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Euler sums with Dirichlet characters
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Minking Eie and Wen-Chin Liaw (Minhsiung)

1. Introduction and statement of the main result. For a pair of
positive integers p and q with q > 1, the classical Euler sum is defined
as

(1.1) Sp,q :=
∞∑

k=1

1

kq

k∑

j=1

1

jp
.

The number w = p + q is called the weight of Sp,q. The evaluations of
Sp,q in terms of values at positive integers of the Riemann zeta function
are known when p = 1 or (p, q) = (2, 4) or (p, q) = (4, 2) or p = q or
p + q is odd. The following theorems are classical and both due to Eu-
ler [10].

Theorem A. For each positive integer n with n ≥ 2, we have

(1.2) S1,n =
n+ 2

2
ζ(n+ 1) − 1

2

n−1∑

l=2

ζ(l)ζ(n+ 1 − l).

Here ζ(s) is the Riemann zeta function defined by

ζ(s) :=
∞∑

n=1

1

ns
, Re s > 1.

Theorem B. For a pair of positive integers p and q with p, q ≥ 2 and

an odd weight w = p+ q, we have
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Sp,q =
1

2
ζ(w) +

1 − (−1)p

2
ζ(p)ζ(q)(1.3)

+ (−1)p

[p/2]∑

l=0

(
w − 2l − 1

q − 1

)
ζ(2l)ζ(w − 2l)

+ (−1)p

[q/2]∑

l=0

(
w − 2l − 1

p− 1

)
ζ(2l)ζ(w − 2l).

Here ζ(s) is the Riemann zeta function and ζ(0) = −1/2.

The evaluation of Euler sums has a long history. The problem of eval-
uating such sums was first proposed in 1742 in a letter from Goldbach to
Euler. In 1775, Euler [10] himself proved Theorem A, but gave (an incorrect
version of) Theorem B without proof. By using a partial fraction decom-
position, Euler first derived linear relations among Euler sums of the same
weight and then obtained his evaluation of S1,n by solving a system of linear
equations. He then computed many examples for weight not exceeding 13
and conjectured the general formula. N. Nielsen [13] was the first to fill in the
gap by giving the correct version and a proof. The sums Sp,q have since been
re-evaluated time and again [2, 6, 11, 16]. For a discussion of earlier works
and references prior to 1985, the readers are referred to [1, pp. 252–253].

There are many interesting generalizations for the classical (double) Eu-
ler sums, for instance, extended or truncated double sums [7], alternating
double sums [9], or sums on arithmetic progressions [8]. There are also gen-
eralizations to multiple zeta values [4, 12, 19] or k-fold sums [3] in connec-
tion with Vassiliev knot invariants of knot theory and Feynman diagrams
of perturbative quantum field theory in physics (see especially [4, 19] and
references therein).

In this paper, we shall follow Euler’s original approach, which was also
taken up in [2, 4, 12, 13], to study another generalization of Euler sums,
to which we refer as “Euler sums with Dirichlet characters.” There is also
recent work [5, 14, 15] in this direction.

Recall that (see [17]) a Dirichlet character modulo N is a multiplicative
group homomorphism χ = χN : (Z/NZ)∗ → C

∗ and extended to Z by
letting χ(a) = 0 if gcd(a,N) > 1. Note that χ is then periodic of period N .
Also, χ is called even if χ(−1) = 1 and odd if χ(−1) = −1.

Now we are ready to define Euler sums with Dirichlet characters. For
a pair of positive integers p and q with q ≥ 2 and a Dirichlet character χ
modulo N , we define

(1.4) Sχ
p,q :=

∞∑

k=1

χ(k)

kq

k∑

j=1

1

jp
.

Here is our new theorem concerning the evaluation of Sχ
p,q.
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Main Theorem. Given a pair of positive integers p and q with q ≥ 2
and a Dirichlet character χ modulo N . Then the sum Sχ

p,q defined in (1.4)
can be evaluated in terms of values at positive integers of Hurwitz zeta func-

tions either when χ is even and the weight p + q is odd , or when χ is odd

and the weight p+ q is even.

Remark. Although we state the Main Theorem only for the sum Sχ
p,q,

it holds for a more general double Euler sum with two Dirichlet characters.
See the concluding remark at the end of the paper.

This sheds some light on the reason why such evaluations exist in the
case of classical Euler sums. It also unfolds the other side that Euler had
the opportunity but missed to discover.

Indeed, the theory we develop here can be applied to determine whether
an analogous Euler sum can be evaluated or not. For example, the extended
or truncated Euler sums

(1.5) E(n)
p,q :=

∞∑

k=1

1

kq

nk∑

j=1

1

jp
, T (n)

p,q :=
∞∑

k=1

1

kq

[k/n]∑

j=1

1

jp
,

as considered in [7], both can be evaluated when the weight p + q is odd.
On the other hand, the alternating Euler sum

(1.6) G+−
p,q :=

∞∑

k=0

(−1)k

(2k + 1)q

k∑

j=1

1

jp
,

as considered in [9], can be evaluated when p+ q is even.
The organization of the paper is as follows. In Section 2 we decompose

Sχ
p,q into elementary building blocks Hp,q(a/N, b/N), derive basic properties

of these building blocks, and develop relations among H1,n(a/N, b/N). Sec-
tion 3 contains algebraic preliminaries. The proof of the Main Theorem is
divided into two cases according to the parity of the characters. We deal with
Euler sums with even characters in Section 4. The case of odd characters is
harder, and is treated in Section 5.

2. Elementary building blocks of Euler sums. Throughout the
paper, we will fix a positive integer N and a Dirichlet character χ of conduc-
tor N . For a pair of positive integers p and q with q ≥ 2 and another pair
of positive integers a and b with a, b ≤ N , we define

(2.1) Hp,q

(
a

N
,
b

N

)
:=

∞∑

k=0

1

(kN + b)q

k̃∑

j=0

1

(jN + a)p
,
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where

k̃ =

{
k if a ≤ b,

k − 1 if a > b.

Such kind of sums were first introduced in [8] in an attempt to produce
analogues of classical Euler sums. They play a role of “building blocks” or
“atoms” in expressing various kinds of Euler sums. For example, we have

Sp,q =
N∑

a=1

N∑

b=1

Hp,q

(
a

N
,
b

N

)
,(2.2)

Sχ
p,q =

N∑

a=1

N∑

b=1

χ(b)Hp,q

(
a

N
,
b

N

)
,(2.3)

E(N)
p,q =

N∑

a=1

N qHp,q

(
a

N
,
N

N

)
,(2.4)

T (N)
p,q =

N∑

b=1

NpHp,q

(
N

N
,
b

N

)
.(2.5)

The sums Hp,q(a/N, b/N) satisfy the following reflection formulæ when
p, q ≥ 2:

(2.6) Hp,q

(
a

N
,
b

N

)
+Hq,p

(
b

N
,
a

N

)
= N−(p+q)ζ

(
p,
a

N

)
ζ

(
q,
b

N

)

when a 6= b, and

(2.7) Hp,q

(
a

N
,
a

N

)
+Hq,p

(
a

N
,
a

N

)

= N−(p+q)

{
ζ

(
p,
a

N

)
ζ

(
q,
a

N

)
+ ζ

(
p+ q,

a

N

)}
.

