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1. Introduction and results. Minkowski proved that for every real
irrational ξ and every real y /∈ Zξ + Z, there exist infinitely many pairs of
integers p, q such that

|qξ + p− y| ≤ 1

4|q|
(see for instance Theorem II in Chapter 3 of Cassels’ monograph [4]). The
statement is optimal in the sense that the approximating function ` 7→
(4`)−1 cannot be decreased. Note that the restriction y /∈ Zξ + Z can
be dropped at the cost of replacing the upper bound (4|q|)−1 by c|q|−1
for any constant c greater than 1/

√
5. When y = 0, the primitive point

(p/gcd(p, q), q/gcd(p, q)) remains a solution to the above inequality, there-
fore we may moreover require that the integers p, q be coprime. However,
for a non-zero y, this extra requirement is far from being obvious to satisfy.
In this direction, Chalk and Erdős [6] obtained the following result:

Theorem (Chalk–Erdős). Let ξ be an irrational real number and let y
be a real number. There exists an absolute constant c such that the inequality

(1) |qξ + p− y| ≤ c(log q)2

q(log log q)2

holds for infinitely many pairs of coprime integers (p, q) with q positive.

We study more generally the diophantine inequality

|qξ + p− y| ≤ ψ(|q|)
for coprime integers p and q, where ψ : N → R+ is a given function. Two
types of questions naturally arise. First, finding unconditional results which
are valid for every real pair (ξ, y) with ξ irrational as in (1), and secondly
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getting metrical results valid for almost all points (ξ, y). Here is an example
of the first kind.

Theorem 1. Let ξ be an irrational real number and let y be a non-zero
real number. There exist infinitely many integer quadruples (p1, q1, p2, q2)
satisfying

q1p2 − p1q2 = 1

and

(2) |qiξ + pi − y| ≤
c

max(|q1|, |q2|)1/2
≤ c√

|qi|
(i = 1, 2),

with c = 2
√

3 max(1, |ξ|)1/2|y|1/2.

Theorem 1 will be deduced in Section 2 from our results [10] on effective
density for SL(2,Z)-orbits in R2. The estimate (2) is best possible, up to
the value of the constant c. However, the optimality of (1) remains unclear.
We address the following

Problem. Can we replace the function ψ(`) = c(log `)2/`(log log `)2 oc-
curring in (1) by a smaller one, possibly ψ(`) = c`−1?

We shall further discuss this problem in Section 4 for the function ψ(`) =
2`−1, offering some hints and indicating the difficulties which then arise.
It turns out that the approximating function ψ(`) = `−1 is permitted for
almost all pairs (ξ, y) of real numbers relative to Lebesgue measure. The
last assertion follows from the following metrical statement:

Theorem 2. Let ψ : N → R+ be a function. Assume that ψ is non-
increasing, tends to 0 at infinity and that for every positive integer c there
exists a positive real number c1 satisfying

(3) ψ(c`) ≥ c1ψ(`), ∀` ≥ 1.

Furthermore assume that ∑
`≥1

ψ(`) = +∞.

Then for almost all pairs (ξ, y) of real numbers there exist infinitely many
primitive points (p, q) such that

(4) q ≥ 1 and |qξ + p− y| ≤ ψ(q).

If
∑

`≥1 ψ(`) converges, the pairs (ξ, y) satisfying (4) for infinitely many
primitive points (p, q) form a set of zero Lebesgue measure.

Note that we could have equivalently required in (4) that q be negative.
Such a refinement could as well be achieved in the setting of Theorem 1,
with a weaker approximating function of the form ψ(`) = `−µ for any given
real µ < 1/3, by employing alternatively Theorem 5 in Section 9 of [10]. We
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leave the details of the proof, obtained by arguing as in Section 2, to the
interested reader. For questions of density involving signs, see also [7].

The proof of Theorem 2 is given in Section 3. It combines standard tools
from metrical number theory with the ergodic properties of the linear action
of SL(2,Z) on R2 (see [13]). We refer to Harman’s book [8] for closely related
results. See also the recent overview [1] and the monographs [14], [15].

Theorem 2 is a metrical statement about pairs (ξ, y) of real numbers. A
natural question is to understand what happens on each fiber when we fix
either ξ or y. In this direction, here is a partial result which will be deduced
from the explicit construction in Section 4.

