Linear independence of certain Lambert and allied series

by

Peter Bundschuh (Köln) and Keijo VäÄnänen (Oulu)

1. Introduction. In our recent work [3] we considered linear independence of q-analogues of certain classical constants connected with Lambert series

$$
F(\underline{a}):=\sum_{n=1}^{\infty} \frac{a_{n}}{q^{n}-1}
$$

where q is a rational integer or an integer in an imaginary quadratic number field satisfying $|q|>1$, and $\underline{a}:=\left(a_{n}\right)$ is a non-zero periodic sequence of period length ≤ 2 with all a_{n} in the same field as above. Our results gave quantitative refinements of some results of Tachiya [7], e.g., a linear independence measure $2\left(\pi^{2}+4\right) /\left(\pi^{2}-8\right)=14.83694 \ldots$ was obtained for $1, F(\underline{a})$ and $F(\underline{b})$ with linearly independent sequences \underline{a} and \underline{b}, giving the same measure for $1, L_{q}(1), L_{q}(-1)$, the values of the q-logarithm L_{q} defined below. Simultaneously and independently, the same measure was obtained by Zudilin [8] using another method based on Padé approximations of the second kind.

In the present paper, our purpose is to extend the results of [3] to more general algebraic numbers q and to

$$
\begin{equation*}
f(\underline{a}, \alpha):=\sum_{n=1}^{\infty} \frac{a_{n}}{q^{n}-\alpha} \tag{1}
\end{equation*}
$$

with $\alpha \in\{1,-1\}$; note that $f(\underline{a}, 1)=F(\underline{a})$. The arithmetic part of the proof depends essentially on the value of α, and the new case $\alpha=-1$ turns out to be much more interesting than the earlier $\alpha=1$. Our present extensions also give new applications.
2. Notations and results. Let q be an algebraic number satisfying $|q|>1$, and let $K:=\mathbb{Q}(q), d:=[K: \mathbb{Q}]$. We shall consider linear independence (over K) of $1, f(\underline{a}, \alpha)$ and $f(\underline{b}, \alpha)$, where $\underline{a}=\left(a_{n}\right)$ and $\underline{b}=\left(b_{n}\right)$ are linearly independent periodic sequences in $K^{\mathbb{N}}$ of period length ≤ 2.

[^0]We shall use the absolute height of $\beta \in K$ defined by

$$
h(\beta):=\prod_{w} \max \left(1,|\beta|_{w}\right)^{d_{w} / d}
$$

where the product is taken over all places w of K, with $\left|\left.\right|_{w}\right.$ denoting the valuation corresponding to w, normalized in the usual way, K_{w} the completion of K at w, and $d_{w}:=\left[K_{w}: \mathbb{Q}_{w}\right]$. For a vector $\underline{\beta}:=\left(\beta_{1}, \ldots, \beta_{n}\right) \in K^{n}$ we define

$$
|\underline{\beta}|_{w}:=\max _{i}\left|\beta_{i}\right|_{w}, \quad h(\underline{\beta}):=\prod_{w} \max \left(1,|\underline{\beta}|_{w}\right)^{d_{w} / d} .
$$

Further, let us denote by v the infinite place with $|q|=|q|_{v}$.
To formulate our results we need the quantity

$$
\begin{equation*}
\lambda:=\frac{d \log h(q)}{d_{v} \log |q|_{v}} \tag{2}
\end{equation*}
$$

Clearly $\lambda \geq 1$ holds always, and $\lambda=1$ if and only if $|q|_{w} \leq 1$ for all places $w \neq v$. For example, if K is \mathbb{Q} or an imaginary quadratic number field and q is an integer in such a K, then $\lambda=1$. Furthermore, $\lambda=1$ holds for all algebraic integers such that $|q|_{w} \leq 1$ for all infinite places $w \neq v$. Examples of such algebraic integers are the elements of the classes S (nowadays called Pisot, or Pisot-Vijayaraghavan, or PV numbers) and T (now called Salem numbers) in terms of Salem's monograph [6] (Chap. I and III, respectively).

In our results we shall use an upper bound $\lambda(\alpha)$ for λ defined by

$$
\lambda(\alpha):= \begin{cases}3 \pi^{2} /\left(2 \pi^{2}+8\right)=1.067399 \ldots & \text { if } \alpha=1 \tag{3}\\ 27 \pi^{2} /\left(19 \pi^{2}+66\right)=1.051107 \ldots & \text { if } \alpha=-1\end{cases}
$$

Theorem 1. Let q be an algebraic number such that $|q|_{v}>1$ and $|q|_{w} \neq 1$ for all infinite places $w \neq v$ of $K=\mathbb{Q}(q)$, and assume that $\underline{a}=\left(a_{n}\right)$ and $\underline{b}=\left(b_{n}\right)$ are linearly independent periodic sequences in $K^{\mathbb{N}}$ of period length ≤ 2. If $\lambda<\lambda(\alpha)$, then the numbers

$$
\begin{equation*}
1, \quad f(\underline{a}, \alpha), \quad f(\underline{b}, \alpha) \tag{4}
\end{equation*}
$$

are linearly independent over K. Moreover, for any $\varepsilon \in \mathbb{R}_{+}$, there exists a positive constant $H_{0}=H_{0}\left(|q|_{v}, \underline{a}, \underline{b}, \alpha, \varepsilon\right)$ such that

$$
\begin{equation*}
\left|\ell_{0}+\ell_{1} f(\underline{a}, \alpha)+\ell_{2} f(\underline{b}, \alpha)\right|_{v}>\left|\left(\ell_{1}, \ell_{2}\right)\right|_{v} H^{-m_{1}(\alpha)-\varepsilon} \tag{5}
\end{equation*}
$$

for all non-zero $\underline{\ell} \in K^{3}$, where $H:=\max \left(h(\underline{\ell}), H_{0}\right)$ and $m_{1}(\alpha)$ is defined by

$$
\frac{d_{v}}{d} m_{1}(\alpha)= \begin{cases}3 \pi^{2} /\left(3 \pi^{2}-2 \lambda\left(\pi^{2}+4\right)\right) & \text { if } \alpha=1 \\ 27 \pi^{2} /\left(27 \pi^{2}-\lambda\left(19 \pi^{2}+66\right)\right) & \text { if } \alpha=-1\end{cases}
$$

