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On torsion in J1(N)
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1. The modular curves. LetN be a prime ≥ 13, and letX1(N) denote
the non-singular projective curve over Q associated to the moduli problem:

Classify, up to isomorphism, pairs (E,P ) where E is an elliptic curve,
and P is a point of E of order N .

We let X0(N) denote the non-singular projective curve over Q classifying
isomorphism classes of pairs (E,C) where E is an elliptic curve, and C is a
cyclic subgroup of E of order N .

The complex points ofX0(N) may be viewed as the points of the compact
Riemann surface Γ0(N)\H∗, where H∗ = P1(Q)∪H is the completed upper
half plane upon which

Γ0(N) =

{(
a b

c d

)
∈ PSL2(Z) : c ≡ 0 (modN)

}

acts via fractional linear transformations. Similarly the complex points of
X1(N) are the points of the compact Riemann surface Γ1(N)\H∗ where

Γ1(N) =

{(
a b

c d

)
∈ Γ0(N) : a ≡ d ≡ 1 (modN)

}
.

From either point of view it is clear thatX1(N) is a cyclic cover ofX0(N)
with covering group △ isomorphic to (Z/NZ)∗/(±1). The covering map
π : X1(N) → X0(N) is given, on non-cuspidal points, by π(E,P ) = (E,CP )
where CP is the subgroup of E generated by P . We denote by 〈a〉 the element
of △ which acts on a non-cuspidal point (E,P ) by 〈a〉(E,P ) = (E, aP ).

The curve X0(N)/Q has two cusps 0 and ∞, each rational over Q.
The cusps are unramified in the cover X1(N) → X0(N), so there are
(N − 1)/2 cusps of X1(N) lying above the cusp 0 ∈ X0(N). We call these
the 0-cusps. Similarly there are (N − 1)/2 cusps lying above ∞. We call
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these the ∞-cusps of X1(N). We work with a model of X1(N) in which the
0-cusps are Q-rational, and the ∞-cusps are rational in Q(ζN )+.

2. The jacobians and Hecke operators. We denote by J1(N) (re-
spectively, J0(N)) the jacobian of the modular curve X1(N)/Q (resp.,
X0(N)/Q). The abelian variety J0(N) is semi-stable over Q, and has bad
reduction only at the prime N . The abelian variety J1(N)/Q also has good
reduction away from the prime N , but we can say even more. Let S =
Spec Z[1/N ], and regard all of our varieties as schemes over S. The maximal
étale cover X2(N) → X0(N) that is intermediate for the cover X1(N) →
X0(N) has covering group D isomorphic to the unique quotient of △ of or-
der n = num((N − 1)/12). The map π : X1(N) → X0(N) induces, via Pic◦

functoriality, a map π∗ : J0(N) → J1(N) whose kernel is Cartier dual to D
(regarded as a constant group scheme over S). The quotient abelian variety
A = J1(N)/π∗J0(N) attains everywhere good reduction over Q(ζN )+.

We embed X1(N) into J1(N), sending a 0-cusp to 0 ∈ J1(N). The divisor
classes supported only at the 0-cusps form a finite subgroup C of J1(N)(Q)
of order M = N ·Π

(
1
4B2,ε

)
(see [3]), where the product is taken over all even

characters ε of (Z/NZ)∗. The odd primes p in the support of some B2,ε are
precisely the odd prime divisors of M . We call these p the cuspidal primes.

The automorphism group of X1(N) is isomorphic to the dihedral group
DN−1 of order N−1. It is generated by the covering group △, and any lift wζ

of the Atkin–Lehner involution w (of X0(N)) to X1(N). The involutions wζ

switch the 0-cusps and the ∞-cusps, so the latter also generate a subgroup
of order M in J1(N). The points of this subgroup are rational in Q(ζN )+.

The standard Hecke operators Tl (l a prime 6= N) and UN act as cor-
respondences on the curve X1(N)/Q. As such they induce endomorphisms
of the jacobian J1(N). We define the Hecke algebra T to be the algebra of
endomorphisms of J1(N) generated over Z by the Tl (l 6= N), UN , and △.
It is a commutative ring of finite type over Z, and all of its elements are
defined over Q. The Hecke algebra T preserves π∗J0(N), and induces an
algebra (again denoted by T) of endomorphisms of the quotient A.