Theorem 3. Let ξ be an irrational number and let (pk/qk)k≥0 be the
sequence of its convergents. Assume that the series

(5)
∑
k≥0

1

max(1, log qk)

diverges. Then for almost every real number y there exist infinitely many
primitive points (p, q) satisfying

|qξ + p− y| ≤ 2/|q|.

Moreover the series (5) diverges for almost every real ξ.

We now turn to the second part of the paper devoted to density ex-
ponents for lattice orbits in R2. As already mentioned, the approximating
function ψ(`) = c `−1/2 occurring in Theorem 1 is directly connected to
the density exponent 1/2 for SL(2,Z)-orbits. We intend to show that this
exponent 1/2 is best possible in general.

We work in the more general setting of lattices Γ in SL(2,R). Recall
that a lattice Γ in SL(2,R) is a discrete subgroup for which the quotient
Γ\SL(2,R) has finite Haar measure. We view R2 as a space of column vectors
on which the group of matrices Γ acts by left multiplication. We equip R2

with the supremum norm | |, and for any matrix γ ∈ Γ , we denote also by
|γ| the maximum of the absolute values of the entries of γ. Let us first give

Definition. Let x and y be two points in R2. We denote by µΓ (x,y)
the supremum, possibly infinite, of the exponents µ such that the inequality

(6) |γx− y| ≤ |γ|−µ

has infinitely many solutions γ ∈ Γ .

Note that for a fixed x ∈ R2, the function y 7→ µΓ (x,y) is Γ -invariant.
By the ergodicity of the action of Γ on R2 (see [13]), this function is therefore
constant almost everywhere on R2. We denote by µΓ (x) its generic value,
called the generic density exponent of the orbit Γx.
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Theorem 4. The upper bound µΓ (x) ≤ 1/2 holds true for any point
x ∈ R2 such that the orbit Γx is dense in R2.

Equivalently Theorem 4 asserts that µ(x,y) ≤ 1/2 for almost all y∈R2.
This bound was already known in the case of Γ = SL(2,Z) as a consequence
of Theorem 3 in [10].

One may optimistically conjecture that µΓ (x) = 1/2 for every x such
that Γx is dense in R2, or at least for almost every x ∈ R2. In this direction,
it follows from [10] that

µSL(2,Z)(x) ≥ 1/3

for all points x in R2 \ {0} with irrational slope. Weaker lower bounds valid
for any lattice Γ ⊂ SL(2,R) can also be deduced from [12]. Note that the
function x 7→ µΓ (x) is Γ -invariant since µΓ (x) obviously depends only on
the orbit Γx. Thus, the generic density exponent µΓ (x) takes the same value
for almost all x ∈ R2.

2. Proof of Theorem 1. We first state a result obtained in [10]. In this
section, we denote by Γ the lattice SL(2,Z). For any point x =

(
x1
x2

)
in R2

with irrational slope x1/x2, the orbit Γx is dense in R2. We have obtained
in [10] effective results concerning the density of such an orbit. In particular,
our estimates are essentially optimal when the target point y has rational
slope.

Lemma 1. Let x be a point in R2 with irrational slope and y =
(
y
y

)
a

point on the diagonal with y 6= 0. Then there exist infinitely many matrices
γ ∈ Γ such that

(7) |γx− y| ≤ c/|γ|1/2 with c = 2
√

3 |x|1/2|y|1/2.
Proof. The point y has rational slope 1. Apply Theorem 1(ii) of [10]

with a = b = 1.

Put x =
(
ξ
1

)
. The point x has irrational slope ξ so that Lemma 1 may

be applied. Write γ =
( q1 p1
q2 p2

)
for a matrix provided by Lemma 1. Then (7)

gives

max(|q1ξ + p1 − y|, |q2ξ + p2 − y|) ≤
c

max(|p1|, |p2|, |q1|, |p2|)1/2

≤ c

max(|q1|, |q2|)1/2
.

Therefore, both (p1, q1) and (p2, q2) satisfy (2), and since the determinant
q1p2−q2p1 is 1, these two integer points are primitive. As there exist infinitely
many matrices γ satisfying (7), we thus find infinitely many solutions to (2).

Assume now that the irrational number ξ has bounded partial quotients.
Then Theorem 4 in [10] gives us in the opposite direction a lower bound of
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the form
|γx− y| ≥ c′/|γ|1/2

for every γ ∈ Γ , where the positive constant c′ depends only upon (ξ, y).
Since we have |γ| ≤ c′′max(|q1|, |q2|) when (2) holds, the estimate (2) is
optimal up to the value of c.

