac{1}{2 \sqrt{2}(\theta+1)^{2} \sqrt{n}}
$$

for $n \geq n_{0}$, then $\theta \in S$ and $\lambda \in \mathbb{Q}(\theta)$. See also [1, Theorem 5.4.4]. This can now be improved as follows:

Theorem. If

$$
\limsup _{n \rightarrow \infty} \sqrt{n}\left|\varepsilon_{n}\right|<\frac{c}{\theta^{2}}
$$

with

$$
c=\exp \left(-\frac{1}{2} \int_{0}^{1} \log \log \left(1+\frac{1}{x}\right) d x\right)=0.90258454 \ldots
$$

then $\theta \in S$ and $\lambda \in \mathbb{Q}(\theta)$.
Proof. There exist an integer N and $\alpha \in(0, c)$ satisfying $\left|\varepsilon_{n}\right|<\alpha \theta^{-2} n^{-1 / 2}$ for all $n \geq N$. Let D_{n} be the Kronecker determinant for $\left\{a_{n}\right\}$, that is,

$$
D_{n}=\left|\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right|
$$

We have immediately
$(-1)^{n+1} D_{n}=\left|\begin{array}{cccc}\varepsilon_{0}-\lambda & \varepsilon_{1}-\lambda \theta & \cdots & \varepsilon_{n}-\lambda \theta^{n} \\ \varepsilon_{1}-\lambda \theta & \varepsilon_{2}-\lambda \theta^{2} & \cdots & \varepsilon_{n+1}-\lambda \theta^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_{n}-\lambda \theta^{n} & \varepsilon_{n+1}-\lambda \theta^{n+1} & \cdots & \varepsilon_{2 n}-\lambda \theta^{2 n}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
\varepsilon_{0} & \cdots & \varepsilon_{n} \\
\varepsilon_{1} & \cdots & \varepsilon_{n+1} \\
\vdots & \ddots & \vdots \\
\varepsilon_{n} & \cdots & \varepsilon_{2 n}
\end{array}\right|-\lambda \sum_{i=0}^{n}(-\theta)^{i}\left|\begin{array}{ccccccc}
1 & \varepsilon_{0} & \cdots & \varepsilon_{i-1} & \varepsilon_{i+1} & \cdots & \varepsilon_{n} \\
\theta & \varepsilon_{1} & \cdots & \varepsilon_{i} & \varepsilon_{i+2} & \cdots & \varepsilon_{n+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\theta^{n} & \varepsilon_{n} & \cdots & \varepsilon_{i+n-1} & \varepsilon_{i+n+1} & \cdots & \varepsilon_{2 n}
\end{array}\right| .
$$

For brevity we denote the determinants on the right-hand side by $A_{n}, B_{n}^{(i)}$ respectively. It then follows from Hadamard's inequality that

$$
\begin{aligned}
\left|B_{n}^{(i)}\right|^{2} & \leq\left(\sum_{i=0}^{n} \theta^{2 i}\right) \prod_{\substack{j=0 \\
j \neq i}}^{n} \sum_{k=0}^{n} \varepsilon_{j+k}^{2} \\
& <\frac{2 \theta^{2 n+2}}{\theta^{2}-1}\left(\frac{\alpha}{\theta^{2}}\right)^{2(n-N+1)}(n+1)^{N} \prod_{j=N}^{n}\left(S_{j+n}-S_{j-1}\right)
\end{aligned}
$$

for all $n \geq N$, since $\left|\varepsilon_{m}\right|<1$ and $S_{j+n}-S_{j-1}>1 / 2$, where

$$
S_{m}=1+\frac{1}{2}+\cdots+\frac{1}{m}
$$

Now we put

$$
S_{m}=\log m+\gamma+\eta_{m} / m
$$

where γ is Euler's constant. Using the formula

$$
1-\gamma=\int_{1}^{\infty} \frac{\{t\}}{t^{2}} d t
$$

where $\{t\}$ denotes the fractional part of t, we obtain

$$
0<\eta_{m}=m\left(S_{m}-\log m-\gamma\right)=m \int_{m}^{\infty} \frac{\{t\}}{t^{2}} d t<m \int_{m}^{\infty} \frac{d t}{t^{2}}=1
$$