Remark. From the proof of this theorem we see that the ε in (5) can be replaced by a positive function of H of size $O\left((\log \log H) /(\log H)^{1 / 2}\right)$ if $\alpha=1$, or of size $O\left((\log \log H)^{2} /(\log H)^{1 / 2}\right)$ if $\alpha=-1$.

As noted after (2), $\lambda=1$ happens in some cases. In such a situation we have

Theorem 2. Let the assumptions of Theorem 1 be satisfied, and suppose further that $|q|_{w} \leq 1$ for all places $w \neq v$ of K. Then the numbers (4) are linearly independent over K, and inequality (5) holds with $m_{1}(\alpha)$ replaced by $m_{2}(\alpha)$, which is defined by

$$
\frac{d_{v}}{d} m_{2}(\alpha)= \begin{cases}3 \pi^{2} /\left(\pi^{2}-8\right) & \text { if } \alpha=1 \\ 27 \pi^{2} /\left(8 \pi^{2}-66\right) & \text { if } \alpha=-1\end{cases}
$$

This theorem has the following corollary containing Tachiya's Theorem 2 (see [7]).

Corollary 1. If q is an algebraic integer, $|q|=|q|_{v}>1$ and $|q|_{w}<1$ for all infinite places $w \neq v$ of K, then the claims of Theorem 2 are true. In particular, for any non-zero periodic sequence $\underline{a}=\left(a_{n}\right)$ of period length ≤ 2 the number $f(\underline{a}, \alpha)$ is not in K, and, for any $\varepsilon>0$, the inequality

$$
\left|\ell_{0}+\ell_{1} f(\underline{a}, \alpha)\right|>\left|\ell_{1}\right| H^{-m_{2}(\alpha)-\varepsilon}
$$

holds for all non-zero $\underline{\ell} \in K^{2}$ with $H=\max (h(\underline{\ell})) \geq H_{0}\left(|q|_{v}, \underline{a}, \alpha, \varepsilon\right)$.
We next give as a theorem the special case of Theorem 1 where $K=\mathbb{I}$, the field \mathbb{Q} or an imaginary quadratic number field. Note that if the components of $\underline{\ell}$ are integers in \mathbb{I}, then $h(\underline{\ell})=\max \left(\left|\ell_{i}\right|\right)$.

ThEOREM 3. Let the hypotheses of Theorem 1 be satisfied, and suppose that $\mathbb{Q}(q)=\mathbb{I}$, and q is an integer in \mathbb{I}. Then the numbers (4) are linearly independent over \mathbb{I} and, for any $\varepsilon>0$, the inequality

$$
\left|\ell_{0}+\ell_{1} f(\underline{a}, \alpha)+\ell_{2} f(\underline{b}, \alpha)\right|>h^{-m_{3}(\alpha)-\varepsilon}
$$

holds for all $\underline{\ell} \in \mathbb{I}^{3}$ with integer components satisfying $h=\max \left(\left|\ell_{1}\right|,\left|\ell_{2}\right|\right) \geq$ $H_{0}(|q|, \underline{a}, \underline{b}, \alpha, \varepsilon)$, where

$$
m_{3}(\alpha):= \begin{cases}2\left(\pi^{2}+4\right) /\left(\pi^{2}-8\right) & \text { if } \alpha=1 \\ \left(19 \pi^{2}+66\right) /\left(8 \pi^{2}-66\right) & \text { if } \alpha=-1\end{cases}
$$

The case $\alpha=1$ of this theorem is Theorem 2 of [3]. We can also give a generalization of Corollary 1 of [3] and Theorem 1 and its corollary in [8]. For this, we introduce the q-logarithm, the first formula defining L_{q} in $|z|<|q|$ only:

$$
L_{q}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{q^{n}-1}=z \sum_{n=1}^{\infty} \frac{1}{q^{n}-z}
$$

Corollary 2. Let the hypotheses of Theorem 1 be satisfied. If $\lambda<\lambda(\alpha)$, then, for $\alpha \in\{1,-1\}$, any of the following sets of three numbers is linearly independent over K :

$$
\left\{1, L_{q}(\alpha), L_{q}(-\alpha)\right\}, \quad\left\{1, L_{q}(\alpha), L_{q^{2}}(\alpha)\right\}, \quad\left\{1, L_{q^{2}}(\alpha), L_{q^{2}}(\alpha / q)\right\}
$$

Moreover, the lower bound given in (5) holds true for linear forms in any of these triples of numbers.

Remark. For obvious reasons, we also call $L_{q}(1)$ a q-harmonic series (and denote it by $\zeta_{q}(1)$), and $L_{q}(-1)$ a q-analogue of $\log 2$, sometimes denoted by $\log _{q} 2$. Of course, we could as well give the above triples in these terms.

Our theorems also have some further interesting corollaries. For the next one, let $\tau_{\mathrm{o}}(n)$ and $\tau_{\mathrm{e}}(n)$ denote, respectively, the number of odd and even positive integral divisors d of the positive integer n. Then we have

Corollary 3. Let the assumptions of Theorem 1 be satisfied. If $\lambda<$ $\lambda(1)$, then the numbers

$$
1, \quad \sum_{n \geq 1} \tau_{\mathrm{o}}(n) q^{-n}, \quad \sum_{n \geq 1} \tau_{\mathrm{e}}(n) q^{-n}
$$

are linearly independent over K. Moreover, the lower bound given in (5) holds true for linear forms in these numbers.