Remark. The single inequality |q1ξ + p1 − y| ≤ ψ(|q1|) geometrically
means that the point γx falls inside a neighborhood of the vertical line
x1 = y. A better understanding of the shrinking target problem for the
dense orbit Γx, not to a point y as in [10] but to a line in R2, may possibly
lead to a refinement of (1).

3. Proof of Theorem 2. It is convenient to view the pairs (ξ, y) occur-
ring in Theorem 2 as column vectors

(
ξ
y

)
in R2. We are concerned with the

set E(ψ) of vectors
(
ξ
y

)
∈ R2 for which there exist infinitely many primitive

integer points (p, q) such that

(8) q ≥ 1 and |qξ + p− y| ≤ ψ(q).

For fixed p, q, denote by Ep,q(ψ) the strip

Ep,q(ψ) :=

{(
ξ

y

)
∈ R2; |qξ + p− y| ≤ ψ(q)

}
,

and for every positive integer q, let

Eq(ψ) :=
⋃
p∈Z

gcd(p,q)=1

Ep,q(ψ)

be the union of all relevant strips involved in (8) for fixed q. Without loss
of generality, we shall assume that ψ(q) ≤ 1/2, so that the above union is
disjoint. Then E(ψ) is equal to the limsup set

E(ψ) =
⋂
Q≥1

⋃
q≥Q
Eq(ψ).

As usual when dealing with limsup sets in metrical theory, we first es-
timate the Lebesgue measure of pairwise intersections of the subsets Eq(ψ),
q ≥ 1. We next establish a new kind of zero-one law.

3.1. Measuring intersections. In this section, we restrict our atten-
tion to points in the unit square [0, 1]2. We denote by ϕ the Euler totient
function and by λ the Lebesgue measure on R2.

Lemma 2. Let ψ : N→ [0, 1/2] be a function.

(i) For every positive integer q, we have

λ(Eq(ψ) ∩ [0, 1]2) = 2ϕ(q)ψ(q)/q.
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(ii) Let q and s be distinct positive integers. Then

λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2) ≤ 4ψ(q)ψ(s).

Proof. Denote by χq the characteristic function of [−ψ(q), ψ(q)]. Then
the characteristic function χEq(ψ) of the subset Eq(ψ) ⊂ R2 is equal to

χEq(ψ)(ξ, y) =
∑
p∈Z

gcd(p,q)=1

χq(qξ + p− y) =
∑
p∈Z

gcd(p,q)=1

χq(qξ − p− y).

Observe that if
(
ξ
y

)
∈ [0, 1]2, the indices p of non-vanishing terms occurring

in the last sum satisfy −1 ≤ p ≤ q. Integrating first with respect to x, we
find

λ(Eq(ψ) ∩ [0, 1]2) =

1�

0

1�

0

χEq(ψ)(x, y) dx dy

=
∑
p∈Z

−1≤p≤q, gcd(p,q)=1

1�

0

1�

0

χq(qx− p− y) dx dy

=

1�

1−ψ(q)

−1 + y + ψ(q)

q
dy +

∑
1≤p≤q−2
gcd(p,q)=1

1�

0

2ψ(q)

q
dy

+

1−ψ(q)�

0

2ψ(q)

q
dy +

1�

1−ψ(q)

1− y + ψ(q)

q
dy

=
2ϕ(q)ψ(q)

q
.

The first term appearing in the third equality of the above formula corre-
sponds to the summation index p = −1 and the last two to p = q − 1. We
have thus proved (i).

For the second assertion, we majorize

λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2) =

1�

0

1�

0

χEq(ψ)(x, y)χEs(ψ)(x, y) dx dy

≤
1�

0

1�

0

(∑
p∈Z

χq(qx+ p− y)
)(∑

r∈Z
χs(sx+ r − y)

)
dx dy

=

1�

0

1�

0

χq(‖qx− y‖)χs(‖sx− y‖) dx dy,

where ‖ · ‖ stands as usual for the distance to the nearest integer. Now, (ii)
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follows from the probabilistic independence formula

1�

0

1�

0

χq(‖qx− y‖)χs(‖sx− y‖) dx dy = 4ψ(q)ψ(s),

obtained by Cassels [4, p. 124, Proof (ii)].

