A criterion for periodicity of multi-continued fraction expansion of multi-formal Laurent series

by
Zongduo Dai, Ping Wang, Kunpeng Wang
and Xiutao Feng (Beijing)

1. Introduction. We start with the classical continued fraction algorithm over the formal Laurent series field $F\left(\left(z^{-1}\right)\right)$. Let \mathbb{Z} be the ring of integers and F be a field. Denote by

$$
F\left(\left(z^{-1}\right)\right)=\left\{\sum_{i=t}^{\infty} a_{i} z^{-i} \mid a_{i} \in F, t \in \mathbb{Z}\right\}
$$

the formal Laurent series field over F in z^{-1}. For any non-zero element $r=\sum_{i=t}^{\infty} a_{i} z^{-i}$ in $F\left(\left(z^{-1}\right)\right)$ with $t \leq 0$, set

$$
\lfloor r\rfloor=\sum_{i=t}^{0} a_{i} z^{-i} \quad \text { and } \quad\{r\}=\sum_{i=1}^{\infty} a_{i} z^{-i}
$$

They are called the polynomial part and remainder part of r respectively. The classical continued fraction algorithm [14] over $F\left(\left(z^{-1}\right)\right)$ is recalled below:

Let $r \in F\left(\left(z^{-1}\right)\right)$. Initially, set $a_{0}=\lfloor r\rfloor$ and $\alpha_{0}=\{r\}$. Suppose that for $k \geq 1$, we have obtained $\left[a_{0}, a_{1}, \ldots, a_{k-1}\right]$ and α_{k-1}. If $\alpha_{k-1}=0$, let $\mu=k-1$ and the algorithm terminates; otherwise, do the following steps iteratively:
(1) set $\varrho_{k}=1 / \alpha_{k-1}$,
(2) set $a_{k}=\left\lfloor\varrho_{k}\right\rfloor, \alpha_{k}=\varrho_{k}-a_{k}$.

If the above procedure never stops, let $\mu=\infty$.
The output $\left[a_{0}, a_{1}, \ldots\right]$ of the algorithm with input r is called the classical continued fraction expansion $C(r)$ of r.

The continued fraction algorithm is a useful tool in dealing with many number-theoretic problems and numerical computation problems $[9,10,12]$. It is well-known that the continued fraction expansion $C(r)$ gives the optimal rational approximation of a single element r [14]. Many people have contrived to construct multi-dimensional continued fractions in dealing with the rational approximation problem for multi-reals. One construction is the Jacobi-Perron algorithm (JPA) [1]. This algorithm and its modification are extensively studied [7, 8, 11, 13]. These algorithms have been adapted to study the same problem for multi-dimensional formal Laurent series $[4,6]$. But none of these algorithms guarantees optimal rational approximations to the general multi-dimensional formal Laurent series.

Let $C(r)=\left[a_{0}, a_{1}, \ldots\right]$ be the classical continued fraction expansion of r. It is called (λ, T)-periodic if there exist integers $\lambda \geq 1$ and $T \geq 1$ such that $a_{\lambda+T+k}=a_{\lambda+k}$ for all $k \geq 0$. We then also call $C(r)$ periodic for short. It is known that $C(r)$ is (λ, T)-periodic if and only if the $(\lambda-1)$ th partial remainder $\alpha_{\lambda-1}$ and the $(\lambda+T-1)$ th partial remainder $\alpha_{\lambda+T-1}$ are equal. In $[2,3]$, the classical continued fraction algorithm is generalized to an algorithm acting on a multi-formal Laurent series \underline{r} in $F\left(\left(z^{-1}\right)\right)^{m}, m>1$, and called the multi-continued fraction algorithm (or multi-dimensional continued fraction algorithm), m-CFA for short. Likewise, the m-CFA provides a multi-continued fraction expansion of a multi-series \underline{r} in $F\left(\left(z^{-1}\right)\right)^{m}$ and a method of finding the optimal rational approximation of \underline{r} as well. It is natural to ask whether the same criterion of periodicity is valid for multicontinued fraction expansions. Unfortunately, equality of the $(\lambda-1)$ th and $(\lambda+T-1)$ th partial remainders is not enough for $C(\underline{r})$ to be (λ, T)-periodic for $m>1$.

In this paper, we provide a criterion to determine whether a multicontinued fraction expansion is (λ, T)-periodic.

This paper is organized as follows. In Section 2, some preliminaries are provided, which include the indexed valuation over $F\left(\left(z^{-1}\right)\right)^{m}$, the m-CFA, some parameters and some main properties of multi-continued fraction expansions. The main theorem, a criterion of periodicity of multi-continued fraction expansions, is stated in Section 3. Some preparatory lemmas and the proof of the main theorem are given in Sections 4 and 5 respectively.
2. Preliminaries. In this section we briefly recall some concepts such as the indexed valuation and m-CFA, all of which may be found in $[2,3]$.
2.1. Indexed valuation over $F\left(\left(z^{-1}\right)\right)^{m}$. Let F be a field and m be a positive integer. We denote by $F[z]^{m}$ and $F\left(\left(z^{-1}\right)\right)^{m}$ the spaces of column m vectors over the polynomial ring $F[z]$ and over the formal Laurent series field
$F\left(\left(z^{-1}\right)\right)$ respectively. Before introducing the concept of indexed valuation over $F\left(\left(z^{-1}\right)\right)^{m}$, we first define an order over $Z_{m} \times \mathbb{Z}$, where Z_{m} denotes the set $\{1, \ldots, m\}$.

Definition 2.1. For any (h, v) and $\left(h^{\prime}, v^{\prime}\right)$ in $Z_{m} \times \mathbb{Z}$, we define $(h, v)<$ $\left(h^{\prime}, v^{\prime}\right)$ if $v<v^{\prime}$ or $v=v^{\prime}, h<h^{\prime}$.