For our next result we define the arithmetical functions

$$
s(n):=\sum_{d \mid n}(-1)^{d-1}, \quad t(n):=\sum_{d \mid n}(-1)^{d+n / d} .
$$

We shall see in Lemma 4 that these are multiplicative functions intimately connected with the classical divisor function τ.

Corollary 4. Let the assumptions of Theorem 1 be satisfied. If $\lambda<$ $\lambda(-1)$, then the numbers

$$
1, \quad \sum_{n=1}^{\infty} s(n) q^{-n}, \quad \sum_{n=1}^{\infty} t(n) q^{-n}
$$

are linearly independent over K and the lower bound given in (5) holds true for linear forms in these numbers.

In the following we work in $\mathbb{Q}(\sqrt{5})$, where we choose $q:=-(3+\sqrt{5}) / 2$. Then $|q|_{w}=(3-\sqrt{5}) / 2<1$ for the other infinite place of K, and therefore $\lambda=1$. Since

$$
\frac{1}{q^{n}-1}=\frac{\beta^{n}}{\sqrt{5} F_{n}} \quad \text { and } \quad \frac{1}{q^{n}+1}=\frac{\beta^{n}}{L_{n}}
$$

where $\beta:=(1-\sqrt{5}) / 2$ and $\left(F_{n}\right)$ is the Fibonacci and $\left(L_{n}\right)$ the Lucas sequence, Theorem 2 immediately implies the following

Corollary 5. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be linearly independent periodic sequences in $\mathbb{Q}(\sqrt{5})^{\mathbb{N}}$ of period length ≤ 2. Then the sets

$$
\left\{1, \sum_{n=1}^{\infty} \frac{a_{n} \beta^{n}}{F_{n}}, \sum_{n=1}^{\infty} \frac{b_{n} \beta^{n}}{F_{n}}\right\},\left\{1, \sum_{n=1}^{\infty} \frac{a_{n} \beta^{n}}{L_{n}}, \sum_{n=1}^{\infty} \frac{b_{n} \beta^{n}}{L_{n}}\right\}, \quad\left\{1, \sum_{n=1}^{\infty} \frac{\beta^{n}}{F_{n}}, \sum_{n=1}^{\infty} \frac{\beta^{n}}{L_{n}}\right\}
$$

are linearly independent over $\mathbb{Q}(\sqrt{5})$. Moreover, the lower bound given in (5) holds true for linear forms in any of these triples, where $m_{1}(\alpha)$ has to be replaced by $6 \pi^{2} /\left(\pi^{2}-8\right)$ or $27 \pi^{2} /\left(4 \pi^{2}-33\right)$ in the first and third case, or in the second case, respectively.

We note that the irrationality measures 2.874 and 7.652 for $\sum_{n \geq 1} \beta^{n} / F_{n}$ and $\sum_{n \geq 1} \beta^{n} / L_{n}$, respectively, were proved by Matala-aho and Prévost [5].
3. Analytic construction. To prove Theorems 1 and 2 we consider a linear form in $1, f(\underline{a}, \alpha)$ and $f(\underline{b}, \alpha)$, with $\alpha= \pm 1$ and linearly independent \underline{a} and \underline{b}, say

$$
\begin{equation*}
L:=\ell_{0}+\ell_{1} f(\underline{a}, \alpha)+\ell_{2} f(\underline{b}, \alpha), \tag{6}
\end{equation*}
$$

where $\underline{\ell}:=\left(\ell_{0}, \ell_{1}, \ell_{2}\right) \in K^{3} \backslash\{0\}$. We assume that $\left(\ell_{1}, \ell_{2}\right) \neq(0,0)$ (the case $\ell_{1}=\ell_{2}=0$ being trivial). Clearly L is of the form

$$
L=\ell_{0}+f(\underline{d}, \alpha),
$$

where $\underline{d}:=\ell_{1} \underline{a}+\ell_{2} \underline{b}$ is a periodic sequence of period length ≤ 2. Since \underline{a} and \underline{b} are linearly independent, we have $\underline{d} \neq \underline{0}$.

We now construct approximations to $f(\underline{d}, \alpha)$ similarly to [3], see also [2]. For this we use the complex integral

$$
\begin{equation*}
J(N):=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{\prod_{k=1}^{2 N-\delta}\left(\alpha z-q^{k}\right)}{z^{2 N} \prod_{n=1}^{N}\left(1-q^{2 n} z\right)} f(\underline{d}, \alpha z) d z \tag{7}
\end{equation*}
$$

where $\delta:=0$ if $\left|d_{1}\right|_{v} \geq\left|d_{2}\right|_{v}, \delta:=1$ if $\left|d_{1}\right|_{v}<\left|d_{2}\right|_{v}$, and $N \in \mathbb{N}$ is a parameter to be fixed later. By using the equalities

$$
\begin{aligned}
f\left(\underline{d}, \alpha q^{-2 n}\right) & =q^{2 n}\left(f(\underline{d}, \alpha)-\sum_{m=1}^{2 n} \frac{d_{m}}{q^{m}-\alpha}\right) \\
\left.\frac{f^{(\nu)}(\underline{d}, \alpha z)}{\nu!}\right|_{z=0} & =\alpha^{\nu} \frac{d_{1} q^{\nu+1}+d_{2}}{q^{2(\nu+1)}-1}
\end{aligned}
$$

