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1. Introduction and statement of the result

1.1. Description of the families of L-functions studied. The pur-
pose of this paper is to compute the lower order terms of some particular
statistics associated to low-lying zeros of several families of symmetric power
L-functions in the level aspect: the one-level densities. As shown in [22], the
main terms for the one-level densities are basically independent of the arith-
metic of the families: they only rely on their random matrix theory type.
For example, the following families have symplectic random matrix theory
type: symmetric rth power L-functions with r even, L-functions of ideal
class group of imaginary quadratic fields Q(

√
−D) (with squarefree D and

D congruent to −1 modulo 4), L-functions of quadratic Dirichlet characters,
Rankin–Selberg L-functions (see [21] for a convincing manifestation of the
power of prediction of random matrix theory in analytic number theory).
However, lower order terms allow distinguishing these families [22, 6, 19]. We
give a short description of the families under consideration. To any primitive
holomorphic cusp form f of prime level q and even weight (1) κ > 2 (see
[22, §2.1] for the automorphic background) say f ∈ H∗κ(q), one can associate
its rth symmetric power L-function denoted by L(Symrf, s) for any integer
r > 1. It is given by the following absolutely convergent and non-vanishing
Euler product of degree r + 1 on Re s > 1:

L(Symrf, s) :=
∏
p∈P

Lp(Symrf, s)

2010 Mathematics Subject Classification: 11F66, 11M41, 15A52.
Key words and phrases: symmetric power L-functions, zeros, random matrix theory, one-
level densities, lower order terms.

(1) In this paper, the weight κ is a fixed even integer and the level q goes to infinity
through the prime numbers.

DOI: 10.4064/aa141-2-2 [153] c© Instytut Matematyczny PAN, 2010



154 G. Ricotta and E. Royer

where

Lp(Symrf, s) :=
r∏
i=0

(
1−

αf (p)iβf (p)r−i

ps

)−1

for any prime number p (we write p ∈ P). From now on, αf (p), βf (p)
are the Satake parameters of f at the prime number p and (λf (n))n>1 is its
sequence of Hecke eigenvalues, which is arithmetically normalised: λf (1) = 1
and |λf (p)| 6 2 for any prime p. We also define [4, (3.16) and (3.17)] a local
factor at ∞ which is given by a product of r + 1 Gamma factors

ΓR(s) := π−s/2Γ (s/2),

namely

L∞(Symrf, s)

:=
∏

06a6(r−1)/2

ΓR

(
s+

(2a+ 1)(κ− 1)
2

)
ΓR

(
s+ 1 +

(2a+ 1)(κ− 1)
2

)
if r is odd and

L∞(Symrf, s) := ΓR(s+ µκ,r)
∏

16a6r/2

ΓR(s+ a(κ− 1))ΓR(s+ 1 + a(κ− 1))

if r is even, where

µκ,r :=
{

1 if r(κ− 1)/2 is odd,
0 otherwise.

The completed L-function is defined by

Λ(Symrf, s) := (qr)s/2L∞(Symrf, s)L(Symrf, s)

and qr is the arithmetic conductor. We will need some control on the analytic
behaviour of this function. Unfortunately, such information is not currently
known in all generality. We sum up our main assumption in the following
statement.

Hypothesis Nice(r, f). The function Λ(Symrf, s) is a completed L-
function in the sense that it has the following nice analytic properties:

• it can be extended to a holomorphic function of order 1 on C,
• it satisfies a functional equation of the shape

Λ(Symrf, s) = ε(Symrf)Λ(Symrf, 1− s)
where the sign ε(Symrf) = ±1 of the functional equation is given by

ε(Symrf) :=
{

+1 if r is even,
εf (q)ε(κ, r) otherwise

with
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ε(κ, r) := i(
r+1
2

)2(κ−1)+ r+1
2 =


iκ if r ≡ 1 (mod 8),
−1 if r ≡ 3 (mod 8),
−iκ if r ≡ 5 (mod 8),
+1 if r ≡ 7 (mod 8)

and εf (q) = −√q λf (q) = ±1.