It is clear that the order defined above is linear [5].
Let $r=\sum_{i=t}^{\infty} a_{i} z^{-i}$ be a non-zero element in $F\left(\left(z^{-1}\right)\right)$. Then the integer t is called the discrete valuation [5] of r if $a_{t} \neq 0$, and is denoted by $v(r)$. By convention, $v(0)=\infty$.

Definition 2.2. Let $\underline{r}=\left(r_{1}, \ldots, r_{m}\right)^{\tau} \in F\left(\left(z^{-1}\right)\right)^{m} \backslash\{0\}$, where τ means transpose. We define

$$
I v(\underline{r})=(h, v)
$$

where

$$
v=\min \left\{v\left(r_{j}\right) \mid j \in Z_{m}\right\}, \quad h=\min \left\{j \in Z_{m} \mid v\left(r_{j}\right)=v\right\}
$$

and call $I v(\underline{r})$ the indexed valuation of \underline{r}, v the valuation of \underline{r}, denoted by $v(\underline{r})$, and h the index of \underline{r}, denoted by $I(\underline{r})$. By convention, $I v(\underline{0})=(1, \infty)$.

For each $j \in Z_{m}$, let $\underline{e}_{j}=\left(e_{j, 1}, \ldots, e_{j, m}\right)^{\tau}$, where $e_{j, i}=0$ for $i \neq j$ and $e_{j, j}=1$, which is exactly the j th standard basis element in the column vector space of dimension m over $F\left(\left(z^{-1}\right)\right)$. For any non-zero element $\underline{r}=\left(r_{1}, \ldots, r_{m}\right)^{\tau}$ in $F\left(\left(z^{-1}\right)\right)^{m}$, where $r_{j}=\sum_{i} r_{j, i} z^{-i}$ for each $j \in Z_{m}$, if $I v(\underline{r})=(h, v)$, we call $r_{h, v} z^{-v} \underline{e}_{h}$ the leading term of \underline{r}, denoted by $L d_{0}(\underline{r})$. The indexed valuation over $F\left(\left(z^{-1}\right)\right)^{m}$ has the following basic properties:

Proposition 2.3. Let $\underline{\alpha}, \underline{\beta} \in F\left(\left(z^{-1}\right)\right)^{m}$. Then
(1) $\operatorname{Iv}(\underline{\alpha}) \neq(1, \infty)$ if and only if $\underline{\alpha} \neq \underline{0}$.
(2) If $\operatorname{Iv}(\underline{\alpha})=(h, v)$, then $\operatorname{Iv}(r \underline{\alpha})=(h, v+v(r))$ for any non-zero r in $F\left(\left(z^{-1}\right)\right)$.
(3) $\operatorname{Iv}(\underline{\alpha}-\underline{\beta}) \geq \min \{\operatorname{Iv}(\underline{\alpha}), \operatorname{Iv}(\underline{\beta})\}$, and equality holds if and only if $L d_{0}(\underline{\alpha}) \neq L d_{0}(\underline{\beta})$.
2.2. $m-C F A$. We first introduce some related notations and concepts. For any $\underline{r}=\left(r_{1}, \ldots, r_{m}\right)^{\tau} \in F\left(\left(z^{-1}\right)\right)^{m}$, we define

$$
\lfloor\underline{r}\rfloor=\left(\left\lfloor r_{1}\right\rfloor, \ldots,\left\lfloor r_{m}\right\rfloor\right)^{\tau}, \quad\{\underline{r}\}=\left(\left\{r_{1}\right\}, \ldots,\left\{r_{m}\right\}\right)^{\tau}
$$

which are called the polynomial part and remainder part of \underline{r}.
In this paper, we denote by $\operatorname{Diag}\left(\beta_{1}, \ldots, \beta_{m}\right)$ the diagonal matrix with the i th diagonal element being β_{i}.

The m-CFA can be described as below:
m-CFA: Let $\underline{r} \in F\left(\left(z^{-1}\right)\right)^{m}$. Initially, set $\underline{a}_{0}=\lfloor\underline{r}\rfloor, \underline{\alpha}_{0}=\{\underline{r}\}, \Delta_{0}=I_{m}$. Suppose that for $k \geq 1$, we have obtained

$$
\begin{gathered}
{\left[\begin{array}{rlll}
& h_{1} & \cdots & h_{k-1} \\
\underline{a}_{0} & \underline{a}_{1} & \cdots & \underline{a}_{k-1}
\end{array}\right]} \\
\underline{\alpha}_{k-1}=\left(\alpha_{k-1,1}, \ldots, \alpha_{k-1, m}\right) \in F\left(\left(z^{-1}\right)\right)^{m}
\end{gathered}
$$

and

$$
\Delta_{k-1}=\operatorname{Diag}\left(z^{-v_{k-1,1}}, \ldots, z^{-v_{k-1, m}}\right)
$$

If $\underline{\alpha}_{k-1}=\underline{0}$, let $\mu=k-1$ and the algorithm terminates; otherwise, do the following steps iteratively:
(1) $\operatorname{set}\left(h_{k}, v_{k}\right)=\operatorname{Iv}\left(\Delta_{k-1} \underline{\alpha}_{k-1}\right)$,
(2) set $\Delta_{k}=\operatorname{Diag}\left(z^{-v_{k, 1}}, \ldots, z^{-v_{k, m}}\right)$, where

$$
v_{k, j}= \begin{cases}v_{k-1, j} & \text { if } j \neq h_{k} \\ v_{k} & \text { if } j=h_{k}\end{cases}
$$

(3) set $\varrho_{k}=\left(\varrho_{k, 1}, \ldots, \varrho_{k, m}\right)^{\tau}$, where

$$
\varrho_{k, j}= \begin{cases}\alpha_{k-1, j} / \alpha_{k-1, h_{k}} & \text { if } j \neq h_{k} \\ 1 / \alpha_{k-1, h_{k}} & \text { if } j=h_{k}\end{cases}
$$

(4) set $\underline{a}_{k}=\left\lfloor\underline{\varrho}_{k}\right\rfloor, \underline{\alpha}_{k}=\left\{\underline{\varrho}_{k}\right\}$.