and the residue theorem we obtain

$$
\begin{equation*}
J(N)=P(N) f(\underline{d}, \alpha)+Q(N, \underline{d}) \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
P(N) & :=P(N, q, \alpha) \tag{9}\\
& :=\sum_{n=1}^{N}(-1)^{N+n+1+\delta} \frac{q^{n(n-1)+2 \delta n} \prod_{k=1}^{2 N-\delta}\left(q^{k+2 n}-\alpha\right)}{\prod_{\nu=1}^{n-1}\left(q^{2 \nu}-1\right) \prod_{\nu=1}^{N-n}\left(q^{2 \nu}-1\right)},
\end{align*}
$$

the single summands here being denoted later by $p_{n}(N, q, \alpha)$, and

$$
\begin{align*}
& Q(N, \underline{d}):=Q(N, \underline{d}, q, \alpha):=-\sum_{n=1}^{N} p_{n}(N, q, \alpha) \sum_{m=1}^{2 n} \frac{d_{m}}{q^{m}-\alpha} \tag{10}\\
& \quad+\sum_{\kappa+\mu+\nu=2 N-1}\left(\sum_{1 \leq k_{1}<\cdots<k_{2 N-\delta-\kappa} \leq 2 N-\delta} \alpha^{\kappa}(-1)^{\delta+\kappa} q^{k_{1}+\cdots+k_{2 N-\delta-\kappa}}\right) \\
& \quad \times\left(\sum_{\mu_{1}+\cdots+\mu_{N}=\mu}(-1)^{\mu} q^{2\left(1 \mu_{1}+\cdots+N \mu_{N}\right)}\right) \alpha^{\nu} \frac{d_{1} q^{\nu+1}+d_{2}}{q^{2(\nu+1)}-1} .
\end{align*}
$$

Furthermore, as in the proof of Theorem 2 in [3], we have

$$
\begin{equation*}
|J(N)|_{v}=c_{1}|\underline{d}|_{v}|q|_{v}^{-3 N^{2}-(2+\delta) N}\left(1+O\left(|q|_{v}^{-N}\right)\right) \tag{11}
\end{equation*}
$$

where c_{1} (as also c_{2}, c_{3}, \ldots later) and the implied constant in the O-notation are positive constants depending on α and q, but not on \underline{d} or N.
4. Arithmetic considerations. In the analytic part there was no essential difference between the cases $\alpha=1$ and $\alpha=-1$. Now we consider the arithmetic properties, in particular the denominators, of $P(N, q, \alpha)$ and $Q(N, \underline{d}, q, \alpha)$, and here the situation is different. The case $\alpha=1$ is rather standard, but the case $\alpha=-1$ is a highly delicate one.

The case $\alpha=1$ is treated in [3], and in this case (9) implies

$$
\begin{align*}
P(N, q, 1)= & \sum_{n=1}^{N}(-1)^{N+n+1+\delta} q^{n(n-1) / 2}\left[\begin{array}{c}
N-1 \\
n-1
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 N+2 n-1 \\
2 n
\end{array}\right]_{q} \tag{12}\\
& \times\left(q^{2 N+2 n}-1\right)^{1-\delta} \prod_{\nu=1}^{N}\left(q^{2 \nu-1}-1\right)
\end{align*}
$$

where the q-binomial coefficients are in $\mathbb{Z}[q]$. Therefore $P(N, q, 1) \in \mathbb{Z}[q]$, and if

$$
D(N, q, 1):=\operatorname{lcm}\left(q^{2}-1, q^{4}-1, \ldots, q^{4 N}-1\right)
$$

then $D(N, q, 1) Q(N, \underline{d}, q, 1) \in K[q]$, by (10). Furthermore, by using the cyclotomic polynomials Φ_{ν} we have

$$
D(N, q, 1)=\prod_{\nu=1}^{2 N} \Phi_{\nu}\left(q^{2}\right)
$$

and

$$
\begin{equation*}
|D(N, q, 1)|_{v}=|q|_{v}^{24 \pi^{-2} N^{2}+O(N \log N)} \tag{13}
\end{equation*}
$$

where the O-constant depends at most on q.
In the case $\alpha=-1$, we certainly need $D(N, q, 1)$ in the common denominator, but this is not enough. After multiplying by $D(N, q, 1)$, we still need
a common denominator for all $n=1, \ldots, N$ of

$$
\frac{\prod_{k=1+2 n}^{2 N-\delta+2 n}\left(q^{k}+1\right) \prod_{l=1}^{2 N} \Phi_{l}\left(q^{2}\right)}{\prod_{k=1}^{N-1}\left(q^{2 k}-1\right)} \cdot \frac{1}{q^{j}+1} \quad(j=1, \ldots, 2 n) ;
$$

see (9), (10) and the above $D(N, q, 1)$. Because of

$$
\prod_{k=1}^{N}\left(q^{k}-1\right)=\prod_{k=1}^{N} \prod_{l \mid k} \Phi_{l}(q)=\prod_{l=1}^{N} \Phi_{l}(q)^{[N / l]}
$$

the above expression is, for each $j \in\{1, \ldots, 2 n\}$, of the form

$$
\begin{align*}
& \frac{\prod_{k=1+2 n}^{2 N-\delta+2 n}\left(q^{2 k}-1\right) \cdot \prod_{l=1}^{2 N} \Phi_{l}\left(q^{2}\right)}{\prod_{k=1+2 n}^{2 N-\delta+2 n}\left(q^{k}-1\right) \cdot \prod_{k=1}^{N-1}\left(q^{2 k}-1\right)} \cdot \frac{q^{j}-1}{q^{2 j}-1} \tag{14}\\
& \quad=\frac{\prod_{k=1+2 n}^{2 N-\delta+2 n} \prod_{l \mid 2 k} \Phi_{l}(q) \cdot \prod_{l=N}^{2 N} \Phi_{l}\left(q^{2}\right) \cdot \prod_{l \mid j} \Phi_{l}(q)}{\left.\prod_{k=1+2 n}^{2 N-\delta+2 n} \prod_{l \mid k} \Phi_{l}(q) \cdot \prod_{l=1}^{[(N-1) / 2]} \Phi_{l}\left(q^{2}\right)\right)^{[(N-1) / l]-1} \cdot \prod_{l \mid 2 j} \Phi_{l}(q)} .
\end{align*}
$$