3.2. A zero-one law. We say that a subset of R2 is a null set if it has
Lebesgue measure 0. A set whose complement is a null set is called a full
set. The goal of this section is to prove

Proposition. Let ψ be an approximating function as in Theorem 2.
Then E(ψ) is either a null set or a full set.

To prove the proposition, it is convenient to introduce the larger set

E ′(ψ) =
⋃
k≥1
E(kψ).

In other words, E ′(ψ) is the set of all points
(
ξ
y

)
in R2 for which there exist

a positive real κ, depending possibly on
(
ξ
y

)
, and infinitely many primitive

points (p, q) satisfying

(9) q ≥ 1 and |qξ + p− y| ≤ κψ(q).

Observe that E(kψ) ⊆ E(k′ψ) if 1 ≤ k ≤ k′. In particular, E(ψ) ⊂ E ′(ψ).

Lemma 3. Assume that the approximating function ψ : N → R+ tends
to zero at infinity. Then E ′(ψ) \ E(ψ) is a null set.

Proof. We show that all sets E(kψ), k ≥ 1, have the same Lebesgue
measure. For every real y, denote by E(ψ, y) ⊆ R the section of E(ψ) on the
horizontal line R× {y}, i.e.

E(ψ, y) =

{
ξ ∈ R;

(
ξ

y

)
∈ E(ψ)

}
.

Then, using (8), we can express

E(ψ, y) =
⋂
Q≥1

⋃
q≥Q

⋃
p∈Z

gcd(p,q)=1

[
−p+ y − ψ(q)

q
,
−p+ y + ψ(q)

q

]

as a limsup set of intervals. If we restrict ourselves to a bounded part of
E(ψ, y), the above union over p reduces to a finite one. Observe that the
centers (−p+ y)/q of these intervals do not depend on ψ, and that their
length is multiplied by the constant factor k when replacing ψ by kψ. Ap-
pealing now to a result due to Cassels [5], we infer that all limsup sets
E(kψ, y), k ≥ 1, have the same Lebesgue measure. See also [8, Corollary
of Lemma 2.1, p. 30]. Notice that for fixed k, the length 2kψ(q)/q of the
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relevant intervals tends to 0 as q tends to infinity, as required by Lemma
2.1. By Fubini, the fibered sets

E(kψ) =
∐
y∈R

(E(kψ, y)× {y}), k ≥ 1,

all have the same Lebesgue measure in R2 as well.

Lemma 4. Let ψ : N → R+ be a non-increasing function satisfying (3).
Then E ′(ψ) is either a null set or a full set.

Proof. The proof is based on the following observation. Let
(
ξ
y

)
∈ E ′(ψ)

and let γ =
(
a b
c d

)
∈ SL(2,Z) be such that cξ + d > 0. Then the point

(
ξ′

y′

)
with coordinates

ξ′ =
aξ + b

cξ + d
and y′ =

y

cξ + d

belongs to E ′(ψ). Indeed, substituting

(10) q = aq′ + cp′, p = bq′ + dp′

in (9) and dividing by cξ + d, we obtain

(11) q′ ≥ 1 and |q′ξ′ + p′ − y′| ≤ κ

cξ + d
ψ(q) ≤ κ′ψ(q′),

for some κ′ > 0 independent of q′. The positivity of q′ is proved as follows.
Note that (9) implies the estimate

p = −qξ +Oξ,y(1).

Then, inverting the linear substitution (10), we find

q′ = dq − cp = q(cξ + d) +Oγ,ξ,y(1).

Since we have assumed that cξ + d > 0, the term q(cξ + d) is arbitrarily
large when q is large enough. The condition (3) now shows that ψ(q) � ψ(q′).
Thus (11) is satisfied for infinitely many primitive points (p′, q′), since the

linear substitution (10) is unimodular. We have shown that
(
ξ′

y′

)
∈ E ′(ψ).

We now prove that E ′(ψ)∩(R×R+) is either a full subset or a null subset
of the half-plane R× R+. To that end, we consider the map

Φ : R× R+ → R× R+ defined by Φ

((
x

y

))
=

(
x/y

1/y

)
.