If the above procedure never stops, let $\mu=\infty$.
It is proved that m-CFA is well defined, that is, $\alpha_{k-1, h_{k}} \neq 0$ for $1 \leq k \leq \mu$. As a result of the m-CFA acting on \underline{r}, we obtain a sequence pair

$$
C(\underline{r})=(\underline{h}, \underline{a})=\left[\begin{array}{llll}
& h_{1} & \cdots & h_{\mu} \\
\underline{a}_{0} & \underline{a}_{1} & \cdots & \underline{a}_{\mu}
\end{array}\right]
$$

where $\underline{h}=\left\{h_{k}\right\}_{1 \leq k \leq \mu}, \underline{a}=\left\{\underline{a}_{k}\right\}_{0 \leq k \leq \mu}, 1 \leq h_{k} \leq m$ and $\underline{a}_{k} \in F[z]^{m}$. We call $C(\underline{r})$ the multi-continued fraction expansion of \underline{r}, and call μ the length of $C(\underline{r})$.
$C(\underline{r})$ provides an optimal rational approximation to \underline{r} by the following procedure:

Let

$$
A\left(\underline{a}_{k}\right)=\left(\begin{array}{cc}
I_{m} & \underline{a}_{k} \\
\mathbf{0} & 1
\end{array}\right), \quad 0 \leq k \leq \mu
$$

and

$$
B_{0}=A\left(\underline{a}_{0}\right), \quad B_{k}=B_{k-1} E_{h_{k}} A\left(\underline{a}_{k}\right), \quad k \geq 1
$$

where I_{m} is the identity matrix of order m, and $E_{h_{k}}$ is a permutation matrix of order $m+1$ obtained by exchanging the h_{k} th and $(m+1)$ th columns of I_{m+1}.

Let

$$
\binom{\underline{p}_{k}}{q_{k}}=B_{k}\binom{\underline{0}}{1}
$$

the rightmost column of B_{k}, where $\underline{p}_{k} \in F[z]^{m}$ and $q_{k} \in F[z]$. We call $\underline{p}_{k} / q_{k}$ the k th rational fraction of $C(\underline{r})$. In $[2,3]$, we proved that $\underline{p}_{k} / q_{k}$ is an optimal rational approximant of \underline{r} for all $0 \leq k \leq \mu$.

To see how close to \underline{r} the k th rational fraction $\underline{p}_{k} / q_{k}$ is and further study the properties of $C(\underline{r})$, we have to recall some parameters.

For all $1 \leq k \leq \mu$, let $\underline{a}_{k}=\left(a_{k, 1}, \ldots, a_{k, m}\right)$ and denote by $\operatorname{deg}\left(a_{k, j}\right)$ the degree of $a_{k, j}$. It is known $[2,3]$ that $a_{k, h_{k}} \neq 0$ and $\operatorname{deg}\left(a_{k, h_{k}}\right) \geq 1$.

For all $1 \leq k \leq \mu$, we define

$$
t_{k}=\operatorname{deg}\left(a_{k, h_{k}}\right), \quad d_{k}=\sum_{1 \leq i \leq k} t_{i}
$$

Definition 2.4. Let $S \subseteq Z_{m}$. Denote by $D\left(S, z^{-c}\right)$ the diagonal matrix

$$
\operatorname{Diag}\left(z^{-c_{1}}, \ldots, z^{-c_{m}}\right)
$$

where

$$
c_{j}= \begin{cases}c & \text { if } j \in S \\ 0 & \text { if } j \notin S\end{cases}
$$

When $S=\{h\}$, we simply denote $D\left(S, z^{-c}\right)$ by $D\left(h, z^{-c}\right)$.
Then we have
Theorem 2.5 ([2, 3]).
(1) $\alpha_{k-1, h_{k}} \neq 0$ and $t_{k}=v\left(\alpha_{k-1, h_{k}}\right) \geq 1$ for all $1 \leq k \leq \mu$.
(2) For any $1 \leq k \leq \mu, 1 \leq j \leq m$, we have

$$
v_{k, j}=\sum_{\substack{1 \leq i \leq k \\ h_{i}=j}} t_{i}, \quad v_{k}=v_{k, h_{k}}, \quad v_{0, j}=0
$$

As a consequence, $\Delta_{k}=\Delta_{k-1} D\left(h_{k}, z^{-t_{k}}\right)$.
(3) $\operatorname{Iv}\left(\Delta_{k} \underline{a}_{k}\right)=\operatorname{Iv}\left(\Delta_{k} \underline{\varrho}_{k}\right)=\left(h_{k}, v_{k-1, h_{k}}\right)<\operatorname{Iv}\left(\Delta_{k} \underline{\alpha}_{k}\right)=\left(h_{k+1}, v_{k+1}\right)$ for all $1 \leq k \leq \mu$, where we let $\left(h_{\mu+1}, v_{\mu+1}\right)=(1, \infty)$ if $\mu<\infty$.
(4) Let

$$
\left(-I_{m}, \underline{r}\right) B_{k}=\left(-R_{k-1}, \underline{r}_{k}\right)
$$

for $k \geq 1$, where R_{k-1} is a square matrix of order m and \underline{r}_{k} is an element in $F\left(\left(z^{-1}\right)\right)^{m}$. Then R_{k-1} is invertible and

$$
\left\{\begin{array}{l}
\underline{r}_{k}=\underline{r} q_{k}-\underline{p}_{k}=\left\{\underline{r} q_{k}\right\}=R_{k-1} \underline{\alpha}_{k} \\
\operatorname{Iv}\left(\underline{r}_{k}\right)=\left(h_{k+1}, v_{k+1}\right)
\end{array}\right.
$$

for any $0 \leq k \leq \mu$. As a consequence, $\underline{r}_{k} \neq \underline{0}$ for any $0 \leq k<\mu$, and $\underline{r}_{\mu}=\underline{0}$ if $\mu<\infty$.