Lemma 1. The product

$$
\Psi_{N}(q):=\prod_{\substack{l=1 \\ 2 \nmid l}}^{[(N-1) / 2]} \Phi_{l}(q)^{[(N-1) / l]-1}
$$

is a common denominator of all rational expressions (14).
Proof. Since

$$
\Phi_{l}\left(q^{2}\right)= \begin{cases}\Phi_{2 l}(q) & \text { for even } l, \\ \Phi_{2 l}(q) \Phi_{l}(q) & \text { for odd } l,\end{cases}
$$

(compare, e.g., [4, Chap. 2]) our lemma follows if all quotients

$$
\frac{\prod_{k=1+2 n}^{2 N-\delta+2 n} \prod_{l \mid 2 k} \Phi_{l}(q)}{\prod_{k=1+2 n}^{2 N-\delta+2 n} \prod_{l \mid k} \Phi_{l}(q)} \cdot \frac{\prod_{l=N}^{2 N} \Phi_{l}\left(q^{2}\right)}{\prod_{l=1}^{[(N-1) / 2]} \Phi_{2 l}(q)^{[(N-1) / l]-1}} \cdot \frac{\prod_{l \mid j} \Phi_{l}(q)}{\prod_{l \mid 2 j} \Phi_{l}(q)}
$$

are in $\mathbb{Z}[q]$. Obviously all $\Phi_{l}(q)$ with odd l appearing in the denominator can be cancelled by the nominator.

The polynomial Φ_{l} with even l appears at least

$$
A:=\left[\frac{2 N+2 n-\delta}{l / 2}\right]-\left[\frac{2 n}{l / 2}\right]
$$

times in the nominator and at most

$$
B:=\left[\frac{2 N+2 n-\delta}{l}\right]-\left[\frac{2 n}{l}\right]+\left[\frac{N-1}{l / 2}\right]-1+1
$$

times in the denominator. On putting $l^{\prime}:=l / 2$ and writing $N=\nu l^{\prime}+\nu^{\prime}$,
$n=\mu l^{\prime}+\mu^{\prime}$ with $\nu^{\prime}, \mu^{\prime} \in\left\{0,1, \ldots, l^{\prime}-1\right\}$ we obtain

$$
A-B=\left[\frac{2 \nu^{\prime}+2 \mu^{\prime}-\delta}{l^{\prime}}\right]-\left[\frac{2 \mu^{\prime}}{l^{\prime}}\right]-\left[\frac{\nu^{\prime}+\mu^{\prime}-\delta / 2}{l^{\prime}}\right]-\left[\frac{\nu^{\prime}-1}{l^{\prime}}\right]
$$

If $\nu^{\prime}=0$, then clearly $A-B \geq 0$. If $\nu^{\prime} \in\left\{1, \ldots, l^{\prime}-1\right\}$ and $\nu^{\prime}+\mu^{\prime}-\delta / 2<l^{\prime}$, then

$$
A-B=\left[\frac{2 \nu^{\prime}+2 \mu^{\prime}-\delta}{l^{\prime}}\right]-\left[\frac{2 \mu^{\prime}}{l^{\prime}}\right] \geq 0
$$

Finally, if $\nu^{\prime}+\mu^{\prime}-\delta / 2 \geq l^{\prime}$, then

$$
A-B \geq 2-\left[\frac{2 \mu^{\prime}}{l^{\prime}}\right]-1 \geq 0
$$

This proves our lemma.
Lemma 2. We have the following asymptotic formula:

$$
\left|\Psi_{N}(q)\right|_{v}=|q|_{v}^{\left(1 / 3-2 / \pi^{2}\right) N^{2}+O\left(N \log ^{2} N\right)}
$$

Proof. It is obviously enough to prove that

$$
\begin{equation*}
\sum_{l \leq n / 2}^{\prime} \varphi(l)\left(\left[\frac{n}{l}\right]-1\right)=\left(\frac{1}{3}-\frac{2}{\pi^{2}}\right) n^{2}+O\left(n \log ^{2} n\right) \tag{15}
\end{equation*}
$$

where \sum^{\prime} denotes the summation over all odd positive integers specified under the sum sign. Namely we have

$$
\sum_{l \leq n / 2}^{\prime} \varphi(l)\left(\left[\frac{n}{l}\right]-1\right)=\sum_{k=1}^{n} k \sum_{n /(k+1)<l \leq n / k}^{\prime} \varphi(l)-\sum_{l \leq n / 2}^{\prime} \varphi(l)=: \Sigma_{1}-\Sigma_{2}
$$

From

$$
\begin{equation*}
\sum_{j=1}^{m} \varphi(2 j-1)=\frac{8}{\pi^{2}} m^{2}+O(m \log m) \tag{16}
\end{equation*}
$$

we immediately see $\Sigma_{2}=2 \pi^{-2} n^{2}+O(n \log n)$. On the other hand, we find

$$
\Sigma_{1}=\sum_{k=1}^{n} \sum_{l \leq n / k}^{\prime} \varphi(l)=\sum_{k \leq H} \sum_{l}^{\prime}+\sum_{H<k \leq n} \sum_{l}^{\prime}=: \Sigma_{3}+\Sigma_{4}
$$

where $H:=\left[n / \log ^{2} n\right]+1$. In Σ_{4}, we estimate trivially

$$
\sum_{l \leq n / k}^{\prime} \varphi(l) \leq \sum_{l \leq n / k}^{\prime} l \leq \frac{n^{2}}{k^{2}}, \quad \text { hence } \quad \Sigma_{4}<n^{2} \sum_{k>H} \frac{1}{k^{2}}<\frac{n^{2}}{H}<n \log ^{2} n
$$