Remark 1. Hypothesis Nice(r, f) is known for r = 1 (E. Hecke [10,
11, 12]), r = 2 thanks to the work of S. Gelbart and H. Jacquet [7] and
r = 3, 4 from the works of H. Kim and F. Shahidi [16, 15, 14]. In addition,
Rankin/Selberg theory enabled H. Kim and F. Shahidi to prove the func-
tional equation and the meromorphic continuation to C for k = 5, . . . , 9 and
the holomorphy in Re s > 1 for k = 5, . . . , 8. Note that the holomorphy at
s = 1 is expected since a holomorphic cusp form of prime level and trivial
character is not of CM type. Very recently, a proof of the non-vanishing and
the holomorphy of L(Symrf, s) on Re s > 1 for any primitive holomorphic
cusp form f of prime level q, trivial character and even weight f and any
r > 1 has been announced by Barnet-Lamb, Geraghty, Harris & Taylor [1,
Theorem B].

We aim at studying the lower order terms of the one-level density for
the family of L-functions given by⋃

q∈P

{L(Symrf, s) : f ∈ H∗κ(q)}

for any integer r > 1 and for the corresponding signed subfamilies (see [22]
for more details).

1.2. One-level densities of the families. The purpose of this work
is to determine the lower order terms of the one-level densities associated to
the above families of L-functions. Let us give the statement of our result,
in which ν is a positive real number, Φ is an even Schwartz function whose
Fourier transform Φ̂ is compactly supported in [−ν,+ν] (denoted by Φ ∈
Sν(R)) and f is a primitive holomorphic cusp form of prime level q and
even weight κ > 2 for which Hypothesis Nice(r, f) holds (2). We refer to
[22, §2.2] for the probabilistic background. Note that, thanks to the Fourier
inversion formula, such a function Φ can be extended to an entire even
function which satisfies

∀s ∈ C, Φ(s)�n
exp(ν|Im s|)

(1 + |s|)n

(2) Note that we do not assume any Generalised Riemann Hypothesis for the sym-
metric power L-functions.
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for any integer n > 0 according to [25, Theorem 7.22]. The one-level density
(relative to Φ) of Symrf is defined by

D1,q[Φ; r](f) :=
∑

ρ, Λ(Symrf,ρ)=0

Φ

(
log(qr)

2iπ

(
Re ρ− 1

2
+ i Im ρ

))
where the sum is over all non-trivial zeros ρ of L(Symrf, s) repeated with
multiplicities. The asymptotic expectation of the one-level density is by def-
inition

lim
q prime
q→+∞

∑
f∈H∗κ(q)

ωq(f)D1,q[Φ; r](f)

where

ωq(f) :=
Γ (κ− 1)

(4π)κ−1〈f, f〉q
is the harmonic weight (3) of f and 〈·, ·〉q is Petersson’s inner product on the
modular curve of level q. Before stating our result, we define some constants.
Let θ stand for the first Chebyshev function

θ(t) :=
∑
p∈P
p6t

log p.

The first constant is

(1.1) CPNT :=
(

1 +
+∞�

1

θ(t)− t
t2

dt

)
.

The second constant is

(1.2) C :=
∑
p∈P

log p
p3/2 − p

.

The last one is

(1.3) C∞ := −(r + 1) log π + CΓ

where

CΓ :=
∑

06a6(r−1)/2

{
Γ ′

Γ

(
1
4

+
(2a+ 1)(κ− 1)

4

)
+
Γ ′

Γ

(
1
4

+
1
2

+
(2a+ 1)(κ− 1)

4

)}
if r is odd and

CΓ :=
Γ ′

Γ

(
1
4

+
µκ,r

2

)
+

∑
16a6r/2

{
Γ ′

Γ

(
1
4

+
a(κ− 1)

2

)
+
Γ ′

Γ

(
1
4

+
1
2

+
a(κ− 1)

2

)}

(3) An explanation why this factor facilitates the computations, a way to remove it,
and its impact on lower order terms can be found in [17].
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if r is even. Finally, let us define

δ2|r :=
{

1 if r is even,
0 otherwise.