Theorem 2.6 ($[2,3]$).
(1) $\operatorname{deg}\left(q_{k}\right)=d_{k}$ and

$$
I v\left(\underline{r}-\underline{p}_{k} / q_{k}\right)=\left(h_{k+1}, d_{k}+v_{k+1}\right)
$$

for all $0 \leq k \leq \mu$.
(2) We have

$$
\underline{r}= \begin{cases}\lim _{k \rightarrow \infty} \frac{\underline{p}_{k}}{q_{k}} & \text { if } \mu=\infty \\ \frac{p_{\mu}}{q_{\mu}} & \text { if } \mu<\infty\end{cases}
$$

As a consequence, $\mu<\infty$ if and only if $\underline{r} \in F(z)^{m}$.
(3) $\underline{p}_{k} / q_{k}$ is an optimal rational approximant of \underline{r}. Moreover, if \underline{p} / q is an optimal rational approximant of \underline{r}, then $\operatorname{deg}(q)=d_{k}$ for some k.
3. Periodicity of multi-continued fraction expansion. In the following, we only study infinite multi-continued fraction expansions, that is, we assume $\mu=\infty$.

Definition 3.1. We say that $C(\underline{r})$ is (λ, T)-periodic, where $\lambda \geq 1$ and $T \geq 1$, if

$$
\left(h_{\lambda+k+T}, \underline{a}_{\lambda+k+T}\right)=\left(h_{\lambda+k}, \underline{a}_{\lambda+k}\right) \quad \text { for all } k \geq 0 .
$$

m -CFA is an iterative algorithm. A practical problem is how to determine whether $C(\underline{r})$ is (λ, T)-periodic. In this paper, we provide a criterion that permits one to determine whether $C(\underline{r})$ is (λ, T)-periodic only by means of the data obtained in the process of m -CFA.

When $m=1$, the multi-continued fraction expansions are exactly the classical continued fraction expansions. In this case, we have $\underline{\varrho}_{k}=1 / \underline{\alpha}_{k-1}$. The continued fraction expansion $C(\underline{r})$ of \underline{r} is (λ, T)-periodic if and only if $\underline{\alpha}_{\lambda-1}=\underline{\alpha}_{\lambda+T-1}$. However, when $m \geq 2$, the condition $\underline{\alpha}_{\lambda-1}=\underline{\alpha}_{\lambda+T-1}$ alone does not guarantee that $C(\underline{r})$ is (λ, T)-periodic.

Definition 3.2. Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\tau} \in F\left(\left(z^{-1}\right)\right)^{m}$. We define

$$
J^{*}(\underline{\alpha})=\left\{j \mid \alpha_{j} \neq 0,1 \leq j \leq m\right\} .
$$

For the given multi-continued fraction expansion $C(\underline{r})$ of \underline{r} obtained by m-CFA, we give a simple criterion to decide whether $C(\underline{r})$ is periodic.

Theorem 3.3 (Main Theorem). For $\lambda \geq 1$ and $T \geq 1$, the following three conditions are equivalent:
(1) $C(\underline{r})$ is (λ, T)-periodic.
(2) $\left\{\begin{array}{l}\underline{\alpha}_{\lambda+T-1}=\underline{\alpha}_{\lambda-1}, \\ \Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right),\end{array}\right.$
where c is a positive integer.
(3) $\left\{\begin{array}{l}\underline{\varrho}_{\lambda+T}=\underline{\varrho}_{\lambda}, \\ \Delta_{\lambda}^{-1} \Delta_{\lambda+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right),\end{array}\right.$
where c is a positive integer.
Remark. In Theorem 3.3, neither $\underline{\alpha}_{\lambda+T-1}=\underline{\alpha}_{\lambda-1}$ (resp. $\left.\underline{\varrho}_{\lambda+T}=\underline{\varrho}_{\lambda}\right)$ $\operatorname{nor} \Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right)\left(\right.$ resp. $\left.\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right)\right)$ in condition (2) (resp. (3)) can be rejected, since the following examples show that $\underline{\alpha}_{\lambda+T-1}=\underline{\alpha}_{\lambda-1}$ (resp. $\underline{\varrho}_{\lambda+T}=\underline{\varrho}_{\lambda}$) does not imply $\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=$ $D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right)\left(\operatorname{resp} . \Delta_{\lambda}^{-1} \Delta_{\lambda+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right)\right)$, and vice versa.

ExAmple 3.4. Let $m=2$ and $\underline{r}=\binom{r_{1}}{r_{2}} \in F_{2}\left(\left(z^{-1}\right)\right)^{2}$, where $r_{1}=$ $1 /\left(z+r_{2}\right)$ and $r_{2}=\sum_{i} c_{i} z^{-i} \in F_{2}\left(\left(z^{-1}\right)\right)$, where

$$
c_{i}= \begin{cases}0 & \text { if } i<4 \\ 1 & \text { if } i=4 \\ \sum_{j=2}^{k-1} c_{j} c_{i-2 j-4} & \text { if } i=2 k>4 \\ c_{k-1}+c_{k}+\sum_{j=2}^{k-1} c_{j} c_{i-2 j-4} & \text { if } i=2 k+1>4\end{cases}
$$

It is straightforward to check that r_{2} is a root of the algebraic equation $X^{3}+\left(z+z^{3}\right) X^{2}+z^{4} X+1=0$ over $F_{2}\left(\left(z^{-1}\right)\right)$, and $v\left(r_{2}\right)=4$. By [4], this algebraic equation is irreducible over $F_{2}(z)$. So, by Theorem $2.6, \mu=\infty$.

