On torsion in $J_1(N)$

by

S. KAMIENNY (Los Angeles, CA)

1. The modular curves. Let N be a prime ≥ 13 , and let $X_1(N)$ denote the non-singular projective curve over \mathbb{Q} associated to the *moduli problem*:

Classify, up to isomorphism, pairs (E, P) where E is an elliptic curve, and P is a point of E of order N.

We let $X_0(N)$ denote the non-singular projective curve over \mathbb{Q} classifying isomorphism classes of pairs (E, C) where E is an elliptic curve, and C is a cyclic subgroup of E of order N.

The complex points of $X_0(N)$ may be viewed as the points of the compact Riemann surface $\Gamma_0(N) \setminus \mathbf{H}^*$, where $\mathbf{H}^* = \mathbb{P}^1(\mathbb{Q}) \cup \mathbf{H}$ is the completed upper half plane upon which

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

acts via fractional linear transformations. Similarly the complex points of $X_1(N)$ are the points of the compact Riemann surface $\Gamma_1(N) \setminus \mathbf{H}^*$ where

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) : a \equiv d \equiv 1 \pmod{N} \right\}.$$

From either point of view it is clear that $X_1(N)$ is a cyclic cover of $X_0(N)$ with covering group \triangle isomorphic to $(\mathbb{Z}/N\mathbb{Z})^*/(\pm 1)$. The covering map $\pi : X_1(N) \to X_0(N)$ is given, on non-cuspidal points, by $\pi(E, P) = (E, C_P)$ where C_P is the subgroup of E generated by P. We denote by $\langle a \rangle$ the element of \triangle which acts on a non-cuspidal point (E, P) by $\langle a \rangle (E, P) = (E, aP)$.

The curve $X_0(N)_{\mathbb{Q}}$ has two cusps 0 and ∞ , each rational over \mathbb{Q} . The cusps are unramified in the cover $X_1(N) \to X_0(N)$, so there are (N-1)/2 cusps of $X_1(N)$ lying above the cusp $0 \in X_0(N)$. We call these the 0-*cusps*. Similarly there are (N-1)/2 cusps lying above ∞ . We call

²⁰⁰⁰ Mathematics Subject Classification: 11G18, 14G35.

these the ∞ -cusps of $X_1(N)$. We work with a model of $X_1(N)$ in which the 0-cusps are \mathbb{Q} -rational, and the ∞ -cusps are rational in $\mathbb{Q}(\zeta_N)^+$.

2. The jacobians and Hecke operators. We denote by $J_1(N)$ (respectively, $J_0(N)$) the jacobian of the modular curve $X_1(N)_{/\mathbb{Q}}$ (resp., $X_0(N)_{/\mathbb{Q}}$). The abelian variety $J_0(N)$ is semi-stable over \mathbb{Q} , and has bad reduction only at the prime N. The abelian variety $J_1(N)_{/\mathbb{Q}}$ also has good reduction away from the prime N, but we can say even more. Let $S = \text{Spec }\mathbb{Z}[1/N]$, and regard all of our varieties as schemes over S. The maximal étale cover $X_2(N) \to X_0(N)$ that is intermediate for the cover $X_1(N) \to X_0(N)$ has covering group D isomorphic to the unique quotient of \triangle of order n = num((N-1)/12). The map $\pi : X_1(N) \to X_0(N)$ induces, via Pic^o functoriality, a map $\pi^* : J_0(N) \to J_1(N)$ whose kernel is Cartier dual to D (regarded as a constant group scheme over S). The quotient abelian variety $A = J_1(N)/\pi^*J_0(N)$ attains everywhere good reduction over $\mathbb{Q}(\zeta_N)^+$.

We embed $X_1(N)$ into $J_1(N)$, sending a 0-cusp to $0 \in J_1(N)$. The divisor classes supported only at the 0-cusps form a finite subgroup C of $J_1(N)(\mathbb{Q})$ of order $M = N \cdot \Pi(\frac{1}{4}\mathbb{B}_{2,\varepsilon})$ (see [3]), where the product is taken over all even characters ε of $(\mathbb{Z}/N\mathbb{Z})^*$. The odd primes p in the support of some $\mathbb{B}_{2,\varepsilon}$ are precisely the odd prime divisors of M. We call these p the cuspidal primes.