Clearly Φ is a continuous involution of R× R+. The image

Ω := Φ(E ′(ψ) ∩ (R× R+))

is formed by all points of the type(
u

v

)
=

(
ξ/y

1/y

)
,
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where
(
ξ
y

)
ranges over E ′(ψ)∩(R×R+). Now, the above condition cξ+d > 0

is obviously equivalent to cu+ dv > 0 since y is positive. Then the point

Φ

(
au+ bv

cu+ dv

)
=

(
au+bv
cu+dv

1
cu+dv

)
=

(
aξ+b
cξ+d
y

cξ+d

)
belongs to E ′(ψ) ∩ (R × R+), by the preceding observation. Applying the
involution Φ, we find that

Φ

((
aξ+b
cξ+d
y

cξ+d

))
=

(
au+ bv

cu+ dv

)
=

(
a b

c d

)(
u

v

)
belongs to Ω. In other words, setting Γ = SL(2,Z), we have established the
inclusion

(ΓΩ) ∩ (R× R+) ⊆ Ω.

Since the reverse inclusion is obvious, we have Ω = (ΓΩ) ∩ (R × R+).
Assuming that Ω is not a null set, the ergodicity of the linear action of Γ
on R2 [13] shows that ΓΩ is a full set in R2. Hence Ω is a full set in the
half-plane R× R+. Transforming now Ω by Φ, we find that

Φ(Ω) = E ′(ψ) ∩ (R× R+)

is also a full set in R× R+, thus proving the claim.

We finally use another transformation to carry the zero-one law from the
positive half-plane R × R+ to the negative one R × R−. Writing (9) in the
equivalent form

q ≥ 1 and |q(−ξ) + (−p)− (−y)| ≤ κψ(q)

shows that E ′(ψ) is invariant under the symmetry
(
ξ
y

)
7→
(−ξ
−y
)

which maps

R× R+ onto R× R−. Therefore E ′(ψ) ∩ (R× R−) is a null set or a full set
in R×R− whenever E ′(ψ)∩ (R×R+) is, respectively, a null set or a full set
in R× R+.

Now, the combination of Lemmas 3 and 4 obviously yields our proposi-
tion.

3.3. Concluding the proof of Theorem 2. Assume first that
∑
ψ(`)

converges. We have to show that the set

E(ψ) = lim sup
q→∞

Eq(ψ)

has zero Lebesgue measure. Lemma 2 shows that the partial sums

Q∑
q=1

λ(Eq(ψ) ∩ [0, 1]2) = 2

Q∑
q=1

ϕ(q)ψ(q)

q
≤ 2

Q∑
q=1

ψ(q)
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converge (1). Then the Borel–Cantelli Lemma ensures that the limsup set
E(ψ) ∩ [0, 1]2 is a null set. Thus E(ψ) cannot be a full set. Now, the above
proposition tells us that E(ψ) is a null set.

We now consider the case of a divergent series
∑
ψ(`). Observe that

(12)
1

2

Q∑
q=1

ψ(q) ≤
Q∑
q=1

ϕ(q)ψ(q)

q
≤

Q∑
q=1

ψ(q)

for any large integer Q, since the sequence (ψ(`))`≥1 is non-increasing. The
right inequality is obvious, while the left one easily follows by Abel summa-
tion. See for instance Chapter 2 of [8], where full details are provided. By
Lemma 2 and (12), the sums

Q∑
q=1

λ(Eq(ψ) ∩ [0, 1]2) = 2

Q∑
q=1

ϕ(q)ψ(q)

q
≥

Q∑
q=1

ψ(q)

are then unbounded. Then, using a classical converse to the Borel–Cantelli
Lemma, we have the lower bound

λ(E(ψ) ∩ [0, 1]2) = λ
(

lim sup
q→∞

(Eq(ψ) ∩ [0, 1]2)
)

(13)

≥ lim sup
Q→∞

(
∑Q

q=1 λ(Eq(ψ) ∩ [0, 1]2))2∑Q
q=1

∑Q
s=1 λ(Eq(ψ) ∩ Es(ψ) ∩ [0, 1]2)

.

See for instance Lemma 2.3 in [8]. Lemma 2 and (12) now show that the
numerator on the right hand side of (13) equals

4

( Q∑
q=1

ϕ(q)ψ(q)

q

)2

≥
( Q∑
q=1

ψ(q)
)2

when Q is large, while the denominator is bounded from above by

4

Q∑
q=1, s=1
q 6=s

ψ(q)ψ(s) + 2

Q∑
q=1

ψ(q) ≤ 4
( Q∑
q=1

ψ(q)
)2

+ 2

Q∑
q=1

ψ(q).

Thus (13) yields the lower bound

λ(E(ψ) ∩ [0, 1]2) ≥ 1/4.