Then, by m-CFA, we have

Parameters obtained in the process of m-CFA with input \underline{r}				
k	h_{k}	Δ_{k}	\underline{a}_{k}	$\underline{\alpha}_{k}$
0		I_{2}	$\underline{0}$	$\binom{r_{1}}{r_{2}}$
1	1	$\operatorname{Diag}\left(z^{-1}, 1\right)$	$\binom{z}{0}$	$\binom{r_{2}}{r_{1}^{-1} r_{2}}$

From the above computations, we see that

$$
\left\{\begin{array}{l}
\underline{\alpha}_{0}=\underline{\alpha}_{2} \\
\Delta_{0}^{-1} \Delta_{2}=\operatorname{Diag}\left(z^{-1}, z^{-3}\right) \neq D\left(J^{*}\left(\underline{\alpha}_{0}\right), z^{-c}\right)=z^{-c} I_{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\underline{\varrho}_{1}=\varrho_{3} \\
\Delta_{1}^{-1} \Delta_{3}=\operatorname{Diag}\left(z^{-1}, z^{-3}\right) \neq D\left(J^{*}\left(\underline{\varrho}_{1}\right), z^{-c}\right)=z^{-c} I_{2}
\end{array}\right.
$$

Example 3.5. Let $m=2$ and

$$
\underline{\alpha}_{0}=\underline{r}=\binom{\left(z^{2}+r_{1}\right)^{-1}}{r_{2}\left(z^{2}+r_{1}\right)^{-1}} \in F_{2}\left(\left(z^{-1}\right)\right)^{2}
$$

where r_{1} and r_{2} are as in Example 3.4. Just as in Example 3.4, $C(\underline{r})$ is infinite, that is, $\mu=\infty$.

Then, by m-CFA, we have
Parameters obtained in the process of m-CFA with input \underline{r}
$\left.\begin{array}{ccccc}\hline k & h_{k} & \Delta_{k} & \underline{a}_{k} & \underline{\alpha}_{k} \\ \hline 0 & & I_{2} & \underline{0} & \binom{\left(z^{2}+r_{1}\right)^{-1}}{\left(z^{2}+r_{1}\right)^{-1} r_{2}} \\ 1 & 1 & \operatorname{Diag}\left(z^{-2}, 1\right) & \binom{z^{2}}{0} & \binom{r_{1}}{r_{2}}\end{array}\right]\binom{z^{2}+r_{1}}{r_{2}}$

From the above computations, we see that

$$
\left\{\begin{array}{l}
\underline{\alpha}_{0} \neq \underline{\alpha}_{3} \\
\Delta_{0}^{-1} \Delta_{3}=\operatorname{Diag}\left(z^{-3}, z^{-3}\right)=D\left(J^{*}\left(\underline{\alpha}_{0}\right), z^{-3}\right)=z^{-3} I_{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\varrho_{2} \neq \varrho_{7} \\
\Delta_{2}^{-1} \Delta_{7}=\operatorname{Diag}\left(z^{-6}, z^{-6}\right)=D\left(J^{*}\left(\underline{\varrho}_{2}\right), z^{-6}\right)=z^{-6} I_{2}
\end{array}\right.
$$

4. Some lemmas. Before proving the main theorem, we need to prepare some lemmas.

Lemma 4.1.
(1) For all $k \geq 1, \alpha_{k-1, h_{k+1}} \neq 0$.
(2) If $\alpha_{k, j}=0$, then $\alpha_{l, j}=0$ for all $l \geq k$. As a consequence, $J^{*}\left(\underline{\alpha}_{k+1}\right) \subseteq$ $J^{*}\left(\underline{\alpha}_{k}\right)$ for all $k \geq 0$.
(3) $\lim _{k \rightarrow \infty} v_{k}=\infty$.
(4) For all $l>k \geq 1$, define

$$
B_{k, l}=E_{h_{k+1}} A\left(\underline{a}_{k+1}\right) \cdots E_{h_{l}} A\left(\underline{a}_{l}\right)
$$

Let $\binom{p_{k, l}}{\bar{q}_{k, l}}$ be the last column of $B_{k, l}$, where $\underline{p}_{k, l} \in F[z]^{m}$ and $q_{k, l} \in$ $F[z]$. Then $q_{k, l} \neq 0$, and

$$
\underline{\alpha}_{k}=\lim _{l \rightarrow \infty} \frac{p_{k, l}}{q_{k, l}}
$$

Proof. (1) Noting that $\Delta_{k} \underline{\alpha}_{k} \neq \underline{0}$ and $h_{k+1}=I\left(\Delta_{k} \underline{\alpha}_{k}\right)$, we have $v_{k, h_{k+1}}+$ $v\left(\alpha_{k, h_{k+1}}\right)=v\left(\Delta_{k} \underline{\alpha}_{k}\right)=v_{k+1} \in \mathbb{Z}$. Thus, $v\left(\alpha_{k, h_{k+1}}\right)=v_{k+1}-v_{k, h_{k+1}} \in \mathbb{Z}$. Hence, $\left\{\varrho_{k, h_{k+1}}\right\}=\alpha_{k, h_{k+1}} \neq 0$. So, $\varrho_{k, h_{k+1}} \neq 0$. By the definition of ϱ_{k}, $\alpha_{k-1, h_{k+1}} \neq 0$.
(2) We have $\varrho_{k+1, j}=\alpha_{k, j} / \alpha_{k, h_{k}}=0$. Thus, $\alpha_{k+1, j}=\left\{\varrho_{k+1, j}\right\}=0$. Repeating this process, we have $\alpha_{l, j}=0$ for any $l \geq k$.
(3) Let

$$
\begin{aligned}
H_{\infty} & =\left\{j \mid \text { there exist infinitely many } k \text { 's such that } h_{k}=j, k \geq 1\right\} \\
K_{j} & =\left\{k \mid h_{k}=j, k \geq 1\right\}
\end{aligned}
$$