The automorphism group of $X_1(N)$ is isomorphic to the dihedral group D_{N-1} of order N-1. It is generated by the covering group \triangle , and any lift w_{ζ} of the Atkin–Lehner involution w (of $X_0(N)$) to $X_1(N)$. The involutions w_{ζ} switch the 0-cusps and the ∞ -cusps, so the latter also generate a subgroup of order M in $J_1(N)$. The points of this subgroup are rational in $\mathbb{Q}(\zeta_N)^+$.

The standard Hecke operators T_l $(l \ a \ prime \neq N)$ and U_N act as correspondences on the curve $X_1(N)_{/\mathbb{Q}}$. As such they induce endomorphisms of the jacobian $J_1(N)$. We define the *Hecke algebra* \mathbb{T} to be the algebra of endomorphisms of $J_1(N)$ generated over \mathbb{Z} by the T_l $(l \neq N)$, U_N , and \triangle . It is a commutative ring of finite type over \mathbb{Z} , and all of its elements are defined over \mathbb{Q} . The Hecke algebra \mathbb{T} preserves $\pi^* J_0(N)$, and induces an algebra (again denoted by \mathbb{T}) of endomorphisms of the quotient A.

Since $J_1(N)$ and A have good reduction away from N their Néron models $J_{/S}$ and $A_{/S}$ over S are abelian schemes. We denote their fibers at l by $J_{/\mathbb{F}_l}$ and $A_{/\mathbb{F}_l}$, respectively. The fibers $J_{/\mathbb{F}_l}$ and $A_{/\mathbb{F}_l}$ inherit an action of the appropriate Hecke algebra \mathbb{T} from the induced action of \mathbb{T} on the Néron models. The Eichler–Shimura relation

$$T_l = \operatorname{Frob}_l + \frac{l\langle l \rangle}{\operatorname{Frob}_l}$$

holds in $\operatorname{End}(J_{\mathbb{F}_l})$ (resp., $\operatorname{End}(A_{/\mathbb{F}_l})$). We can lift this relation to the *p*divisible group $J_p(\overline{\mathbb{Q}})$ (resp., $A_p(\overline{\mathbb{Q}})$) where *p* is any prime $\neq l, N$, as well as to any étale subgroup of $J_l(\overline{\mathbb{Q}})$ (resp., $A_l(\overline{\mathbb{Q}})$). Of course, in the original equation Frob_l is the Frobenius endomorphism of the group scheme $J_{/\mathbb{F}_l}$ (resp., $A_{/\mathbb{F}_l}$), while in the lift Frob_l is any *l*-Frobenius automorphism in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

3. Rational torsion in A and maximal ideals of the Hecke algebra. Let K be a degree d Galois extension of \mathbb{Q} with Galois group $G = \text{Gal}(K/\mathbb{Q})$. We suppose that K is disjoint from $\mathbb{Q}(\zeta_N)^+$, and that there exists a K-rational point $P \in A(K)$ of odd prime order p. We also suppose that p > d + 1, and that $p \neq N$.

We let V be the $(\mathbb{T}/p\mathbb{T})[G]$ span of P, and fix an irreducible submodule W of V. Since W is irreducible its annihilator (in \mathbb{T}) is a maximal ideal \mathcal{M} . We write k for the residue field \mathbb{T}/\mathcal{M} , and note that k is a finite field of characteristic p. Finally, we let $A[\mathcal{M}]$ denote the kernel of the ideal \mathcal{M} acting on A, i.e., $A[\mathcal{M}] = \bigcap_{\alpha \in \mathcal{M}} \mathcal{A}[\alpha]$.

PROPOSITION 3.1. $A[\mathcal{M}]_{/\mathbb{F}_n}^{\text{ét}}$ is a k-vector group scheme of rank one.

Proof. Let O be the ring of integers of the completion of K at a prime of residue characteristic p, and let $R = \operatorname{Spec} O$. Since $p \neq N$ the Néron model $A_{/R}$ of A over R is an abelian scheme, and the Zariski closure $W_{/R}$ of W in $A_{/R}$ is a finite flat group scheme. Moreover, since d we see $immediately that <math>W_{/R}$ is an étale group scheme (see [7]), and so $A[\mathcal{M}]_{/\mathbb{F}_p}^{\text{ét}}$ is non-zero.