Not all of Hp,q(a/N, b/N) can be evaluated individually even when the
weight p+ q is odd. However, it turns out that linear combinations such as

(2.8) Hp,q(a/N, b/N) ±Hp,q((N − a)/N, (N − b)/N)

can be evaluated, and so can the sum Sχ
p,q, as we shall see in Sections 4

and 5. Here we begin with the cases when p = 1.
The Kronecker limit formula for the Hurwitz zeta function is given by [18,

p. 271, §13.21]

(2.9) lim
s→1+

{
ζ(s, x) − 1

s− 1

}
= −Γ

′(x)

Γ (x)
,
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where ζ(s, x) is the Hurwitz zeta function and Γ (x) is the well-known gamma
function. For convenience’ sake, we shall employ the familiar notation

(2.10) ψ(x) :=
Γ ′(x)

Γ (x)
.

The Kronecker limit formula has the following corollary:

(2.11)
∞∑

j=0

{
1

jN + a
− 1

jN + b

}
=

1

N

{
−ψ

(
a

N

)
+ ψ

(
b

N

)}
,

valid for positive integers a and b. For x > 0, we also have

(2.12) ψ(x+ 1) =
1

x
+ ψ(x),

a direct consequence of the functional equation of the gamma function.
Now we are ready to develop relations among H1,n(a/N, b/N).

Proposition 2.1. For a positive integer a with a < N and a positive

integer n with n ≥ 2, we have

Nn+1H1,n

(
N

N
,
a

N

)
=
n

2
ζ

(
n+ 1,

a

N

)
+ ζ

(
n,

a

N

){
ψ

(
a

N

)
+ γ

}
(2.13)

− 1

2

n−1∑

l=2

ζ

(
l,
a

N

)
ζ

(
n+ 1 − l,

a

N

)
.

Proof. By definition, we have

Nn+1H1,n

(
N

N
,
a

N

)
= Nn+1

∞∑

k=0

1

(kN + a)n

k∑

j=1

1

jN
=

∞∑

k=0

1

(k + r)n

k∑

j=1

1

j
,

where r = a/N . Rewrite the above series as

∞∑

k=0

∞∑

j=1

1

(k + j + r)nj

with a change of variable k = k′ + j and still using k instead of k′. In the
light of the partial fraction decomposition

(2.14)
1

(x+ α)nx
=

1

αn

{
1

x
− 1

x+ α

}
−

n−1∑

l=1

1

αl(x+ α)n+1−l
,

we are able to rewrite Nn+1H1,n(N/N, a/N) as

∞∑

k=0

1

(k + r)n

∞∑

j=1

{
1

j
− 1

k + j + r

}
−

∞∑

l=1

∞∑

k=0

∞∑

j=1

1

(k + r)l(k + j + r)n+1−l
.
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The first term in the above is equal to

∞∑

k=0

1

(k + r)n
{ψ(k + 1 + r) + γ},

or as

(2.15) Nn+1H1,n

(
a

N
,
a

N

)
+ ζ

(
n,

a

N

){
ψ

(
a

N

)
+ γ

}

by repeatedly using (2.12). The second term is equal to

−
n−1∑

l=1

{ ∞∑

k=0

∞∑

j=0

1

(k + r)l(k + j + r)n+1−l
− ζ(n+ 1, r)

}

= −Nn+1H1,n

(
a

N
,
a

N

)

−Nn+1
n−1∑

l=2

Hl,n+1−l

(
a

N
,
a

N

)
+ (n− 1)ζ

(
n+ 1,

a

N

)
.

With the reflection formula (2.7), the above is equal to

(2.16)
n

2
ζ

(
n+ 1,

a

N

)
−Nn+1H1,n

(
a

N
,
a

N

)

−1

2

n−2∑

l=2

ζ

(
l,
a

N

)
ζ

(
n+ 1 − l,

a

N

)
.

Our assertion then follows from the addition of (2.15) and (2.16).

In a similar way, we obtain the following propositions.

Proposition 2.2. For positive integers a and b with 1 ≤ a < b < N
and a positive integer n ≥ 2, we have

(2.17) Nn+1

{
H1,n

(
a

N
,
b

N

)
+H1,n

(
N − a

N
,
b− a

N

)}

= ζ

(
n,
b− a

N

){
−ψ

(
a

N

)
+ ψ

(
b

N

)}

+ ζ

(
n,

b

N

){
−ψ

(
1 − a

N

)
+ ψ

(
b− a

N

)}

−
n−1∑

l=2

ζ

(
l,
b

N

)
ζ

(
n+ 1 − l,

b− a

N

)
.
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Proposition 2.3. For a positive integer a with a < N and a positive

integer n ≥ 2, we have

(2.18) Nn+1

{
H1,n

(
a

N
,
a

N

)
+H1,n

(
N − a

N
,
N

N

)}

= ζ

(
n+ 1,

a

N

)
− ζ

(
n,

a

N

){
ψ

(
1 − a

N

)
+ γ

}
−

n−1∑

l=2

ζ(l)ζ

(
n+ 1 − l,

a

N

)
.

3. Algebraic preliminaries. In the sections that follow, we shall need
the following identities on binomial coefficients, whose proofs are easy and
may be found, e.g., in [2, 4].

Lemma 3.1. For 0 ≤ µ, ν ≤ m,

(3.1)
m∑

k=0

(−1)k

(
m− k

ν

)(
µ

k

)
=

(
m− µ

m− ν

)
.

In particular , setting µ = m gives

(3.2)
m∑

k=0

(−1)k

(
m− k

ν

)(
m

k

)
= (−1)mδmν .

We shall consider matrices of dimension r, i.e., r by r matrices, where
r = w − 3, and w = p+ q is the weight of Euler sums.

Notation 3.2. Let I be the identity matrix of dimension r, B =
[Bi,j ]1≤i,j≤r with

Bi,j := (−1)i+1

(
j

i

)
,

and J be the permutation matrix of dimension r with 1 on the reverse
diagonal and 0 elsewhere, viz.,

J =




0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0



.

Lemma 3.3. We have

(i) J2 = B2 = I for any r.
(ii) (JB)2 + (BJ)2 = JB +BJ if r is even (i.e., if w is odd).
(iii) (JB)2 − (BJ)2 = JB −BJ if r is odd (i.e., if w is even).
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Proof. Denote by (A)ij the (i, j) entry of a matrix A. Note that (J)ij =
δi+j,r+1, where δ is the Kronecker delta. An easy calculation using (3.2)
shows that J2 = B2 = I. Note that multiplying J from the left (resp. right)
has the effect of changing the index i 7→ r + 1 − i (resp. j 7→ r + 1 − j). It
follows that

(JB)ij = (−1)r−i

(
j

r + 1 − i

)
, (BJ)ij = (−1)i−1

(
r + 1 − j

i

)
,

and hence

(3.3) (JB + (−1)rBJ)ij = (−1)r−i

{(
j

r + 1 − i

)
−

(
r + 1 − j

i

)}
.