By definition, $\left|K_{j}\right|=\infty$ for any $j \in H_{\infty}$. Moreover, there exists k_{0} such that

$$
\bigcup_{j \in H_{\infty}} K_{j}=\left\{k \mid k \geq k_{0}\right\} \cup S
$$

where S is a finite integer set.
By Theorem 2.5,

$$
v_{k}=\sum_{\substack{1 \leq i \leq k \\ h_{i}=h_{k}}} t_{i}, \quad \text { so } \quad \lim _{\substack{k \rightarrow \infty \\ k \in K_{j}}} v_{k}=\infty
$$

for any $j \in H_{\infty}$. Further,

$$
\lim _{k \rightarrow \infty} v_{k}=\lim _{\substack{k \rightarrow \infty \\ k \geq k_{0}}} v_{k}=\lim _{\substack{k \rightarrow \infty \\ k \in \bigcup_{j \in H_{\infty}}^{k} K_{j}}} v_{k}=\infty .
$$

(4) Noting that

$$
B_{l}=B_{k} B_{k, l} \quad \text { and } \quad\left(-R_{k-1}, \underline{r}_{k}\right)=\left(-I_{m}, \underline{r}\right) B_{k}
$$

we have

$$
\left(-R_{l-1}, \underline{r}_{l}\right)=\left(-I_{m}, \underline{r}\right) B_{l}=\left(-R_{k-1}, \underline{r}_{k}\right) B_{k, l}
$$

Then

$$
\underline{r}_{l}=\left(-R_{k-1}, \underline{r}_{k}\right)\binom{\underline{p}_{k, l}}{q_{k, l}}
$$

Suppose $q_{k, l}=0$. Then $\underline{p}_{k, l} \neq 0$ and $\underline{p}_{k, l}=-R_{k-1}^{-1} \underline{r}_{l}$. Thus

$$
v\left(-R_{k-1}^{-1} \underline{r}_{l}\right)=v\left(\underline{p}_{k, l}\right) \leq 0
$$

Since $\lim _{l \rightarrow \infty} v_{l}=\infty$, we have

$$
\lim _{l \rightarrow \infty} v\left(\underline{r}_{l}\right)=\lim _{l \rightarrow \infty} v_{l+1}=\infty
$$

So there exists some integer l such that $v\left(-R_{k-1}^{-1} \underline{r}_{l}\right)>0$, a contradiction. Hence, $q_{k, l} \neq 0$.

By Theorem 2.5, we have

$$
\underline{r}_{l}=\left(-R_{k-1}, R_{k-1} \underline{\alpha}_{k}\right)\left(\frac{\underline{p}_{k, l}}{q_{k, l}}\right)=R_{k-1}\left(-\underline{p}_{k, l}+\underline{\alpha}_{k} q_{k, l}\right) .
$$

Then since $\lim _{l \rightarrow \infty} v\left(\underline{r}_{l}\right)=\lim _{l \rightarrow \infty} v_{l+1}=\infty$, we have

$$
\lim _{l \rightarrow \infty} v\left(\underline{\alpha}_{k}-\frac{p_{k, l}}{q_{k, l}}\right)=\lim _{l \rightarrow \infty} v\left(\frac{R_{k-1}^{-1} \underline{r}_{l}}{q_{k, l}}\right)=\infty
$$

So,

$$
\underline{\alpha}_{k}=\lim _{l \rightarrow \infty} \frac{\underline{p}_{k, l}}{q_{k, l}}
$$

Lemma 4.2 .
(1) If $h_{\lambda+T}=h_{\lambda}$ and $t_{\lambda+T}=t_{\lambda}$, then

$$
\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}
$$

(2) If $h_{\lambda+T}=h_{\lambda}$, then

$$
\underline{\varrho}_{\lambda+T}=\underline{\varrho}_{\lambda} \Leftrightarrow \underline{\alpha}_{\lambda+T-1}=\underline{\alpha}_{\lambda-1} .
$$

(3) Let $\underline{\alpha} \in F\left(\left(z^{-1}\right)\right)^{m}$. Then

$$
D\left(J^{*}(\underline{\alpha}), z^{-c}\right) \underline{\alpha}=z^{-c} \underline{\alpha} .
$$

(4) If $\underline{\alpha}_{k+l}=\underline{\alpha}_{k}$ for some $l \geq 1$, then

$$
J^{*}\left(\underline{\alpha}_{k+i}\right)=J^{*}\left(\underline{\alpha}_{k}\right) \quad \text { for any } 0 \leq i \leq l
$$

(5) $J^{*}\left(\underline{\varrho}_{k}\right)=J^{*}\left(\underline{\alpha}_{k-1}\right)$ for any $k \geq 1$.

Proof. (1) By Theorem 2.5, we have

$$
\Delta_{\lambda+T}=\Delta_{\lambda+T-1} D\left(h_{\lambda+T}, z^{-t_{\lambda+T}}\right), \quad \Delta_{\lambda}=\Delta_{\lambda-1} D\left(h_{\lambda}, z^{-t_{\lambda}}\right)
$$

So,

$$
\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}
$$

(2) \& (3) Obvious.
(4) By Lemma 4.1, we have

$$
J^{*}\left(\underline{\alpha}_{k}\right)=J^{*}\left(\underline{\alpha}_{k+l}\right) \subseteq \cdots \subseteq J^{*}\left(\underline{\alpha}_{k+1}\right) \subseteq J^{*}\left(\underline{\alpha}_{k}\right) .
$$

So, $J^{*}\left(\underline{\alpha}_{k+i}\right)=J^{*}\left(\underline{\alpha}_{k}\right)$ for any $0 \leq i \leq l$.
(5) Obvious.
5. The proof of the main theorem. In this section, we will prove the main theorem.
$(1) \Rightarrow(2)$. Since $C(\underline{r})$ is (λ, T)-periodic, we have $h_{\lambda+k}=h_{\lambda+k+T}$ and $B_{\lambda+k, \lambda+l}=B_{\lambda+k+T, \lambda+l+T}$ for any $l>k \geq 0$. Then

$$
\binom{\underline{p}_{\lambda+k, \lambda+l}}{q_{\lambda+k, \lambda+l}}=\binom{\underline{p}_{\lambda+k+T, \lambda+l+T}}{q_{\lambda+k+T, \lambda+l+T}} .
$$