Now following [5], we recall that there is a canonical isomorphism

$$\delta: J_1(N)[p](\overline{\mathbb{F}}_p) \to H^{\circ}(X_1(N)_{/\mathbb{F}_p}, \Omega^1)^{\mathcal{C}}$$

where the right hand side consists of those elements fixed by the Cartier operator C. This isomorphism induces an injection

$$J_1(N)[\mathcal{M}](\overline{\mathbb{F}}_p) \otimes_{\mathbb{F}_p} \overline{\mathbb{F}}_p \hookrightarrow H^{\circ}(X_1(N)_{/\overline{\mathbb{F}}_p}, \Omega^1)[\mathcal{M}].$$

The q-expansion principle (see [2]) shows that the right hand side injects into the module B of q-expansions of weight two cusp forms with coefficients in $\overline{\mathbb{F}}_p$. The submodule $B[\mathcal{M}]$ is a one-dimensional k-vector space. The proposition follows immediately.

As a corollary we obtain

COROLLARY 3.2. $W_{/S}$ is a one-dimensional k-vector group scheme.

It follows from Corollary 3.2 that the $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ representation on W is given by a character

$$\psi: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to k^*$$

that is unramified away from p and N. Let $O_{\mathbb{Q}(\zeta_N)^+}$ denote the integer ring of $\mathbb{Q}(\zeta_N)^+$, and let $T = \operatorname{Spec} O_{\mathbb{Q}(\zeta_N)^+}$. The Galois representation on $W_{/T}$ is ramified only at primes above p, so ψ is a product $\psi = \chi \varepsilon$ of a character ε of $\operatorname{Gal}(\mathbb{Q}(\zeta_N)^+/\mathbb{Q})$ with a character $\chi : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to k^*$ that is ramified only at p. We twist W by tensoring with $(\mathbb{Z}/p\mathbb{Z} \otimes k)[\varepsilon^{-1}]$ to obtain a rank one k-vector group scheme $X = W \otimes (\mathbb{Z}/p\mathbb{Z} \otimes k)[\varepsilon^{-1}]$ that is ramified only at p. Applying [7] (or even [6]), and using the fact that p is unramified in $\mathbb{Q}(\zeta_N)^+$, we see that $X_{/T}$ must be either $\mathbb{Z}/p\mathbb{Z} \otimes k$ or $\mu_p \otimes k$. However, since W is étale the latter is clearly impossible, and so $X_{/T} \approx (\mathbb{Z}/p\mathbb{Z} \otimes k)_{/T}$ and $W_{/S} \approx (\mathbb{Z}/p\mathbb{Z} \otimes k)[\varepsilon]$. Finally, we note that $(\mathbb{Z}/p\mathbb{Z} \otimes k)[\varepsilon]$ does not have its points rational over K unless $\varepsilon = 1$.

THEOREM 3.3. Let K be a degree d Galois number field that is disjoint from $\mathbb{Q}(\zeta_N)^+$, and let P be a K-rational point of A of order p. If p > d+1, and $p \neq N$, then the prime p is cuspidal.

Proof. The covering group \triangle acts on the submodule W via an even character η of $(\mathbb{Z}/N\mathbb{Z})^*$. The Eichler–Shimura relation shows that the elements $T_l - (1 + l\eta(l))$ (for $l \neq N$) annihilate W, and so lie in \mathcal{M} . Write T_N for U_N , and let $\varphi = \sum_{n>0} T_n q^n \in \mathbb{T}[[q]]$ be the q-expansion of the weight two cusp form (on $\Gamma_1(N)$ over \mathbb{T}) whose existence follows from the q-expansion principle (see [1]). We also let

$$g = \frac{-\mathbb{B}_{2,\eta}}{2} + \sum_{n>0} \left(\sum_{d|n} \eta(d) \cdot d\right) q^n$$

be the usual weight two Eisenstein series on $\Gamma_0(N,\eta)$. Then

$$\varphi - g \equiv \frac{\mathbb{B}_{2,\eta}}{2} + h(q^N) \pmod{\mathcal{M}},$$

i.e., the right hand side is a function \tilde{f} of q^N . The modular form \tilde{f} is the push-up of a weight two holomorphic modular form on $\Gamma_1(1)$ over k. Since p > 3 such a modular form must be zero (see [2], [4], [5], [9]). Thus, modulo \mathcal{M} , all Hecke operators are congruent to elements in $\mathbb{Z}[\eta]$, and $\mathbb{B}_{2,\eta}$ must lie in the ideal \mathcal{M} . It follows that p is a cuspidal prime.