Since J1(N) and A have good reduction away from N their Néron models
J/S and A/S over S are abelian schemes. We denote their fibers at l by J/Fl

and A/Fl
, respectively. The fibers J/Fl

and A/Fl
inherit an action of the

appropriate Hecke algebra T from the induced action of T on the Néron
models. The Eichler–Shimura relation

Tl = Frobl +
l〈l〉

Frobl

holds in End(J/Fl
) (resp., End(A/Fl

)). We can lift this relation to the p-

divisible group Jp(Q) (resp., Ap(Q)) where p is any prime 6= l, N , as well
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as to any étale subgroup of Jl(Q) (resp., Al(Q)). Of course, in the original
equation Frobl is the Frobenius endomorphism of the group scheme J/Fl

(resp., A/Fl
), while in the lift Frobl is any l-Frobenius automorphism in

Gal(Q/Q).

3. Rational torsion in A and maximal ideals of the Hecke al-

gebra. Let K be a degree d Galois extension of Q with Galois group G =
Gal(K/Q). We suppose that K is disjoint from Q(ζN )+, and that there ex-
ists a K-rational point P ∈ A(K) of odd prime order p. We also suppose
that p > d+ 1, and that p 6= N .

We let V be the (T/pT)[G] span of P , and fix an irreducible submodule
W of V . Since W is irreducible its annihilator (in T) is a maximal ideal M.
We write k for the residue field T/M, and note that k is a finite field of
characteristic p. Finally, we let A[M] denote the kernel of the ideal M acting
on A, i.e., A[M] =

⋂
α∈MA[α].

Proposition 3.1. A[M]ét/Fp
is a k-vector group scheme of rank one.

Proof. Let O be the ring of integers of the completion of K at a prime
of residue characteristic p, and let R = SpecO. Since p 6= N the Néron
model A/R of A over R is an abelian scheme, and the Zariski closure W/R

of W in A/R is a finite flat group scheme. Moreover, since d < p− 1 we see

immediately that W/R is an étale group scheme (see [7]), and so A[M]ét/Fp
is

non-zero.
Now following [5], we recall that there is a canonical isomorphism

δ : J1(N)[p](Fp) → H◦(X1(N)/Fp
, Ω1)C

where the right hand side consists of those elements fixed by the Cartier
operator C. This isomorphism induces an injection

J1(N)[M](Fp) ⊗Fp
Fp →֒ H◦(X1(N)/Fp

, Ω1)[M].

The q-expansion principle (see [2]) shows that the right hand side injects
into the module B of q-expansions of weight two cusp forms with coeffi-
cients in Fp. The submodule B[M] is a one-dimensional k-vector space. The
proposition follows immediately.

As a corollary we obtain

Corollary 3.2. W/S is a one-dimensional k-vector group scheme.

It follows from Corollary 3.2 that the Gal(Q/Q) representation on W is
given by a character

ψ : Gal(Q/Q) → k∗

that is unramified away from p and N . Let OQ(ζN )+ denote the integer ring
of Q(ζN )+, and let T = SpecOQ(ζN )+ . The Galois representation on W/T is
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ramified only at primes above p, so ψ is a product ψ = χε of a character
ε of Gal(Q(ζN )+/Q) with a character χ : Gal(Q/Q) → k∗ that is ramified
only at p. We twist W by tensoring with (Z/pZ ⊗ k)[ε−1] to obtain a rank
one k-vector group scheme X = W ⊗ (Z/pZ ⊗ k)[ε−1] that is ramified only
at p. Applying [7] (or even [6]), and using the fact that p is unramified in
Q(ζN )+, we see that X/T must be either Z/pZ⊗k or µp ⊗k. However, since
W is étale the latter is clearly impossible, and so X/T ≈ (Z/pZ ⊗ k)/T and
W/S ≈ (Z/pZ ⊗ k)[ε]. Finally, we note that (Z/pZ ⊗ k)[ε] does not have its
points rational over K unless ε = 1.