Thus

$$
\underline{\alpha}_{\lambda+k-1}=\lim _{l \rightarrow \infty} \frac{\underline{p}_{\lambda+k, \lambda+l}}{q_{\lambda+k, \lambda+l}}=\lim _{l \rightarrow \infty} \frac{\underline{p}_{\lambda+k+T, \lambda+l+T}}{q_{\lambda+k+T, \lambda+l+T}}=\underline{\alpha}_{\lambda+k+T-1}
$$

for all $k \geq 0$ from Lemma 4.1.
Define $v_{\lambda+T-1, j}-v_{\lambda-1, j}=c_{j}$. Then

$$
\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=\operatorname{Diag}\left(z^{-c_{1}}, \ldots, z^{-c_{m}}\right), \quad \text { where } \quad c_{j}=\sum_{\substack{\lambda \leq i<\lambda+T \\ h_{i}=j}} t_{i}
$$

Let $J=\left\{h_{k} \mid \lambda \leq k<\lambda+T\right\}$. Then

$$
c_{j} \begin{cases}=0 & \text { if } j \notin J \tag{*}\\ >0 & \text { if } j \in J\end{cases}
$$

We claim that c_{j} is a positive constant c for all $j \in J$, hence $\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=$ $D\left(J, z^{-c}\right)$. In fact, for $k \geq \lambda, n \geq 1$ and $1 \leq j \leq m$, we have

$$
\begin{array}{r}
(* *) \quad v_{k}+n c_{h_{k}}=v_{k, h_{k}}+n c_{h_{k}}=v_{k+n T, h_{k}}=v_{k+n T, h_{k+n T}}=v_{k+n T} \\
\leq v_{k+n T-1, j}+v\left(\alpha_{k+n T-1, j}\right)=v_{k-1, j}+n c_{j}+v\left(\alpha_{k-1, j}\right)
\end{array}
$$

where the inequality comes from the fact that

$$
\begin{aligned}
\left(h_{k}, v_{k+n T}\right) & =\left(h_{k+n T}, v_{k+n T}\right)=\operatorname{Iv}\left(\Delta_{k+n T-1} \underline{\alpha}_{k+n T-1}\right) \\
& \leq\left(j, v_{k+n T-1, j}+v\left(\alpha_{k+n T-1, j}\right)\right)
\end{aligned}
$$

Then taking $j=h_{k+1}$, we have

$$
v_{k}+n c_{h_{k}} \leq v_{k-1, h_{k+1}}+n c_{h_{k+1}}+t
$$

where $t=v\left(\alpha_{k-1, h_{k+1}}\right) \in \mathbb{Z}$, since $\alpha_{k-1, h_{k+1}} \neq 0$. This implies $c_{h_{k}} \leq c_{h_{k+1}}$ for any $k \geq \lambda$, since otherwise,

$$
-n \geq n\left(c_{h_{k+1}}-c_{h_{k}}\right) \geq v_{k}-v_{k-1, h_{k+1}}-t
$$

for all $n \geq 1$, a contradiction. So

$$
c_{h_{\lambda}} \leq c_{h_{\lambda+1}} \leq \cdots \leq c_{h_{\lambda+T-1}} \leq c_{h_{\lambda+T}}=c_{h_{\lambda}}
$$

Thus $c_{j}=c_{h_{\lambda}}$ for any $j \in J$, i.e., c_{j} is equal to a positive constant c.
We claim that $J=J^{*}\left(\underline{\alpha}_{\lambda-1}\right)$. In fact, if $j \in J$, then $j=h_{k}$ and $\alpha_{k-1, j}=$ $\alpha_{k-1, h_{k}} \neq 0$ for some k satisfying $\lambda \leq k<\lambda+T$. Thus, $j \in J^{*}\left(\underline{\alpha}_{k-1}\right) \subseteq$ $J^{*}\left(\underline{\alpha}_{\lambda-1}\right)$ from Lemma 4.1.

If $j \notin J$, then

$$
v_{\lambda}+n c=v_{\lambda}+n c_{h_{\lambda}} \leq v_{\lambda-1, j}+n c_{j}+v\left(\alpha_{\lambda-1, j}\right)=v_{\lambda-1, j}+v\left(\alpha_{\lambda-1, j}\right)
$$

for any $n \geq 1$ from $(*)$ and $(* *)$. Noting that $c>0$, we have $v\left(\alpha_{\lambda-1, j}\right)=\infty$ and $\alpha_{\lambda-1, j}=0$. Thus, $j \notin J^{*}\left(\underline{\alpha}_{\lambda-1}\right)$.

From the above we get immediately

$$
\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=D\left(J, z^{-c}\right)=D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right)
$$

$(2) \Rightarrow(3)$. By Lemma 4.2,

$$
\Delta_{\lambda+T-1} \underline{\alpha}_{\lambda+T-1}=\Delta_{\lambda-1} D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right) \underline{\alpha}_{\lambda-1}=z^{-c} \Delta_{\lambda-1} \underline{\alpha}_{\lambda-1}
$$

Then $h_{\lambda+T}=I\left(\Delta_{\lambda+T-1} \underline{\alpha}_{\lambda+T-1}\right)=I\left(z^{-c} \Delta_{\lambda-1} \underline{\alpha}_{\lambda-1}\right)=h_{\lambda}$. By Lemma 4.2, we have $\underline{\varrho}_{\lambda+T}=\underline{\varrho}_{\lambda}$. So, $\underline{a}_{\lambda+T}=\underline{a}_{\lambda}, \underline{\alpha}_{\lambda+T}=\underline{\alpha}_{\lambda}$ and $t_{\lambda+T}=t_{\lambda}$. By Lemma 4.2,

$$
\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right)=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right)
$$

$(3) \Rightarrow(2)$. By Lemma 4.2,

$$
\Delta_{\lambda+T} \underline{\varrho}_{\lambda+T}=\Delta_{\lambda} D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right) \underline{\varrho}_{\lambda}=z^{-c} \Delta_{\lambda} \underline{\varrho}_{\lambda}
$$