In contrast, Σ_{3} contributes to the main term in (15). Namely, by (16), we
have

$$
\begin{aligned}
\Sigma_{3} & =\sum_{k \leq H}\left(\frac{2}{\pi^{2}} \frac{n^{2}}{k^{2}}+O\left(\frac{n}{k} \log \frac{n}{k}\right)\right) \\
& =\frac{2}{\pi^{2}} n^{2}\left(\frac{\pi^{2}}{6}-\sum_{k>H} \frac{1}{k^{2}}\right)+O\left(n(\log n) \sum_{k \leq H} \frac{1}{k}\right) \\
& =\frac{n^{2}}{3}+O\left(\frac{n^{2}}{H}\right)+O(n(\log n)(\log H))
\end{aligned}
$$

Combination of our above considerations yields (15) and thus Lemma 2.
By Lemmas 1 and 2 we now know that in the case $\alpha=-1$ we have a common denominator

$$
D(N, q,-1)=\Psi_{N}(q) D(N, q, 1)
$$

satisfying

$$
\begin{equation*}
|D(N, q,-1)|_{v}=|q|_{v}^{\left(22 / \pi^{2}+1 / 3\right) N^{2}+O\left(N \log ^{2} N\right)} \tag{17}
\end{equation*}
$$

We now multiply (8) by $D(N, q, \alpha)$ and get

$$
\begin{equation*}
r_{N}(q, \alpha):=D(N, q, \alpha) J(N)=s_{N}(q, \alpha) f(\underline{d}, \alpha)+t_{N}(\underline{d}, q, \alpha) \tag{18}
\end{equation*}
$$

where s_{N} and t_{N} are polynomials in $K[q]$. By using (9), (10), (11), (13) and (17) we now obtain the following

Lemma 3. We have

$$
\begin{equation*}
\left|r_{N}(q, \alpha)\right|_{v}=|\underline{d}|_{v}|q|_{v}^{-b(\alpha) N^{2}+O\left(N \log ^{\nu(\alpha)} N\right)} \tag{19}
\end{equation*}
$$

and for all places w of K,

$$
\begin{align*}
\max \left(\left|s_{N}(q, \alpha)\right|_{w},\right. & \left.\frac{\left|t_{N}(\underline{d}, q, \alpha)\right|_{w}}{|\underline{d}|_{w}}\right) \tag{20}\\
& \leq 2^{\delta(w) N \log N}\left(\max \left(1,|q|_{w}\right)\right)^{a(\alpha) N^{2}+O\left(N \log ^{\nu(\alpha)} N\right)}
\end{align*}
$$

where

$$
\begin{aligned}
& a(1):=6+\frac{24}{\pi^{2}}, \quad b(1):=3-\frac{24}{\pi^{2}}, \quad \nu(1):=1, \\
& a(-1):=\frac{19}{3}+\frac{22}{\pi^{2}}, \quad b(-1):=\frac{8}{3}-\frac{22}{\pi^{2}}, \quad \nu(-1):=2,
\end{aligned}
$$

and $\delta(w)=0$ for finite w, but $\delta(w)=1$ for infinite w.
Proof. We easily get (19) from (11), (13) and (17). For (20) we first note that

$$
\left|\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right|_{w} \leq 2^{\delta(w) n}\left(\max \left(1,|q|_{w}\right)\right)^{n k-k^{2}}
$$

and

$$
\left|\Phi_{n}(q)\right|_{w} \leq 2^{\delta(w) O(1)}\left(\max \left(1,|q|_{w}\right)\right)^{\varphi(n)}
$$

Then the use of (12) immediately gives an estimate

$$
\begin{equation*}
\left|p_{n}(N, q, 1)\right|_{w} \leq 2^{\delta(w) O(N)}\left(\max \left(1,|q|_{w}\right)\right)^{6 N^{2}+O(N)} \quad(n=1, \ldots, N) . \tag{21}
\end{equation*}
$$

The use of the above bound for $\left|\Phi_{n}(q)\right|_{w}$ then implies, as in (13), that

$$
|D(N, q, 1)|_{w} \leq 2^{\delta(w) O(N)}\left(\max \left(1,|q|_{w}\right)\right)^{24 \pi^{-2} N^{2}+O(N \log N)},
$$

and this gives (20) in the case $\alpha=1$. The case $\alpha=-1$ follows similarly on noting that

$$
p_{n}(N, q,-1)=(-1)^{N+n+1+\delta} q^{n(n-1) / 2}\left[\begin{array}{c}
N-1 \\
n-1
\end{array}\right]_{q^{2}} \frac{\prod_{k=1+2 n}^{2 N-\delta+2 n}\left(q^{k}+1\right)}{\prod_{k=1}^{N-1}\left(q^{2 k}-1\right)} .
$$

The bound for $\left|t_{N}(\underline{d}, q, \alpha)\right|_{w}$ then follows immediately from (10) and the inequalities (see the notations in (10))

$$
\begin{array}{r}
k_{1}+\cdots+k_{2 N-\delta-\kappa}+2\left(1 \mu_{1}+\cdots+N \mu_{N}\right) \leq(2 N-\delta)+(2 N-\delta-1)+\cdots+\kappa+2 N \mu \\
\leq 2 N^{2}-\frac{1}{2} \kappa(\kappa-1)+2 N(2 N-1-\kappa) \leq 6 N^{2} .
\end{array}
$$