Theorem A. Let r > 1 be any integer and ε = ±1. Assume that Hypoth-
esis Nice(r, f) holds for any prime number q and any primitive holomorphic
cusp form of level q and even weight κ > 2. Let

ν1,max(r, κ, θ0) :=
(

1− 1
2(κ− 2θ0)

)
2
r2

with θ0 = 7/64. If ν < ν1,max(r, κ, θ0) then the asymptotic expectation of the
one-level density is∑
f∈H∗κ(q)

ωq(f)D1,q[Φ; r](f) =
[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]

+ [C∞ − 2(−1)rCPNT − 2δ2|rC]
Φ̂(0)

log(qr)
+O

(
1

log3(qr)

)
.

Remark 2. The main terms of the asymptotic expectation of these one-
level densities have already been found in [22, 9]. The new information is the
lower order terms, namely terms of size 1/log(qr). Note that the arithmetic
of the family does not enter the main terms but surfaces in the lower order
ones. These results give further evidence for the fact that while the main
terms for the one-level densities for low-lying zeros of families of L-functions
are essentially of random matrix theory type, the lower order terms really
depend on the arithmetic of the family. Universality is broken through these
lower order terms.

Remark 3. As will be seen in the proof of Proposition 3.1, the constant
CPNT does not come from specific properties of our family. It has already
appeared in other families [26, 20]. According to [23],

CPNT = −γ −
∑
p∈P

log p
p2 − p

= − lim
x→+∞

[
log x−

∑
p∈P
p6x

log p
p

]

where γ is Euler–Mascheroni’s constant. Note that the first series occurring
in the above equation is very slowly convergent, hence it is not so useful to
compute the value of this constant. It is shown in [5] that

CPNT = −γ −
∑
p∈P
p6P

log p
p2 − p

+
∑
k>1

µ(k)
(
ζ ′(k)
ζ(k)

+
∑
p∈P
p6P

log p
pk − 1

)
,

where the Möbius summand is bounded by P 1−k. It is possible to evaluate
CPNT with Pari-Gp [2]. For instance, using a method developed by Henri
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Cohen, David Broadhurst used 67 minutes on a 2.2 GHz Opteron to evaluate
5000 decimal places with P = 6779 [3]. We extract the following value:

CPNT = −1.3325822757332208817658287760710277488384594890424.

Remark 4. To compute C we define u0(l) = 1, u1(l) = #{d | l : 3 6 d 6
l/2} and

uk(l) =
∑
d|l

3·2k−16d6l/2

uk−1(d).

We obtain

C =
∑
l>3

(
−ζ
′

ζ

(
l

2

) K∑
k=0

(−1)kuk(l)
)

+ (−1)K
∑

l>3·2K
uK+1(l)

∑
p

log p
pl/2

.

With Pari-Gp [2], we get (in a few seconds)

C = 2.4768363850223143869989006981742171092171056763516.

Remark 5. Using the relations

Γ ′

Γ
(z) +

Γ ′

Γ

(
z +

1
2

)
= 2

Γ ′

Γ
(2z)− 2 log 2,

and
Γ ′

Γ
(z + n) =

Γ ′

Γ
(z) +

n−1∑
j=0

1
z + j

together with the special values

Γ ′

Γ
(1) = −γ, Γ ′

Γ

(
1
4

)
= −γ − π

2
− 3 log 2,

Γ ′

Γ

(
3
4

)
= −γ +

π

2
− 3 log 2

[8, (8.365.6), (8.365.3), (8.366.1), (8.366.3), (8.366.4)] we obtain

C∞ = 2
[r(κ−1)−1]/2∑

j=1

1
j

(
r + 1

2
−
⌈

2j + 1
2(κ− 1)