Then by Theorem 2.5,

$$
h_{\lambda+T}=I\left(\Delta_{\lambda+T} \underline{\varrho}_{\lambda+T}\right)=I\left(z^{-c} \Delta_{\lambda} \underline{\varrho}_{\lambda}\right)=h_{\lambda}
$$

and

$$
\begin{aligned}
t_{\lambda+T} & =\operatorname{deg}\left(a_{\lambda+T, h_{\lambda+T}}\right)=\operatorname{deg}\left(\left\lfloor\varrho_{\lambda+T, h_{\lambda+T}}\right\rfloor\right)=\operatorname{deg}\left(\left\lfloor\varrho_{\lambda, h_{\lambda+T}}\right\rfloor\right) \\
& =\operatorname{deg}\left(\left\lfloor\varrho_{\lambda, h_{\lambda}}\right\rfloor\right)=\operatorname{deg}\left(a_{\lambda, h_{\lambda}}\right)=t_{\lambda}
\end{aligned}
$$

Thus by Lemma 4.2,

$$
\Delta_{\lambda-1}^{-1} \Delta_{\lambda+T-1}=\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right)=D\left(J^{*}\left(\underline{\alpha}_{\lambda-1}\right), z^{-c}\right)
$$

$(3) \Rightarrow(1)$. We already know that conditions (2) and (3) are equivalent, so we can suppose that they both hold. We claim that
(a) $\left(h_{\lambda+T}, \underline{a}_{\lambda+T}\right)=\left(h_{\lambda}, \underline{a}_{\lambda}\right)$;
(b) $\underline{\varrho}_{\lambda+1+T}=\underline{\varrho}_{\lambda+1}, \Delta_{\lambda+1}^{-1} \Delta_{\lambda+1+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda+1}\right), z^{-c}\right)$.

Repeating this process, we find that $C(\underline{r})$ is (λ, T)-periodic.
In fact, in $(3) \Rightarrow(2)$ above, we have proven $h_{\lambda+T}=h_{\lambda}$. By definitions, $\varrho_{\lambda+T}=\underline{\varrho}_{\lambda}$ implies that

$$
\underline{a}_{\lambda+T}=\underline{a}_{\lambda}, \quad \underline{\alpha}_{\lambda+T}=\underline{\alpha}_{\lambda} .
$$

Since (3) implies (2), we have $\underline{\alpha}_{\lambda+T-1}=\underline{\alpha}_{\lambda-1}$. Then $J^{*}\left(\underline{\alpha}_{\lambda}\right)=J^{*}\left(\underline{\alpha}_{\lambda-1}\right)=$ $J^{*}\left(\varrho_{\lambda}\right)$ from Lemma 4.2. So

$$
\Delta_{\lambda}^{-1} \Delta_{\lambda+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda}\right), z^{-c}\right)=D\left(J^{*}\left(\underline{\alpha}_{\lambda}\right), z^{-c}\right)
$$

Since (2) implies (3), from the above we conclude that

$$
\underline{\varrho}_{\lambda+1+T}=\underline{\varrho}_{\lambda+1}, \quad \Delta_{\lambda+1}^{-1} \Delta_{\lambda+1+T}=D\left(J^{*}\left(\underline{\varrho}_{\lambda+1}\right), z^{-c}\right)
$$

Acknowledgements. We would like to thank the anonymous referees for their helpful comments.

References

[1] L. Bernstein, The Jacobi-Perron Algorithm—its Theory and Application, Lecture Notes in Math. 207, Springer, Berlin, 1971.
[2] Z. D. Dai, K. P. Wang and D. F. Ye, m-Continued fraction expansions of multiLaurent series, Adv. in Math. (China) 33 (2004), 246-248 (in Chinese).
[3] -, 一, 一, Multi-continued fraction algorithm on multi-formal Laurent series, Acta Arith. 122 (2006), 1-16.
[4] K. Q. Feng and F. R. Wang, The Jacobi-Perron algorithm on function fields, Algebra Colloq. 1 (1994), 149-158.
[5] T. W. Hungerford, Algebra, Springer, 1974.
[6] K. Inoue, On the exponential convergence of Jacobi-Perron algorithm over $\mathbb{F}(X)^{d}$, JP J. Algebra Number Theory Appl. 3 (2003), 27-41.
[7] S. Ito, J. Fujii, H. Higashino and S.-I. Yasutomi, On simultaneous approximation to $\left(\alpha, \alpha^{2}\right)$ with $\alpha^{3}+k \alpha-1=0$, J. Number Theory 99 (2003), 255-283.
[8] S. Ito, M. Keane and M. Ohtsuki, Almost everywhere exponential convergence of the modified Jocobi-Perron algorithm, Ergodic Theory Dynam. Systems 13 (1993), 319-334.
[9] W. B. Jones and W. J. Thron, Continued Fractions. Analytic Theory and Applications, Encyclopedia Math. Appl. 11, Addison-Wesley, London, 1980.
[10] A. Lasjaunias, Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic, J. Number Theory 65 (1997), 206-225.
[11] R. Meester, A simple proof of the exponential convergence of the modified JacobiPerron algorithm, Ergodic Theory Dynam. Systems 19 (1999), 1077-1083.
[12] W. H. Mills, Continued fractions and linear recurrences, Math. Comp. 29 (1975), 173-180.
[13] E. V. Podsypanin, A generalization of continued fraction algorithm that is related to Viggo Brun algorithm, Studies in Number Theory, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 67 (1977), 184-194 (in Russian).
[14] W. M. Schmidt, On continued fractions and diophantine approximation in power series fields, Acta Arith. 95 (2000), 139-166.

State Key Laboratory of Information Security
Graduate School of Chinese Academy of Sciences
Beijing, 100049, P.R. China
E-mail: daizongduo@is.ac.cn
wangping@gucas.ac.cn
kpwang@gucas.ac.cn
fengxt@gmail.com

Received on 30.6.2006
and in revised form on 18.7.2007