5. Proofs of the theorems. Now we shall prove a lower bound for the linear form (6), i.e. for

$$
L=\ell_{0}+\ell_{1} f(\underline{a}, \alpha)+\ell_{2} f(\underline{b}, \alpha)=\ell_{0}+f(\underline{d}, \alpha),
$$

where $\underline{d}=\ell_{1} \underline{a}+\ell_{2} \underline{b}$. By our assumption on linear independence of \underline{a} and \underline{b} we have, for all places w of K,

$$
\begin{equation*}
|\underline{d}|_{w} \leq\left|\underline{\gamma_{1}}\right|_{w}\left|\left(\ell_{1}, \ell_{2}\right)\right|_{w}, \quad\left|\left(\ell_{1}, \ell_{2}\right)\right|_{w} \leq\left|\underline{\gamma_{2}}\right|_{w}|\underline{d}|_{w} \tag{22}
\end{equation*}
$$

for some constant non-zero vectors $\underline{\gamma_{1}}$ and $\underline{\gamma_{2}}$ depending only on \underline{a} and \underline{b}.
From (18) we find

$$
\begin{equation*}
s_{N}(q, \alpha) L=\ell_{0} s_{N}(q, \alpha)-t_{N}(\underline{d}, q, \alpha)+r_{N}(q, \alpha)=: \Delta(q, \alpha)+r_{N}(q, \alpha) . \tag{23}
\end{equation*}
$$

Assume now that $\Delta_{N}(q, \alpha) \neq 0$ and

$$
\begin{equation*}
\left|r_{N}(q, \alpha)\right|_{v} \geq \frac{1}{2}\left|\Delta_{N}(q, \alpha)\right|_{v} . \tag{24}
\end{equation*}
$$

By Lemma 3, (22) and the product formula we then obtain

$$
\begin{aligned}
\frac{d_{v}}{d}\left(\log _{+}\left|\underline{\gamma_{1}}\right|_{v}+\right. & \left.\log _{+}|\underline{\ell}|_{v}-b(\alpha) N^{2} \log |q|_{v}+c_{2} N(\log N)^{\nu(\alpha)} \log |q|_{v}\right) \\
\geq & \frac{d_{v}}{d} \log \left|\Delta_{N}(q, \alpha)\right|_{v}=-\sum_{w \neq v} \frac{d_{w}}{d} \log \left|\Delta_{N}(q, \alpha)\right|_{w} \\
\geq & -\sum_{w \neq v} \frac{d_{w}}{d}\left(\log _{+}\left|\underline{\gamma_{1}}\right|_{w}+\log _{+}|\underline{\ell}|_{w}+a(\alpha) N^{2} \log _{+}|q|_{w}\right. \\
& \left.+c_{3} N(\log N)^{\nu(\alpha)} \log _{+}|q|_{w}+\delta(w) c_{4} N \log N\right)
\end{aligned}
$$

for all $N \geq c_{5}$, where $\log _{+} x:=\log \max (1, x)$. By (2), this yields

$$
\begin{equation*}
\log h(\underline{\ell}) \geq(a(\alpha)+b(\alpha)-\lambda a(\alpha)) \frac{d_{v}}{d} N^{2} \log |q|_{v}-c_{6} N(\log N)^{\nu(\alpha)} \tag{25}
\end{equation*}
$$

From the assumption $\lambda<\lambda(\alpha)$ it follows that $a(\alpha)+b(\alpha)-\lambda a(\alpha)$ is positive. We now fix N to be the smallest positive integer such that

$$
\begin{equation*}
\log H<(a(\alpha)+b(\alpha)-\lambda a(\alpha)) \frac{d_{v}}{d} n^{2} \log |q|_{v}-c_{6} n(\log n)^{\nu(\alpha)} \tag{26}
\end{equation*}
$$

for all $n \geq N$, where $H:=\max \left(h(\underline{\ell}), H_{0}\right)$ and H_{0} is a sufficiently large constant to guarantee $N \geq c_{5}$. For this $N,(25)$ and thus also (24) cannot hold, which implies $\left|r_{N}(q, \alpha)\right|_{v}<\left|\Delta_{N}(q, \alpha)\right|_{v} / 2$. By (23) we then obtain

$$
\begin{equation*}
\left|s_{N}(q, \alpha) L\right|_{v} \geq\left|r_{N}(q, \alpha)\right|_{v} \tag{27}
\end{equation*}
$$

If $\Delta_{N}(q, \alpha)=0$, then (23) gives $s_{N}(q, \alpha) L=r_{N}(q, \alpha)$ and (27) is also true. Thus we have (27) in both cases if N is fixed as before. The above choice of N also gives
$(a(\alpha)+b(\alpha)-\lambda a(\alpha)) \frac{d_{v}}{d}(N-1)^{2} \log |q|_{v}-c_{6}(N-1)(\log (N-1))^{\nu(\alpha)} \leq \log H$, and therefore

$$
N^{2} \log |q|_{v} \leq \frac{d \log H}{d_{v}(a(\alpha)+b(\alpha)-\lambda a(\alpha))}+c_{7} N(\log N)^{\nu(\alpha)}
$$

This result together with Lemma 3, (22) and (27) implies

$$
\begin{aligned}
\log |L|_{v} \geq & \log \left|r_{N}(q, \alpha)\right|_{v}-\log \left|s_{N}(q, \alpha)\right|_{v} \\
\geq & \log |\underline{d}|_{v}-(a(\alpha)+b(\alpha)) N^{2} \log |q|_{v}-c_{8} N(\log N)^{\nu(\alpha)} \\
> & \log \left|\left(\ell_{1}, \ell_{2}\right)\right|_{v}-\frac{d(a(\alpha)+b(\alpha))}{d_{v}(a(\alpha)+b(\alpha)-\lambda a(\alpha))} \log H \\
& \quad-c_{9}(\log H)^{1 / 2}(\log \log H)^{\nu(\alpha)} .
\end{aligned}
$$