− 1
2

⌉)
− (r+ 1)(γ + log 2 + log π)

if r is odd and

C∞= 4
r(κ−1)/2∑
j=1

1
2j − 1

(
r

2
−
⌈

j

κ− 1

⌉
+1
)
−(r+1)(γ+3 log 2+log π)−(−1)r/2

π

2

if r is even, where d·e stands for the ceiling function. It follows that if r
is large enough (κ being fixed) or if κ is large enough (r being fixed) the
coefficient of the lower order term (i.e. the one of Φ̂(0)/log(qr)) is positive.
In particular, in this cases, the families under consideration have more zeros
than what is predicted by the random matrix theory model. For small values
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Table 1. Some values of the lower order coefficient

H
HHHHk

r
1 3 5 7 11 13 33 35

2 −7.49 −10.32 −12.15 −13.31 −14.24 −14.17 −1.83 0.21

4 −5.49 −6.15 −5.80 −4.77 −1.31 0.95 35.26 39.50

HHHHHk
r

2 4 6 8 12 14 32 34

2 −8.12 −13.53 −11.86 −15.90 −16.44 −13.08 −5.00 0.12

4 −5.98 −9.22 −5.35 −7.20 −3.35 2.19 30.04 37.37

(see Table 1), the lower order term coefficient is negative, showing a lack of
zeros compared to what is predicted by the random matrix theory model.

Remark 6. Note that θ0 = 7/64 is the best known approximation tow-
ards Ramanujan–Petersson–Selberg’s conjecture (see [22, hypothesis H2(θ),
p. 16]) thanks to the works of H. Kim, F. Shahidi and P. Sarnak ([15, 14]).
The value θ = 0 is expected.

Remark 7. It is clear from the proof of Theorem A that the same
result holds for the signed families with the same restriction on the support
as in [22].

Remark 8. The particular case r = 1 has already been investigated
in [17].

Notation. Recall that P stands for the set of prime numbers. The
main parameter in this paper is a prime number q, called the level, which
goes to infinity through P. If f and g are C-valued functions of q ∈P then
the notations f(q)�A g(q) or f(q) = OA(g(q)) mean that |f(q)| is smaller
than a “constant” (which only depends on A) times g(q) at least for q a
large enough prime number.

2. Chebyshev polynomials and Hecke eigenvalues. Recall that
the general facts about holomorphic cusp forms can be found in [22, §2.1].
Let p 6= q be a prime number and f ∈ H∗κ(q). Denote by χSt the character
of the standard representation St of SU(2). By the work of Deligne, there
exists θf,p ∈ [0, π] such that

λf (p) = χSt

(
eiθf,p 0

0 e−iθf,p

)
.

Moreover, the multiplicativity relation reads

λf (pν) = χSymν

(
eiθf,p 0

0 e−iθf,p

)
= Xν

(
χSt

(
eiθf,p 0

0 e−iθf,p

))
(2.1)

= Xν(λf (p))
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where χSymν is the character of the irreducible representation Symν St of
SU(2) and the polynomials Xν are defined by their generating series

(2.2)
∑
ν>0

Xν(x)tν =
1

1− xt+ t2
.

They are equivalently defined by

(2.3) Xν(2 cos θ) =
sin((ν + 1)θ)

sin θ
.

These polynomials are known as Chebyshev polynomials of the second kind.
Each Xν has degree ν, is even if ν is even and odd otherwise. The family
(Xν)ν>0 is a basis for the polynomial vector space Q[T ], orthonormal with
respect to the inner product

〈P,Q〉ST :=
1
π

2�

−2

P (x)Q(x)

√
1− x2

4
dx.

The following proposition lists the properties of Chebyshev polynomials
needed for this work.