On the other hand, by (3.1),

((JB)2)ij =
r∑

k=1

(−1)r−i

(
k

r + 1 − i

)
(−1)r−k

(
j

r + 1 − k

)

= (−1)r+1−i
r∑

k=1

(−1)k

(
r + 1 − k

r + 1 − i

)(
j

k

)

= (−1)r+1−i

{(
r + 1 − j

i

)
−

(
r + 1

i

)}
.

Hence,

((BJ)2)ij = (J(JB)2J)ij = (−1)i

{(
j

r + 1 − i

)
−

(
r + 1

r + 1 − i

)}
,

and

(3.4) ((JB)2 + (−1)r(BJ)2)ij = (−1)r−i

{(
j

r + 1 − i

)
−

(
r + 1 − j

i

)}
.

Parts (ii) and (iii) then follow from (3.3) and (3.4).

Corollary 3.4. Let U = JB +BJ and V = J +B.

(i) If r is even, then (U + I)(U − 2I) = 0 and (V 2 − I)(V 2 − 4I) = 0.
In particular , U and V are invertible in this case.

(ii) If r is odd , then (U−I)(U2−4I) = 0 and V 2(V 2−3I)(V 2−4I) = 0.

Proof. Suppose the dimension r is even. Then by Lemma 3.3(i),(ii), we
have U2 = (JB)2 + (BJ)2 + 2I = JB+BJ + 2I = U + 2I. Since U satisfies
a polynomial equation with a nonzero constant term, U is invertible. Note
that V 2 = JB+BJ +2I = U +2I. We have (V 2− I)(V 2 −4I) = 0, whence
V is invertible. Now suppose r is odd. By Lemma 3.3(i),(iii),

(JB)3+(BJ)3 = (JB −BJ)((JB)2 − (BJ)2) + (JB +BJ)

= (JB−BJ)2+(JB+BJ) = (JB+BJ)2+(JB+BJ) − 4I

= U2 + U − 4I.
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Consequently,

U3 = (JB)3 + (BJ)3 + 3(JB +BJ) = U2 + 4U − 4I,

or (U − I)(U2 − 4I) = 0. Since V 2 = U + 2, the last assertion follows.

Remark. With a more careful analysis, one can show that if r is odd
then V (V − 2I)(V 2 − 3I) = 0, but we will not need this.

4. Euler sums with even characters. For Euler sums with even
Dirichlet characters, we shall consider those of odd weight. These include
the classical Euler sums Sp,q evaluated in Theorems A and B. As mentioned
in Section 1, the evaluations of Sp,q with odd weight p + q were initially
obtained by solving a system of linear equations. Linear relations among
Euler sums of the same weight can be easily derived from the partial fraction
decomposition (see [2, 4, 12] or even [10]):

(4.1)
1

(x+ α)qxp

=

p∑

l=2

(−1)pAl

αw−lxl
+

q∑

l=2

(−1)pBl

αw−l(x+ α)l
+

(−1)pA1

αw−1

{
1

x
− 1

x+ α

}
,

where w = p+ q,

(4.2) Al := Ap,q
l = (−1)l

(
w − l − 1

q − 1

)
and Bl := Bp,q

l =

(
w − l − 1

p− 1

)
.

Note that A1 = −B1. Setting x = j and α = k and summing over all
positive integers j and k, we get

Sp,q − ζ(p+ q) =

p∑

l=2

(−1)pAlζ(w − l)ζ(l)(4.3)

+

q∑

l=2

(−1)pBl{Sw−l,l − ζ(p+ q)}

+ (−1)pA1S1,w−1.

Now fix p+q = 2n+1 with n ≥ 2; then we have the following linear relations
among S2,2n−1, S3,2n−2, . . . , S2n−1,2:

(4.4)





S2,2n−1 = S2,2n−1 + 2S3,2n−2 + 3S4,2n−3 + · · · + (2n − 2)S2n−1,2 + ∆(2),

S3,2n−2 = −S3,2n−2 − 3S4,2n−3 − · · · −

(
2n−2

2

)
S2n−1,2 + ∆(3),

S4,2n−3 = S4,2n−3 + · · · +
(
2n−2

3

)
S2n−1,2 + ∆(4),

. . .

S2n−2,3 = S2n−2,3 + (2n − 2)S2n−1,2 + ∆(2n − 2),

S2n−1,2 = −S2n−1,2 + ∆(2n − 1),
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where ∆(j), j = 2, . . . , 2n − 1, are known values in S1,2n and values of the
Riemann zeta function. The matrix of coefficients of the above system of
equations has size (2n − 2) × (2n − 2) and rank n − 1. Of course, this is
not enough to determine the values of S2,2n−1, S3,2n−2, . . . , S2n−1,2 uniquely.
Fortunately, we still have reflection formulæ given by

(4.5) Sp,q + Sq,p = ζ(p)ζ(q) + ζ(p+ q)

for p, q ≥ 2. This adds n − 1 more linear equations to the system (4.4) so
that Sp,q can be determined uniquely. Indeed, let X = t(S2,2n−1, S3,2n−2,
. . . , S2n−1,2) be a column vector consisting of unknowns. Then (4.4) and
(4.5) can be put in matrix form as

X −BX = ∆,(4.6)

X + JX = z,(4.7)

where J and B are matrices of dimension 2n − 2 as defined in Nota-
tion 3.2, and where ∆ = t(∆(j))j=2,...,2n−1 and z = t(ζ(p)ζ(2n + 1 − p) +
ζ(2n + 1))p=2,...,2n−1 are column vectors with known entries. Subtraction
of (4.6) from (4.7) gives a system of linear equations (J + B)X = z − ∆,
and by Corollary 3.4(i), the coefficient matrix J + B is invertible since the
weight p+ q = 2n+ 1 is odd.

Different substitutions of x and j into (4.1) lead to different linear rela-
tions among Hp,q(a/N, b/N) for various p and q.

Proposition 4.1. For a positive integer a with 2a < N , let

(4.8) Kp,q(a,N) := Hp,q

(
a

N
,
2a

N

)
+Hp,q

(
N − a

N
,
N − 2a

N

)
.