Theorem 3.3. Let K be a degree d Galois number field that is disjoint

from Q(ζN )+, and let P be a K-rational point of A of order p. If p > d+ 1,
and p 6= N , then the prime p is cuspidal.

Proof. The covering group △ acts on the submoduleW via an even char-
acter η of (Z/NZ)∗. The Eichler–Shimura relation shows that the elements
Tl − (1 + lη(l)) (for l 6= N) annihilate W , and so lie in M. Write TN for
UN , and let ϕ =

∑
n>0 Tnq

n ∈ T[[q]] be the q-expansion of the weight two
cusp form (on Γ1(N) over T) whose existence follows from the q-expansion
principle (see [1]). We also let

g =
−B2,η

2
+

∑

n>0

( ∑

d|n

η(d) · d
)
qn

be the usual weight two Eisenstein series on Γ0(N, η). Then

ϕ− g ≡
B2,η

2
+ h(qN) (modM),

i.e., the right hand side is a function f̃ of qN . The modular form f̃ is the
push-up of a weight two holomorphic modular form on Γ1(1) over k. Since
p > 3 such a modular form must be zero (see [2], [4], [5], [9]). Thus, modulo
M, all Hecke operators are congruent to elements in Z[η], and B2,η must lie
in the ideal M. It follows that p is a cuspidal prime.

4. The exceptional cases and the case d = 2. If p = N then much of
what we have done will often still work. For our group scheme arguments we
need to assume that the ramification degree of N in K ·Q(ζN )+ is < N − 1.
Thus, we assume either that N is unramified in K or that K ⊆ Q(ζN )+.
Lemma 5.3 of [1], together with the arguments of §3, shows that if P has
order N then P is annihilated by the Eisenstein ideal of T. Theorem 7.2 of
[10], in place of Proposition 3.1, may then be used to show that P actually
lies in the cuspidal divisor class group of J1(N). In particular, N must be
an irregular prime.
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Finally, we restrict our attention to the case where d = [K : Q] = 2.
We let σ be the non-trivial element of Gal(K/Q) and suppose that there
exists a K-rational p-torsion point P on A for some prime p 6= 2, 3. Either
P + P σ is 0, or P + P σ is a non-trivial p-torsion point in A(Q). In the
latter case our arguments, applied to P + P σ, show that the point P + P σ

actually lies in the cuspidal group C as long as p 6= 2. If P +P σ is 0 then P
generates a Gal(K/Q)-invariant submodule Y of A(K) of order p. Applying
our arguments to Y in place of W shows that p is cuspidal.

We have thus far excluded points on π∗J0(N). In order to study these
we recall that the isogeny

J0(N) → π∗J0(N)

has kernel of order n = num((N − 1)/12). This is also the order of the
cuspidal group on J0(N). We regard T as an algebra of endomorphisms
of J0(N), and let M be a maximal ideal of T. Mazur [5] has shown that
kerM is a two-dimensional k = T/M-vector space. Ribet [8] has shown that
if M is a non-Eisenstein maximal ideal then the image of the Gal(Q/Q)-
representation on kerM contains SL2(k). We suppose that, for some prime
p not dividing n, there exists a K-rational p-torsion point P on J0(N). As
before, we let V be the T/pT[G]-module spanned by P, W an irreducible
submodule, and M the annihilator (in T) of W . Then the image of the
Gal(K/K)-representation on kerM is, for a suitable choice of basis, of the
form (

1 ∗

0 χ

)
.

It follows that K must be an extension of Q of degree d > p + 1. Thus, if,
as we assumed, d < p− 1 the point P cannot exist.

Remark. The techniques of §3 can be used to show that the kernel of
any non-Eisenstein maximal ideal M of T (acting on J1(N)) is irreducible
as a Gal(Q/Q)-module. This provides an alternate proof for the case d = 2,
since an irreducible Galois representation will not admit a trivial subspace
over an extension of degree 2 when p > 3.
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