Theorems 1-3 are now immediately obtained by using the values of $a(\alpha)$ and $b(\alpha)$ given in Lemma 3.
6. Proofs of the corollaries. Clearly we need to consider only Corollaries 3 and 4. Since

$$
\tau(n)=\sum_{d \mid n} 1=\tau_{\mathrm{o}}(n)+\tau_{\mathrm{e}}(n) \quad \text { and } \quad \sum_{d \mid n}(-1)^{d-1}=\tau_{\mathrm{o}}(n)-\tau_{\mathrm{e}}(n)
$$

we have

$$
\sum_{m \geq 1} \frac{1}{q^{m}-1}=\sum_{n \geq 1} \tau(n) q^{-n}=\sum_{n \geq 1} \tau_{\mathrm{o}}(n) q^{-n}+\sum_{n \geq 1} \tau_{\mathrm{e}}(n) q^{-n}
$$

and

$$
\sum_{m \geq 1} \frac{(-1)^{m-1}}{q^{m}-1}=\sum_{n \geq 1} q^{-n} \sum_{d \mid n}(-1)^{d-1}=\sum_{n \geq 1} \tau_{\mathrm{o}}(n) q^{-n}-\sum_{n \geq 1} \tau_{\mathrm{e}}(n) q^{-n}
$$

if $|q|>1$. This proves Corollary 3.
Further, again if $|q|>1$, we see

$$
\begin{aligned}
\sum_{m \geq 1} \frac{1}{q^{m}+1} & =-L_{q}(-1)=\sum_{m \geq 1} \frac{(-1)^{m-1}}{q^{m}-1}=\sum_{n \geq 1} s(n) q^{-n} \\
\sum_{m \geq 1} \frac{(-1)^{m-1}}{q^{m}+1} & =\sum_{m \geq 1} \frac{(-1)^{m-1}}{q^{m}} \sum_{\nu \geq 0} \frac{(-1)^{\nu}}{q^{m \nu}}=\sum_{d, m \geq 1} \frac{(-1)^{d+m}}{q^{d m}}=\sum_{n \geq 1} t(n) q^{-n}
\end{aligned}
$$

Thus the case $\alpha=-1$ of Theorem 1 implies Corollary 4 .
We finally investigate more closely the connection of the functions s and t with the divisor function τ. For this purpose we give the following

Lemma 4. The arithmetical functions s and t are multiplicative. For odd n, we have $s(n)=t(n)=\tau(n)$, whereas for even n, we have

$$
s(n)=-\frac{\nu_{2}(n)-1}{\nu_{2}(n)+1} \tau(n), \quad t(n)=\frac{\nu_{2}(n)-3}{\nu_{2}(n)+1} \tau(n)
$$

$\nu_{2}(n) \in \mathbb{N}$ denoting the exact exponent of 2 in n.
Proof. We first remark that the arithmetical function $r(n):=(-1)^{n-1}$ is multiplicative. Namely, if $n_{1}, n_{2} \in \mathbb{N}$ are coprime, then at least one of these numbers is odd, and hence the congruence $n_{1} n_{2}-1=\left(n_{1}-1\right)\left(n_{2}-1\right)$ $+\left(n_{1}-1\right)+\left(n_{2}-1\right) \equiv\left(n_{1}-1\right)+\left(n_{2}-1\right)$ modulo 2 holds, yielding $r\left(n_{1} n_{2}\right)=$ $r\left(n_{1}\right) r\left(n_{2}\right)$. Denoting by $*$ the Dirichlet convolution on the set of arithmetical functions, we see $s=r * \mathbf{1}$ (with $\mathbf{1}(n):=1$ for all $n \in \mathbb{N}$) and $t=r * r$, and thus s and t are also multiplicative (compare, e.g., [1, Chap. 2]).

Since $r(n)=1$ for odd n, we have $s(n)=\sum_{d \mid n} r(d)=\tau(n)$, and further $t(n)=\sum_{d \mid n} r(d) r(n / d)=\tau(n)$ for such n 's. From $r\left(2^{\nu}\right)=-1$ for each $\nu \in \mathbb{N}$ we see $s\left(2^{\nu}\right)=1-\nu, t\left(2^{\nu}\right)=\nu-3$, and this proves our formulae for $s(n), t(n)$ if n is even.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] P. B. Borwein, On the irrationality of certain series, Math. Proc. Cambridge Philos. Soc. 112 (1992), 141-146.
[3] P. Bundschuh and K. Väänänen, Linear independence of q-analogues of certain classical constants, Results Math. 47 (2005), 33-44.
[4] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge Univ. Press, Cambridge, 1994.
[5] T. Matala-aho and M. Prévost, Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96 (2002), 275-292.
[6] R. Salem, Algebraic Numbers and Fourier Analysis, Heath, Boston, 1963.
[7] Y. Tachiya, Irrationality of certain Lambert series, Tokyo J. Math. 27 (2004), 75-85.
[8] W. Zudilin, Approximations to q-logarithms and q-dilogarithms with applications to q-zeta values, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), 107-124.

Mathematical Institute
University of Cologne
Weyertal 86-90
50931 Köln, Germany
E-mail: pb@math.uni-koeln.de

Department of Mathematical Sciences
University of Oulu
P.O. Box 3000

90014 Oulu, Finland
E-mail: kvaanane@sun3.oulu.fi

Received on 7.3.2005
and in revised form on 21.6.2005

[^0]: 2000 Mathematics Subject Classification: 11J72, 11J82.