Then for positive integers p and q with p, q ≥ 2 and w = p+ q, we have

(4.9) Kp,q(a,N) = (−1)p
q∑

l=2

BlKw−l,l(a,N) + kp,q(a,N),

where

kp,q(a,N)

=

p∑

l=2

(−1)pAlN
−w

{
ζ

(
l,
a

N

)
ζ

(
w − l,

a

N

)
+ζ

(
l,
N −a
N

)
ζ

(
w− l, N −a

N

)}

+ (−1)pA1N
−w

{
ζ

(
w−1,

a

N

)
−ζ

(
w−1,

N −a
N

)}{
π cot

πa

N
−π cot

2πa

N

}

+ (−1)p+1A1N
−w

w−2∑

l=2

ζ

(
l,
N − a

N

)
ζ

(
w − l,

a

N

)
.
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Proof. Set x = aj + b and α = ak + b and sum over all non-negative
integers j and k to get

(4.10) Hp,q

(
a

N
,
2a

N

)
= (−1)p

q∑

l=2

BlHw−l,l

(
a

N
,
2a

N

)

+ (−1)p
q∑

l=2

AlN
−wζ

(
w − l,

a

N

)
ζ

(
l,
a

N

)

+ (−1)pA1N
−wζ

(
w − 1,

a

N

){
−ψ

(
a

N

)
+ ψ

(
2a

N

)}

+ (−1)pA1H1,w−1

(
2a

N
,
a

N

)
.

Replacing a by N − a, we get

(4.11) Hp,q

(
N − a

N
,
N − 2a

N

)
= (−1)p

q∑

l=2

BlHw−l,l

(
N − a

N
,
N − 2a

N

)

+ (−1)p
q∑

l=2

AlN
−wζ

(
w − l,

N − a

N

)
ζ

(
l,
N − a

N

)

+ (−1)pA1N
−wζ

(
w − 1,

N − a

N

){
−ψ

(
N − a

N

)
+ ψ

(
N − 2a

N

)}

+ (−1)pA1H1,w−1

(
N − 2a

N
,
N − a

N

)
.

Our assertion then follows from the combination of (4.10) and (4.11), and
the evaluation

H1,n

(
2a

N
,
a

N

)
+H1,w−1

(
N − 2a

N
,
N − a

N

)

as given in Proposition 2.2.

Note the resemblance between (4.9) and (4.3). Just as in the case of
Sp,q, utilizing relations in (4.9) with p = 2, . . . , w − 2 is not sufficient to
uniquely determine Kp,q(a,N). Another obstacle is the lack of reflection
formulæ (4.5). It is therefore necessary to introduce two more companion
families. Define

Lp,q(a,N) := Hp,q

(
2a

N
,
a

N

)
+Hp,q

(
N − 2a

N
,
N − a

N

)
,(4.12)

Mp,q(a,N) := Mp,q

(
a

N
,
N − a

N

)
+Hp,q

(
N − a

N
,
a

N

)
.(4.13)
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In what follows, we use the abbreviations Kp,q, Lp,q and Mp,q for
Kp,q(a,N), Lp,q(a,N) and Mp,q(a,N), respectively.

From the above definitions, we see immediately the following reflection
formulæ for p, q ≥ 2:

(4.14) Kp,q + Lq,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,

2a

N

)
+ ζ

(
p,
N − a

N

)
ζ

(
q,
N − a

N

)}
,

(4.15) Mp,q +Mq,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,
N − a

N

)
+ ζ

(
p,
N − a

N

)
ζ

(
q,
a

N

)}
.

Also we have the following relations by a similar consideration:

Lp,q = (−1)p
q∑

l=2

BlMw−l,l + (−1)pA1M1,w−1 + ℓp,q,(4.16)

Mp,q = (−1)p
q∑

l=2

BlLw−l,l + (−1)pA1K1,w−1 +mp,q,(4.17)

where ℓp,q and mp,q are known values in Hurwitz zeta functions.
As a first step, we obtain the values of K1,w−1 and M1,w−1 through the

relations when the weight w is odd.

Proposition 4.2. For each positive integer n, K1,2n and M1,2n can be

evaluated in terms of values at positive integers of Hurwitz zeta functions.

Proof. Note that

K1,2n +M1,2n =

{
H1,2n

(
a

N
,
2a

N

)
+H1,2n

(
N − a

N
,
a

N

)}
(4.18)

+

{
H1,2n

(
a

N
,
N −a
N

)
+H1,2n

(
N −a
N

,
N −2a

N

)}
.

According to Proposition 2.2, the value is equal to

N−wζ

(
2n,

a

N

){
−ψ

(
a

N

)
+ ψ

(
2a

N

)}

+N−wζ

(
2n,

N − a

N

){
−ψ

(
N − a

N

)
+ ψ

(
N − 2a

N

)}

+N−w

{
ζ

(
2n,

N − 2a

N

)
− ζ

(
2n,

2a

N

)}
π cot

aπ

N

−
2n−1∑

l=2

N−w

{
ζ

(
l,

2a

N

)
ζ

(
2n+1− l, a

N

)
+ζ

(
l,
N−a
N

)
ζ

(
2n+1−l, N−2a

N

)}
.
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On the other hand, set q = 2 and p = 2n − 1 in (4.16) and (4.17) to
obtain

L2n−1,2 = −M2n−1,2 + (2n− 1)M1,2n + ℓ2n−1,2,

M2n−1,2 = −L2n−1,2 + (2n− 1)K1,2n +m2n−1,2.

It follows that

(4.19) (2n− 1){K1,2n −M1,2n} = ℓ2n−1,2 −m2n−1,2.

Our assertions then follow from (4.18) and (4.19).

Let K, L, M denote, respectively, the column vectors consisting of three
sets of variables

K2,w−2,K3,w−3, . . . ,Kw−2,2; L2,w−2, L3,w−3, . . . , Lw−2,2;

M2,w−2,M3,w−3, . . . ,Mw−2,2.

Suppose that

w = p+ q = 2n+ 1 and r = w − 3 = 2n− 2

with n ≥ 2. Let I, J,B be the r×r matrices defined in Notation 3.2. In matrix
form, relations (4.9), (4.14), (4.15), (4.16) and (4.17) can be rewritten as

K = BK + k,(1)

L = BM + l,(2)

M = BL+ m,(3)

K + JL = c,(4)

M + JM = d,(5)

where k, l, m, c, d are column (2n − 2) × 1 vectors consisting of known
values.

From (2) and (4), we have

(6) K = c− JL = −JBM + (c − Jl).

Substituting (6) into (1), we get

(7) (B − I)JBM = (B − I)(c− Jl) + k.

The rank of (B − I)JB is only n − 1, but (5) provides another n − 1
conditions for the unknown M . Consequently, we can solve for M from (7)
with the extra conditions (5), and the values of L and K then follow.

Indeed, if we consider instead X = BM as a new variable vector, then
(5) and (7) are equivalent to the system

{
(B + JB)X = d,

(J −BJ)X = (I −B)(c− Jl) − k.
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So

(J +B + JB −BJ)X = (I −B)(c− Jl) + d − k.

Let P = (J+B)+(JB−BJ) be the coefficient matrix of the above system.
Then

P 2 = (J +B)2 + (JB −BJ)2

= JB +BJ + (JB)2 + (BJ)2 = 2(JB +BJ).