4. The exceptional cases and the case d = 2. If p = N then much of what we have done will often still work. For our group scheme arguments we need to assume that the ramification degree of N in $K \cdot \mathbb{Q}(\zeta_N)^+$ is $\langle N - 1$. Thus, we assume either that N is unramified in K or that $K \subseteq \mathbb{Q}(\zeta_N)^+$. Lemma 5.3 of [1], together with the arguments of §3, shows that if P has order N then P is annihilated by the Eisenstein ideal of \mathbb{T} . Theorem 7.2 of [10], in place of Proposition 3.1, may then be used to show that P actually lies in the cuspidal divisor class group of $J_1(N)$. In particular, N must be an irregular prime. Finally, we restrict our attention to the case where $d = [K : \mathbb{Q}] = 2$. We let σ be the non-trivial element of $\operatorname{Gal}(K/\mathbb{Q})$ and suppose that there exists a K-rational p-torsion point P on A for some prime $p \neq 2, 3$. Either $P + P^{\sigma}$ is 0, or $P + P^{\sigma}$ is a non-trivial p-torsion point in $A(\mathbb{Q})$. In the latter case our arguments, applied to $P + P^{\sigma}$, show that the point $P + P^{\sigma}$ actually lies in the cuspidal group C as long as $p \neq 2$. If $P + P^{\sigma}$ is 0 then P generates a $\operatorname{Gal}(K/\mathbb{Q})$ -invariant submodule Y of A(K) of order p. Applying our arguments to Y in place of W shows that p is cuspidal.

We have thus far excluded points on $\pi^* J_0(N)$. In order to study these we recall that the isogeny

$$J_0(N) \to \pi^* J_0(N)$$

has kernel of order $n = \operatorname{num}((N-1)/12)$. This is also the order of the cuspidal group on $J_0(N)$. We regard \mathbb{T} as an algebra of endomorphisms of $J_0(N)$, and let \mathcal{M} be a maximal ideal of \mathbb{T} . Mazur [5] has shown that ker \mathcal{M} is a two-dimensional $k = \mathbb{T}/\mathcal{M}$ -vector space. Ribet [8] has shown that if \mathcal{M} is a non-Eisenstein maximal ideal then the image of the $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ representation on ker \mathcal{M} contains $\operatorname{SL}_2(k)$. We suppose that, for some prime p not dividing n, there exists a K-rational p-torsion point P on $J_0(N)$. As before, we let V be the $\mathbb{T}/p\mathbb{T}[G]$ -module spanned by P, W an irreducible submodule, and \mathcal{M} the annihilator (in \mathbb{T}) of W. Then the image of the $\operatorname{Gal}(\overline{K}/K)$ -representation on ker \mathcal{M} is, for a suitable choice of basis, of the form

$$\begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}.$$

It follows that K must be an extension of \mathbb{Q} of degree d > p + 1. Thus, if, as we assumed, d the point P cannot exist.

REMARK. The techniques of §3 can be used to show that the kernel of any non-Eisenstein maximal ideal \mathcal{M} of \mathbb{T} (acting on $J_1(N)$) is irreducible as a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -module. This provides an alternate proof for the case d = 2, since an irreducible Galois representation will not admit a trivial subspace over an extension of degree 2 when p > 3.

References

- S. Kamienny, Rational points on modular curves, J. Reine Angew. Math. 359 (1985), 174–187.
- N. Katz, p-adic properties of modular schemes and modular forms, in: Lecture Notes in Math. 350, Springer, 1973, 69–190.
- [3] D. Kubert and S. Lang, *Modular Units*, Springer, 1981.
- [4] S. Lang, Introduction to Modular Forms, Springer, 1976.

S. Kamienny

- [5] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S. 47 (1978), 33–186.
- [6] F. Oort and J. Tate, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21.
- [7] M. Raynand, Schémas en groupes de type (p,...,p), Bull. Soc. Math. France 102 (1974), 241–280.
- [8] K. Ribet, Images of semistable Galois representations, Pacific J. Math. 81 (1997), 277–297.
- J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in: Lecture Notes in Math. 350, Springer, 1973, 191–268.
- [10] A. Wiles, Modular curves and the class group of $\mathbb{Q}(\zeta_p)$, Invent. Math. 58 (1980), 1–35.

Department of Mathematics University of Southern California 3620 S. Vermont Avenue Los Angeles, CA 90089-2532, U.S.A. E-mail: kamienny@usc.edu

Received on 4.1.2005

(4920)