Hence E(ψ) is not a null set; it is thus a full set according to our proposition.

4. An approach to our problem. In this section, we apply a trans-
ference principle between homogeneous and inhomogeneous approximation,

(1) Here again we assume without loss of generality that ψ(q) ≤ 1/2 for every q ≥ 1,
so that Lemma 2 may be applied.
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as displayed in Chapter V of [4] and in [3], for constructing explicit integer
solutions of the inequality

(14) |qξ + p− y| ≤ 2/|q|.

Let (pk/qk)k≥0 be the sequence of convergents to the irrational number ξ.
The theory of continued fractions (see for instance the monograph [9]) tells
us that

(15) |qkξ − pk| ≤ 1/qk+1 and pkqk+1 − pk+1qk = (−1)k+1

for any k ≥ 0. Setting νk = (−1)k+1qky, we thus have the relations

(16) νkqk+1 + νk+1qk = 0 and νk(qk+1ξ − pk+1) + νk+1(qkξ − pk) = y.

Now, let nk be either bνkc or dνke (2). Then

(17) |νk − nk| < 1,

and nk is either equal to (−1)k+1byqkc or to (−1)k+1dyqke. Setting

(18) p = −nkpk+1 − nk+1pk and q = nkqk+1 + nk+1qk,

we deduce from (16) the expressions

qξ + p− y = nk(qk+1ξ − pk+1) + nk+1(qkξ − pk)− y(19)

= (nk − νk)(qk+1ξ − pk+1) + (nk+1 − νk+1)(qkξ − pk)
and

(20) q = (nk − νk)qk+1 + (nk+1 − νk+1)qk.

Recall that qkξ − pk and qk+1ξ − pk+1 have opposite signs. Assuming that
nk − νk and nk+1 − νk+1 have the same sign, we infer from (19), (20) and
(15), (17) that

(21) |qξ + p− y| < 1/qk+1 and |q| < 2qk+1.

Otherwise, we have

(22) |qξ + p− y| < 2/qk+1 and |q| < qk+1.

The inequalities (21) and (22) obviously imply (14).

Since the linear substitution (18) is unimodular, the integers p and q are
coprime if and only if nk and nk+1 are coprime. Recall that the two choices
nk = bνkc and nk = dνke are admissible, both for nk and nk+1. It thus
remains to find indices k for which at least one of the coprimality conditions

(23)
gcd(byqkc, byqk+1c) = 1, gcd(dyqke, dyqk+1e) = 1,

gcd(byqkc, dyqk+1e) = 1, gcd(dyqke, byqk+1c) = 1

(2) As usual bxc and dxe stand respectively for the floor and the ceiling of the real
number x. Then dxe = bxc+ 1, unless x is an integer in which case bxc = dxe = x.



424 M. Laurent and A. Nogueira

is satisfied. Note that obviously there is no such k ≥ 0 when y is an integer
not equal to 1 or to −1. Otherwise, the existence of infinitely many indices k
satisfying (23) is a non-trivial problem that we leave hanging.

Let us mention that the proof of (1) in [6] follows the same idea, finding
a primitive integer point inside the square centered at the point (νk, νk+1)
∈ R2 with side C log |νk|/log log |νk| for some suitable large absolute con-
stant C.

4.1. Proof of Theorem 3. We quote the following metrical result due
to Harman (Theorem 8.3 in [8]). Assume that the series (5) diverges. Then
for almost all positive real numbers y, there exist infinitely many indices k
such that the integer part byqkc is a prime number. These indices k satisfy
(23) since, assuming for simplicity that y is irrational, either byqk+1c or
dyqk+1e = byqk+1c+ 1 is not divisible by byqkc and is thus relatively prime
to byqkc. Hence (14) has infinitely many coprime solutions (p, q) for almost
every positive real number y. Writing now (14) in the equivalent form

|(−q)ξ + (−p)− (−y)| ≤ 2/|q|
shows that, given ξ, the set of all real numbers y for which (14) has infinitely
many coprime solutions is invariant under the symmetry y 7→ −y. The first
assertion is thus established. To complete the proof, note that

lim
k→∞

log qk
k

=
π2

12 log 2

for almost every ξ by the Khintchine–Lévy Theorem (see equation (4.18)
in [2]). Thus the series (5) diverges for almost every ξ.

5. Generic density exponents. In this section we prove Theorem 4,
as a consequence of the Borel–Cantelli Lemma combined with the following
counting result.