By Corollary 3.4(i), detP 2 = 2r det(JB + BJ) 6= 0, proving that P is
invertible. Thus the solvability of the system is beyond doubt and this proves
the following theorem.

Theorem 4.3. For positive integer a with 2a < N , let

Kp,q(a,N) := Hp,q

(
a

N
,
2a

N

)
+Hp,q

(
N − a

N
,
N − 2a

N

)
,

Lp,q(a,N) := Hp,q

(
2a

N
,
a

N

)
+Hp,q

(
N − 2a

N
,
a

N

)
,

Mp,q(a,N) := Hp,q

(
a

N
,
N − a

N

)
+Hp,q

(
N − a

N
,
a

N

)
.

Then Kp,q(a,N), Lp,q(a,N) and Mp,q(a,N) can be evaluated in terms of

values at positive integers of Hurwitz zeta functions when the weight p + q
is odd.

We shall refer to the triple families K, L, and M as the KLM -system for
brevity. Some other triple families, the ETD-system and FGR-system, share
the same kind of relations as (1)–(5), so we have the following immediate
consequences.

Corollary 4.4. For positive integer a with a < N , let

Ep,q(a,N) := Hp,q

(
a

N
,
N

N

)
+Hp,q

(
N − a

N
,
N

N

)
,

Tp,q(a,N) := Hp,q

(
N

N
,
a

N

)
+Hp,q

(
N

N
,
N − a

N

)
,

Dp,q(a,N) := Hp,q

(
a

N
,
a

N

)
+Hp,q

(
N − a

N
,
N − a

N

)
.

Then Ep,q(a,N), Tp,q(a,N) and Dp,q(a,N) can be evaluated in terms of

values at positive integers of Hurwitz zeta functions when the weight p + q
is odd.
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Corollary 4.5. For positive integers j, k and a with ka < N and

k ≥ j + 2, k 6= 2j, let

Fp,q(j, k; a,N) := Hp,q

(
ja

N
,
ka

N

)
+Hp,q

(
(k − j)a

N
,
ka

N

)

+Hp,q

(
N − ja

N
,
N − ka

N

)
+Hp,q

(
N − (k − j)a

N
,
N − ka

N

)
,

Gp,q(j, k; a,N) := Hp,q

(
ka

N
,
ja

N

)
+Hp,q

(
ka

N
,
(k − j)a

N

)

+Hp,q

(
N − ka

N
,
N − ja

N

)
+Hp,q

(
N − ka

N
,
N − (k − j)a

N

)
,

Rp,q(j, k; a,N) := Hp,q

(
(k − j)a

N
,
N − ja

N

)
+Hp,q

(
N − ja

N
,
(k − j)a

N

)

+Hp,q

(
ja

N
,
N − (k − j)a

N

)
+Hp,q

(
N − (k − j)a

N
,
ja

N

)
.

Then Fp,q(j, k; a,N), Gp,q(j, k; a,N) and Rp,q(j, k; a,N) can be evaluated in

terms of values at positive integers of Hurwitz zeta functions when the weight

p+ q is odd.

Recall that our goal is to evaluate the sum in (2.8). To do so, we
shall show that the triple families Fp,q(j, k; a,N), Gp,q(j, k; a,N) and
Rp,q(j, k; a,N) with four members each can be further separated into sub-
families with just two members. Without loss of generality, we let j = 1 and
k = 3 and consider new families given by

F̃p,q := Hp,q

(
a

N
,
3a

N

)
+Hp,q

(
N − a

N
,
N − 3a

N

)
(4.20)

−Hp,q

(
2a

N
,
3a

N

)
−Hp,q

(
N − 2a

N
,
N − 3a

N

)
,

G̃p,q := Hp,q

(
3a

N
,
a

N

)
+Hp,q

(
N − 3a

N
,
N − a

N

)
(4.21)

−Hp,q

(
3a

N
,
2a

N

)
−Hp,q

(
N − 3a

N
,
N − 2a

N

)
,

R̃p,q := Hp,q

(
a

N
,
N − 2a

N

)
+Hp,q

(
N − a

N
,
2a

N

)
(4.22)

−Hp,q

(
2a

N
,
N − a

N

)
−Hp,q

(
N − 2a

N
,
a

N

)
.
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Note that F̃1,n + R̃1,n can be evaluated by Proposition 2.1 and reflection
formulæ for p, q ≥ 2 are given by

(4.23) F̃p,q + G̃q,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,

3a

N

)
+ ζ

(
p,
N − a

N

)
ζ

(
q,
N − 3a

N

)

− ζ

(
p,

2a

N

)
ζ

(
q,

3a

N

)
− ζ

(
p,
N − 2a

N

)
ζ

(
q,
N − 3a

N

)}

and

(4.24) R̃p,q − R̃q,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,
N − 2a

N

)
+ ζ

(
p,
N − a

N

)
ζ

(
q,

2a

N

)

− ζ

(
p,

2a

N

)
ζ

(
q,
N − a

N

)
− ζ

(
p,
N − 2a

N

)
ζ

(
q,
a

N

)}
.

Also we have the following relations among such triple families:

F̃p,q = (−1)p+1
q∑

l=2

BlF̃w−l,l + (−1)p+1A1G̃1,w−1 + f̃p,q,(4.25)

G̃p,q = (−1)p+1
q∑

l=2

BlR̃w−l,l + (−1)pA1R̃1,w−1 + g̃p,q,(4.26)

R̃p,q = (−1)p+1
q∑

l=2

BlG̃w−l,l + (−1)p+1A1F̃1,w−1 + r̃p,q,(4.27)

where f̃p,q, g̃p,q and r̃p,q are known values in Hurwitz zeta functions.

Proposition 4.6. For each positive integer n, F̃1,2n, G̃1,2n and R̃1,2n as

defined in (4.20), (4.21) and (4.22), respectively , can be evaluated in terms

of values at positive integers of Hurwitz zeta functions.

Proof. We already know the value of F̃1,2n+R̃1,2n. Now setting p = 2n−1
and q = 2 in (4.25), (4.26) and (4.27), we get





F̃2n−1,2 = F̃2n−1,2 − (2n− 1)G̃1,2n + f̃2n−1,2,

G̃2n−1,2 = R̃2n−1,2 + (2n− 1)R̃1,2n + g̃2n−1,2,

R̃2n−1,2 = G̃2n−1,2 − (2n− 1)F̃1,2n + r̃2n−1,2.

The value of G̃1,2n is obtained from the first equation, and the value of

F̃1,2n − R̃1,2n comes from the addition of the second and third equations.
Thus our assertions follow.
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Once we know the values of F̃1,2n, G̃1,2n and R̃1,2n, we rewrite our rela-
tions in matrix form as before:

F̃ = −BF̃ + f̃ ,(1a)

G̃ = −BR̃+ g̃,(2a)

R̃ = −BG̃+ r̃,(3a)

F̃ + JG̃ = u,(4a)

R̃− JR̃ = v,(5a)

where the matrices J and B are given as before and f̃ , g̃, r̃, u, v are column
vectors of size (2n − 2) × 1 with known entries. From (1a), (2a) and (4a),
we get

(6a) (I +B)JBR̃ = (I +B)(J g̃ − u) + f̃ .