Therefore

$$
\begin{aligned}
\log \left(S_{j+n}-S_{j-1}\right) & =\log \left(\log \left(1+\frac{n}{j}\right)+\frac{\eta_{j+n}}{j+n}+\frac{1-\eta_{j}}{j}\right) \\
& =\log \log \left(1+\frac{n}{j}\right)+\frac{\omega_{j, n}}{j}
\end{aligned}
$$

where
$0<\omega_{j, n}=j \log \left(1+\frac{\eta_{j+n} /(j+n)+\left(1-\eta_{j}\right) / j}{\log (1+n / j)}\right)<j \log \left(1+\frac{2}{j \log 2}\right)<\frac{2}{\log 2}$ for any $N \leq j \leq n$. We thus have

$$
\frac{2}{n} \log \left|B_{n}^{(i)}\right|<2 \log \left(\frac{\alpha}{\theta}\right)+\frac{1}{n} \sum_{j=N}^{n} \log \log \left(1+\frac{n}{j}\right)+O\left(\frac{\log n}{n}\right) \quad(n \rightarrow \infty)
$$

The second term on the right-hand side is almost the Riemann sum for the improper integral $\int_{0}^{1} \log \log (1+1 / x) d x$ and it can be easily verified that the Riemann sum actually converges to this integral. Since the above estimate is uniform in i,

$$
\max _{0 \leq i \leq n}\left|B_{n}^{(i)}\right|<\left(\frac{\alpha}{c \theta}\right)^{n} e^{o(n)} \quad(n \rightarrow \infty)
$$

and similarly

$$
\left|A_{n}\right|<\left(\frac{\alpha}{c \theta^{2}}\right)^{n} e^{o(n)} \quad(n \rightarrow \infty) .
$$

Hence we get

$$
\begin{aligned}
\left|D_{n}\right| & <\left|A_{n}\right|+\lambda \frac{\theta^{n+1}}{\theta-1} \max _{0 \leq i \leq n}\left|B_{n}^{(i)}\right| \\
& <\left(1+\frac{\lambda \theta}{\theta-1}\right)\left(\frac{\alpha}{c}\right)^{n} e^{o(n)} \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

It thus follows that $D_{n}=0$ for all sufficiently large n, since $D_{n} \in \mathbb{Z}$. Finally, the conclusion of the theorem will be obtained by the same method as in Pisot [7]. This completes the proof.

Acknowledgements. The author would like to thank the referee for suggesting some minor points.

References

[1] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Basel, 1992.
[2] D. G. Cantor, On power series with only finitely many coefficients $(\bmod 1)$: Solution of a problem of Pisot and Salem, Acta Arith. 34 (1977), 43-55.
[3] A. Decomps-Guilloux et M. Grandet-Hugot, Nouvelles caractérisations des nombres de Pisot et de Salem, ibid. 50 (1988), 155-170.
[4] A. O. Gelfond, On fractional parts of linear combinations of polynomials and exponential functions, Rec. Math. [Mat. Sb.] 9 (51) (1941), 721-726 (in Russian).
[5] G. H. Hardy, A problem of Diophantine approximation, J. Indian Math. Soc. 11 (1919), 162-166.
[6] I. Környei, On a theorem of Pisot, Publ. Math. Debrecen 34 (1987), 169-179.
[7] Ch. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa (2) 7 (1938), 205-248.
[8] -, Répartition $(\bmod 1)$ des puissances successives des nombres réels, Comment. Math. Helv. 19 (1946), 153-160.
[9] Ch. Pisot and R. Salem, Distribution modulo 1 of the powers of real numbers larger than 1, Compositio Math. 16 (1964), 164-168.
[10] R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103-108.
[11] C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle, ibid., 597-602.
[12] A. Thue, Über eine Eigenschaft, die keine transcendente Grösse haben kann, Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl. 20 (1912), 1-15; also in: Selected Mathematical Papers of Axel Thue, with an introduction by C. L. Siegel; ed. by T. Nagell et al., Universitetforlaget, Oslo, 1977, 479-491.

Department of Mathematics
Faculty of Sciences
Kyoto University
Kyoto 606-8501, Japan
E-mail: hata@math.kyoto-u.ac.jp

Received on 6.12.2004
and in revised form on 12.5.2005

[^0]: 2000 Mathematics Subject Classification: Primary 11R06.
 Key words and phrases: PV-numbers, small fractional parts.