Lemma 5. Let x be a point in R2 whose orbit Γx is dense in R2. For
every symmetric compact set Ω in R2 \ {0} there exists c > 0 such that

Card{γ ∈ Γ ; γx ∈ Ω, |γ| ≤ T} ≤ cT
for any real T ≥ 1.

Proof. Ledrappier [11] has shown that the limit formula

lim
T→∞

1

T

∑
γ∈Γ, |γ|≤T

f(γx) =
4

|x| vol(Γ\SL(2,R))

� f(y)

|y|
dy

holds for any even continuous function f : R2 → R having compact support
on R2 \{0}, with a suitable normalisation of Haar measure on SL(2,R). Ap-
proximating uniformly from above and from below the characteristic func-
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tion of Ω by even continuous functions, we deduce that

lim
T→∞

Card{γ ∈ Γ ; γx ∈ Ω, |γ| ≤ T}
T

=
4

|x| vol(Γ\SL(2,R))

�

Ω

dy

|y|
.

Lemma 5 immediately follows.

For any y ∈ R2 and any positive real number r, we denote by

B(y, r) = {z ∈ R2; |z− y| ≤ r}

the closed disc centered at y with radius r.

Lemma 6. Let x be a point in R2 whose orbit Γx is dense in R2, Ω a
symmetric compact set in R2 \ {0} and µ a real number > 1/2. For every
integer n ≥ 1, put

Bn =
⋃
γ∈Γ

|γ|=n, γx∈Ω

B(γx, n−µ).

Then

B := lim sup
n→∞

Bn =
⋂
N≥1

⋃
n≥N
Bn =

⋂
N≥1

⋃
γ∈Γ

|γ|≥N, γx∈Ω

B(γx, |γ|−µ)

is a null set.

Proof. We apply the Borel–Cantelli Lemma to prove that the series∑
n≥1 λ(Bn) converges if µ > 1/2.

For every positive integer n, set

Mn = Card{γ ∈ Γ ; γx ∈ Ω, |γ| = n}.

Lemma 5 gives us the upper bound

(24) M1 + · · ·+Mn = Card{γ ∈ Γ ; γx ∈ Ω, |γ| ≤ n} ≤ cn

for some c > 0 independent of n ≥ 1. Since a ball of radius r has Lebesgue
measure 4r2, we trivially bound from above

λ(Bn) ≤
∑
γ∈Γ

|γ|=n, γx∈Ω

4n−2µ = 4Mnn
−2µ.

Summing by parts, we deduce from (24) that

N∑
n=1

Mn

n2µ
=

N−1∑
n=1

(M1 + · · ·+Mn)

(
1

n2µ
− 1

(n+ 1)2µ

)
+
M1 + · · ·+MN

N2µ

≤ c
N−1∑
n=1

n

(
1

n2µ
− 1

(n+ 1)2µ

)
+

cN

N2µ
= c

N∑
n=1

1

n2µ
.
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The partial sums

N∑
n=1

λ(Bn) ≤ 4
N∑
n=1

Mn

n2µ
≤ 4c

N∑
n=1

1

n2µ

thus converge if µ > 1/2.

5.1. Proof of Theorem 4. Suppose on the contrary that µΓ (x) > 1/2.
Fix a real µ with 1/2 < µ < µΓ (x). Then for almost all y ∈ R2, we have
µ(x,y) > µ. This means that there exist infinitely many γ ∈ Γ satisfy-
ing (6), or equivalently that y belongs to infinitely many balls of the form
B(γx, |γ|−µ). We now restrict our attention to points y with µ(x,y) > µ
lying in an annulus

Ω′ = {z ∈ R2; a′ ≤ |z| ≤ b′},
where b′ > a′ > 0 are arbitrarily fixed. Since y ∈ Ω′ ∩ B(γx, |γ|−µ), the
triangle inequality yields

a′ − |γ|−µ ≤ |γx| ≤ b′ + |γ|−µ.
If a < a′ and b > b′, then the center γx lies in the larger annulus

Ω = {z ∈ R2; a ≤ |z| ≤ b},
provided that |γ| is large enough. It follows that y falls inside the union of
balls ⋃

γ∈Γ
|γ|≥N, γx∈Ω

B(γx, |γ|−µ)

considered in Lemma 6 for every integer N large enough, and thus y ∈ B.
However, Lemma 6 asserts that B is a null set, which is a contradiction.
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