Let X = BR̃ be a new variable in place of R̃. By a similar argument as
before, the addition of (5a) and (6a) yields the system

(J +B +BJ − JB)X = (I +B)(J g̃ − u) + f̃ + v.

Then, again, the coefficient matrix P = (J + B) − (JB − BJ) is invertible
since P 2 = 2(JB + BJ) has nonzero determinant by Corollary 3.4(i). This
proves the following result.

Theorem 4.7. For positive integers j, k and a with ka < N and k ≥
j + 2, k 6= 2j, let

F̃p,q(j, k; a,N) := Hp,q

(
ja

N
,
ka

N

)
+Hp,q

(
N − ja

N
,
N − ka

N

)

−Hp,q

(
(k − j)a

N
,
ka

N

)
−Hp,q

(
N − (k − j)a

N
,
N − ka

N

)
,

G̃p,q(j, k; a,N) := Hp,q

(
ka

N
,
ja

N

)
+Hp,q

(
N − ka

N
,
N − ja

N

)

−Hp,q

(
ka

N
,
(k − j)a

N

)
−Hp,q

(
N − ka

N
,
N − (k − j)a

N

)
,

R̃p,q(j, k; a,N) := Hp,q

(
ja

N
,
N − (k − j)a

N

)
+Hp,q

(
N − ja

N
,
(k − j)a

N

)

−Hp,q

(
(k − j)a

N
,
N − ja

N

)
−Hp,q

(
N − (k − j)a

N
,
ja

N

)
.

Then F̃p,q(j, k; a,N), G̃p,q(j, k; a,N) and R̃p,q(j, k; a,N) can be evaluated in

terms of values at positive integers of Hurwitz zeta functions when the weight

p+ q is odd.
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Combining Theorem 4.3, its corollaries as above and Theorem 4.7, we
obtain a much powerful theorem.

Theorem 4.8. For a pair of positive integers a and b with a, b < N , the

sum defined by

Hp,q

(
a

N
,
b

N

)
+Hp,q

(
N − a

N
,
N − b

N

)

can be evaluated in terms of values at positive integers of Hurwitz zeta func-

tions when the weight p+ q is odd.

Now we are ready to prove the first part of the Main Theorem.

Proof of the Main Theorem for even characters. When the character χ
is even, we rewrite Sχ

p,q as

2Sχ
p,q =

N−1∑

b=1

χ(b)

N∑

a=1

{
Hp,q

(
a

N
,
b

N

)
+Hp,q

(
a

N
,
N − b

N

)}
.

The inner summation can be rearranged as

N−1∑

a=1

{
Hp,q

(
a

N
,
b

N

)
+Hp,q

(
N − a

N
,
N − b

N

)}

+

{
Hp,q

(
N

N
,
b

N

)
+Hp,q

(
N

N
,
N − b

N

)}
.

Consequently, Sχ
p,q can be evaluated when the weight w = p + q is odd, by

Theorem 4.8 and Corollary 4.4.

5. Euler sums with odd characters. When the character χ is odd,
we rewrite Sχ

p,q as

(5.1) 2Sχ
p,q =

N−1∑

b=1

χ(b)
N∑

a=1

{
Hp,q

(
a

N
,
b

N

)
−Hp,q

(
a

N
,
N − b

N

)}
.

We shall henceforth fix the weight w = p+q = 2n+2 with a positive integer
n and matrices I, B, J as before except the size is (2n− 1) × (2n− 1).

Consider the new triple families defined by

K−
p,q(a,N) := Hp,q

(
a

N
,
2a

N

)
−Hp,q

(
N − a

N
,
N − 2a

N

)
,(5.2)

L−
p,q(a,N) := Hp,q

(
2a

N
,
a

N

)
−Hp,q

(
N − 2a

N
,
N − a

N

)
,(5.3)

M−
p,q(a,N) := Hp,q

(
a

N
,
N − a

N

)
−Hp,q

(
N − a

N
,
a

N

)
.(5.4)
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We use the notationsK−
p,q, L

−
p,q andM−

p,q instead ofK−
p,q(a,N), L−

p,q(a,N)

and M−
p,q(a,N), respectively. With similar arguments as before, we obtain

the following relations for p, q ≥ 2:

K−
p,q = (−1)p

q∑

l=2

BlK
−
w−l,l + (−1)pA1L

−
1,w−1 + k−p,q,(5.5)

L−
p,q = (−1)p+1

q∑

l=2

BlM
−
w−l,l + (−1)pA1M

−
1,w−1 + ℓ−p,q,(5.6)

M−
p,q = (−1)p+1

q∑

l=2

BlL
−
w−l,l + (−1)p+1A1K

−
1,w−1 +m−

p,q.(5.7)

The reflection formulæ for such families are given as follows:

(5.8) K−
p,q + L−

q,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,

2a

N

)
− ζ

(
p,
N − a

N

)
ζ

(
q,
N − 2a

N

)}
,

(5.9) M−
p,q −M−

q,p

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,
N − a

N

)
− ζ

(
p,
N − a

N

)
ζ

(
q,
a

N

)}
.

Also note that

(5.10) K−
1,w−1 −M−

1,w−1 =

{
H1,w−1

(
a

N
,
2a

N

)
+H1,w−1

(
N − a

N
,
a

N

)}

−
{
H1,w−1

(
N − a

N
,
N − 2a

N

)
+H1,w−1

(
a

N
,
N − a

N

)}
,

which can be evaluated by Proposition 2.2.
Now we begin with the evaluation for p = 1 and q = 2n+ 1.

Proposition 5.1. For each positive integer n, K−
1,2n+1, L

−
1,2n+1 and

M−
1,2n+1 can be evaluated in terms of values at positive integers of Hurwitz

zeta functions.

Proof. Setting p = 2n and q = 2 in (5.5), we get

(5.11) K−
2n,2 = K−

2n,2 − 2nL−
1,2n+1 + k−2n,2.

Thus L−
1,2n+1 can be evaluated. On the other hand, setting p = 2n and q = 2

in (5.6) and (5.7), we get

L−
2n,2 = −M−

2n,2 − 2nM−
1,2n+1 + ℓ−2n,2,(5.12)

M−
2n,2 = −L−

2n,2 + 2nK−
1,2n+1 +m−

2n,2.(5.13)

It follows that

(5.14) 2n{K−
1,2n+1 +M−

1,2n+1} = −m−
2n,2 + ℓ−2n,2.
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The evaluations of K−
1,2n+1 and M−

1,2n+1 can be obtained by (5.10) and

(5.14).

Once we get the values of K−
1,2n+1, L

−
1,2n+1 and M−

1,2n+1, we rewrite our

system of equations in unknowns K−
2,2n,K

−
3,2n−1, . . . ,K

−
2n,2;L

−
2,2n, L

−
3,2n−1,

. . . , L−
2n,2;M

−
2,2n,M

−
3,2n−1, . . . ,M

−
2n,2 in matrix form as follows:

K− = BK− + k−,(1b)

L− = −BM− + l−,(2b)

M− = −BL− + m−,(3b)

K− + JL− = c−,(4b)

M− − JM− = d−,(5b)

where k−, l−, m−, c−, d− are (2n − 1) × 1 column vectors with known
values. Again we have

(6b) (I −B)JBM− = k− − (I −B)(c− − Jl−).

The rank of (I − B)JB is n − 1 and the condition (5b) provides another
n − 1 equations. All these relations are still not enough to determine the
value of M−. However, we have an extra relation from L−

1,2n+1:

(7b) L−
1,2n+1 = M−

1,2n+1 +
2n∑

l=1

Ml,2n+2−l + ℓ−1,2n+1.

This gives the final condition needed so that we can solve for M by (5b),
(6b) and (7b).

Here we show the solvability of the system. Let X = BM− be a new
variable in place of M−, and W be the (2n− 1) × (2n− 1) matrix with all
entries 1. Then (5b), (6b) and (7b) are equivalent to the system





(B − JB)X = d−,

(J −BJ)X = k− − (I −B)(c− − Jl−),

WX = w−,

where w− is a (2n−1)×1 column vector with every entry equal to L−
1,2n+1−

2M−
1,2n+1 − ℓ−1,2n+1. Consider the sum of the first two equations. The coeffi-

cient matrix of the resulting equation is J +B−JB−BJ , which we denote
by P . Note that B2 = J2 = I and hence

P = −(J +B + I)(J +B − 2I).

Now we let P̃ = P − (J+B+I)W = −(J+B+I)(J+B−2I+W ), the

coefficient matrix of a combination of the system. To prove P̃ is invertible, it
suffices to prove that both J+B+I and J+B−2I+W are invertible. First
we prove that J + B + I is invertible. By Corollary 3.4(ii), the eigenvalues
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of J + B lie in the set {0,±2,±
√

3}. It follows that J + B + I is invertible
since its eigenvalues are among ±1, 3, 1±

√
3, none of which is zero. Next we

prove that J+B−2I+W is also invertible. Suppose that h is a (2n−1)×1
column vector such that

(J +B − 2I +W )h = 0.

Applying W to the above equality and noting that WJ = W , WB = W ,
we get

W 2h = 0 or (2n− 1)Wh = 0.

Hence Wh = 0 and (J +B)h = 2h. A direct calculation yields

JBh = 3h− 2Bh, BJh = −h + 2Bh

and
(JB)2h = 5h − 4Bh, (BJ)2h = −3h + 4Bh.

The identity (JB)2 − (BJ)2 = JB − BJ then implies that Bh = h. Now
from

Wh = 0, Bh = h, Jh = h,

we get h = 0 since the ranks of W , B − I and J − I are 1, n− 1 and n− 1,
respectively. Thus J +B − 2I +W is invertible. We have thus proved

Theorem 5.2. For a positive integer a with 2a < N , let K−
p,q(a,N),

L−
p,q(a,N) and M−

p,q(a,N) be defined as in (5.2), (5.3) and (5.4). Then they

can be evaluated in terms of values at positive integers of Hurwitz zeta func-

tions when the weight p+ q is even.

By exactly the same procedure, we obtain the following theorem.

Theorem 5.3. Suppose that j, k, a are positive integers such that

ka < N and k ≥ j + 2, k 6= 2j and

(5.15) F−
p,q(j, k; a,N) := Hp,q

(
ja

N
,
ka

N

)
+Hp,q

(
(k − j)a

N
,
ka

N

)

−Hp,q

(
N − ja

N
,
N − ka

N

)
−Hp,q

(
N − (k − j)a

N
,
N − ka

N

)
,

(5.16) G−
p,q(j, k; a,N) := Hp,q

(
ka

N
,
ja

N

)
+Hp,q

(
ka

N
,
(k − j)a

N

)

−Hp,q

(
N − ka

N
,
N − ja

N

)
−Hp,q

(
N − ka

N
,
N − (k − j)a

N

)
,

(5.17) R−
p,q(j, k; a,N) :=Hp,q

(
ja

N
,
N− (k− j)a

N

)
+Hp,q

(
(k− j)a
N

,
N− ja
N

)

−Hp,q

(
N − (k − j)a

N
,
ja

N

)
−Hp,q

(
N − ja

N
,
(k − j)a

N

)
.
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Then F−
p,q(j, k; a,N), G−

p,q(j, k; a,N) and R−
p,q(j, k; a,N) can be evaluated in

terms of values at positive integers of Hurwitz zeta functions when the weight

w = p+ q is even.

Triple families with four members as above can be separated further into
subfamilies with just two members. The argument is similar to that for odd
weight, so we omit it here.

Theorem 5.4. Suppose that j and k are positive integers such that

ka < N , k ≥ j + 2, k 6= 2j and

F̃−
p,q(j, k; a,N) :=

{
Hp,q

(
ja

N
,
ka

N

)
−Hp,q

(
N − ja

N
,
N − ka

N

)}

−
{
Hp,q

(
(k− j)a
N

,
ka

N

)
−Hp,q

(
N − (k− j)a

N
,
N −ka
N

)}
,

G̃−
p,q(j, k; a,N) :=

{
Hp,q

(
ka

N
,
ja

N

)
−Hp,q

(
N − ka

N
,
N − ja

N

)}

−
{
Hp,q

(
ka

N
,
(k− j)a
N

)
−Hp,q

(
N −ka
N

,
N − (k− j)a

N

)}
,

R̃−
p,q(j, k; a,N) :=

{
Hp,q

(
ja

N
,
N − (k − j)a

N

)
−Hp,q

(
N − ja

N
,
(k − j)a

N

)}

−
{
Hp,q

(
(k− j)a
N

,
N − ja
N

)
−Hp,q

(
N − (k− j)a

N
,
ja

N

)}
.

Then F̃−
p,q(j, k; a,N), G̃−

p,q(j, k; a,N) and R̃−
p,q(j, k; a,N) can be evaluated in

terms of values at positive integers of Hurwitz zeta functions when the weight

w = p+ q is even.

We can combine Theorems 5.2, 5.3 and 5.4 into the following more gen-
eral theorem.

Theorem 5.5. For a pair of positive integers a and b with a 6= b and

a, b < N , the sum defined by

Hp,q

(
a

N
,
b

N

)
−Hp,q

(
N − a

N
,
N − b

N

)

can be evaluated in terms of values at positive integers of Hurwitz zeta func-

tions when the weight p+ q is even.

There is a slight difference for the triple families defined by

(5.18) E−
p,q(a,N) := Hp,q

(
a

N
,
N

N

)
−Hp,q

(
N − a

N
,
N

N

)
,



Euler sums with Dirichlet characters 121

(5.19) T−
p,q(a,N) := Hp,q

(
N

N
,
a

N

)
−Hp,q

(
N

N
,
N − a

N

)
,

(5.20) D−
p,q(a,N) := Hp,q

(
a

N
,
a

N

)
−Hp,q

(
N − a

N
,
N − a

N

)
.

Again, we simplify the notations as E−
p,q, T

−
p,q and D−

p,q. With the same

argument as before, we get the following relations for p, q ≥ 2:

E−
p,q = (−1)p+1

q∑

l=2

BlE
−
w−l,l + (−1)p+1A1T

−
1,w−1 + ep,q,(5.21)

T−
p,q = (−1)p

q∑

l=2

BlD
−
w−l,l + (−1)pA1D

−
1,w−1 + tp,q,(5.22)

D−
p,q = (−1)p

q∑

l=2

BlT
−
w−l,l + (−1)pA1E

−
1,w−1 + dp,q.(5.23)

The reflection formulæ for such families are

E−
p,q + T−

q,p = N−w

{
ζ

(
p,
a

N

)
ζ(q) − ζ

(
p,
N − a

N

)
ζ(q)

}
,(5.24)

D−
p,q +D−

q,p(5.25)

= N−w

{
ζ

(
p,
a

N

)
ζ

(
q,
a

N

)
− ζ

(
p,
N − a

N

)
ζ

(
q,
N − a

N

)}
.

Furthermore, we note that

E−
1,n −D−

1,n =

{
H1,n

(
N − a

N
,
N − a

N

)
+H1,n

(
a

N
,
N

N

)}
(5.26)

−
{
H1,n

(
a

N
,
a

N

)
+H1,n

(
N − a

N
,
N

N

)}
,

which can be evaluated by Proposition 2.3. Also T−
1,n can be evaluated by

Proposition 2.1.

Proposition 5.6. For each positive integer n, E−
1,2n+1, T

−
1,2n+1 and

D−
1,2n+1 can be evaluated in terms of values at positive integers of Hurwitz

zeta functions.

Proof. It suffices to evaluate E−
1,2n+1 and D−

1,2n+1. However, their differ-

ence given by (5.26) is known. Setting p = 2n and q = 2 in (5.22) and (5.23),
we get

T−
2n,2 = D−

2n,2 − 2nD−
1,2n+1 + t2n,2,

D−
2n,2 = T−

2n,2 − 2nE−
1,2n+1 + d2n,2.
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It follows that

(5.27) 2n{E−
1,2n+1 +D−

1,2n+1} = t2n,2 + d2n,2.

Thus the evaluations of E−
1,2n+1 and D−

1,2n+1 follow from (5.26) and (5.27).

Now we rewrite (5.21) to (5.25) in matrix form with unknowns

E− = t(E−
2,2n, E

−
3,2n−1, . . . , E

−
2n,2),

T− = t(T−
2,2n, T

−
3,2n−1, . . . , T

−
2n,2),

D− = t(D−
2,2n, D

−
3,2n−1, . . . , D

−
2n,2).

The system of equations are given as follows:

E− = −BE− + e−,(1c)

T− = BD− + t−,(2c)

D− = BT− + d−,(3c)

E− + JT− = u−,(4c)

D− + JD− = v−,(5c)

where e−, t−, d−, u−, v− are (2n − 1) × 1 column vectors with known
entries.

With a similar argument as before, we get the equation

{(I +B)JB + I + J}D− = (I +B)(u− Jt−) − e−

from (1c), (2c), (4c) and (5c). Let P = (I +B)JB + I + J . Then

PB = J +B +BJ + JB

= (J +B)2 + (J +B) − 2I

= (J +B − I)(J +B + 2I).

By a similar argument to the proof of Theorem 5.2, we see that both
J +B − I and J +B + 2I are invertible, and thus the following theorem is
proved.

Theorem 5.7. Suppose that a is a positive integer with a < N and

E−
p,q(a,N), T−

p,q(a,N), and D−
p,q(a,N) are defined as in (5.18), (5.19), and

(5.20), respectively. Then E−
p,q(a,N), T−

p,q(a,N), and D−
p,q(a,N) can be eval-

uated in terms of values at positive integers of Hurwitz zeta functions when

the weight w = p+ q is even.

Now we prove the remaining half of the Main Theorem.
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Completion of the proof of the Main Theorem. Suppose χ is odd and
p+ q is even. As mentioned earlier, we rewrite

2Sχ
p,q =

N−1∑

b=1

χ(b)
N∑

a=1

{
Hp,q

(
a

N
,
b

N

)
−Hp,q

(
a

N
,
N − b

N

)}
.

The inner summation can be rearranged as

N−1∑

a=1

{
Hp,q

(
a

N
,
b

N

)
−Hp,q

(
N − a

N
,
N − b

N

)}

+

{
Hp,q

(
N

N
,
b

N

)
−Hp,q

(
N

N
,
N − b

N

)}
.

Thus our assertions follow from Theorems 5.5 and 5.7.

As an immediate consequence of our Main Theorem, we have

Corollary 5.8. For a pair of positive integers p and q with q ≥ 2 and

a Dirichlet character χ of conductor N , let

S
χ
p,q :=

∞∑

k=1

1

kq

k∑

j=1

χ(j)

jp
.

Then S
χ
p,q can be evaluated in terms of Hurwitz zeta functions when either

χ is even and p+ q is odd , or χ is odd and p+ q is even.

Concluding remarks. 1. Although the Main Theorem was only stated
for the sum Sχ

p,q, our methods are in fact applicable to the evaluation of the
most general double Euler sums with Dirichlet characters of the form

Sχm,χn

p,q :=
∞∑

k=1

χn(k)

kq

k∑

j=1

χm(j)

jp
,

where χm and χn are Dirichlet characters modulo m and n, respectively.
Putting N = lcm{m,n}, we can rewrite the sum as

1

2

N−1∑

a=1

N−1∑

b=1

χm(a)χn(b)

{
Hp,q

(
a

N
,
b

N

)

+ χm(−1)χn(−1)Hp,q

(
N − a

N
,
N − b

N

)}
.

Analyzing the inner sum Hp,q(a/N, b/N) ±Hp,q((N − a)/N, (N − b)/N) as
we did in this paper, one can deduce that if χm(−1)χn(−1) = 1, then the
general sum may be evaluated in terms of values at positive integers of Hur-
witz zeta functions when the weight p+q is odd, while when χm(−1)χn(−1)
= −1, the evaluation may be obtained when p+ q is even.
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2. The same analysis that allows us to prove the invertibility of various
matrices can be used to obtain the minimum polynomial of the coefficient
matrix P for the linear systems treated in this paper. The inverse of P is
therefore explicitly given and one can then solve the associated system to
effect an evaluation of various Euler sums. However, we should remark that
the evaluation obtained this way is not very tractable, as was also noted by
Borwein et al. [2, p. 293].

Acknowledgments. The authors thank the referee for helpful sugges-
tions, which improved the paper substantially.
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