Proposition 2.1.
• If $ > 0 is any integer then

(2.4) X$
r =

r$∑
j=0

x($, r, j)Xj

with

x($, r, j) := 〈X$
r , Xj〉ST =

2
π

π�

0

sin$((r + 1)θ) sin((j + 1)θ)
sin$−1 θ

dθ.

In particular,

(2.5) x($, r, j) =


0 if j ≡ r$ + 1 (mod 2),(

$
$/2

)
1 +$/2

if $ is even, r = 1 and j = 0.

• If α is a complex number of norm 1 and n > 0 is an integer then

(2.6) αn + α−n =


2X0(α+ α−1) if n = 0,
X1(α+ α−1) if n = 1,
Xn(α+ α−1)−Xn−2(α+ α−1) otherwise.
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• If α is a complex number of norm 1 and r, n > 1 are integers then

S(α;n, r) :=
r∑
j=0

αn(2j−r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[αjn + α−jn](2.7)

=
∑

06j6r
j≡r (mod 2)

[Xjn(α+ α−1)−Xjn−2(α+ α−1)]

= Xr(αn + α−n)

where X−1 = X−2 = 0 by convention.
• If r > 1 and n > 1 are integers then

(2.8)
∑

06j6r
j≡r (mod 2)

[Xjn −Xjn−2] =
r∑
j=0

(−1)jXj
n−2Xn(r−j)

where X−1 = X−2 = 0 by convention.
• If l > 0 is an integer then the expansion of Xl in the canonical basis

of Q[T ] is

(2.9) Xl =
∑

06u6l
u≡l (mod 2)

(−1)(l−u)/2
(

(l + u)/2
u

)
T u.

Proof. The first point follows from the fact that X$
r is a polynomial of

degree r$, which is even if r$ is even and odd otherwise. Thus, (2.4) is
the expansion of this polynomial in the orthonormal basis (Xj)06j6r$. The
second point follows from the equality

2 cos(nθ) sin θ = sin((n+ 1)θ)− sin((n− 1)θ).

If α = exp(iθ) then this equality combined with (2.3) leads to

2 cos(nθ) = Xn(2 cos θ)−Xn−2(2 cos θ),

which is the desired result since 2 cos θ = α+α−1 and 2 cos(nθ) = αn+α−n.
The third point is a direct consequence of the second one, of the direct
computation

S(α;n, r) =
αn(r+1) − α−n(r+1)

αn − α−n
and of

Xr(αn + α−n) = Xr(2 cos(nθ)) =
αn(r+1) − α−n(r+1)

αn − α−n
if α = exp(iθ). The fourth point is easily deduced from the fact that

S(α;n, r) =
r∑
j=0

(−1)jXj
n−2(α+ α−1)Xn(r−j)(α+ α−1)
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for any complex number α of norm 1. Let us prove the previous equality.
According to [24, p. 727, first and second equations],∑

r>0

Xnr(α+ α−1)tr = [1 +Xn−2(α+ α−1)t]
∑
r>0

Xr(αn + α−n)tr.

As a consequence,

Xnr(α+ α−1) = Xr(αn + α−n) +Xn−2(α+ α−1)Xr−1(αn + α−n),

which implies

Xr(αn + α−n) =
r∑
j=0

(−1)jXj
n−2(α+ α−1)Xn(r−j)(α+ α−1).

The last point is obtained by developing (2.2) as an entire series in x.

3. Riemann’s explicit formula for symmetric power L-functions.
To study D1,q[Φ; r](f) for any Φ ∈ Sν(R), we transform this sum over zeros
into a sum over primes in the next proposition. In other words, we establish
an explicit formula for symmetric power L-functions.

Proposition 3.1. Let r > 1 and f ∈ H∗κ(q) for which Hypothesis
Nice(r, f) holds and let Φ ∈ Sν(R). Then

D1,q[Φ; r](f) =
[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+

Φ̂(0)
log(qr)

[C∞ + 2(−1)r+1CPNT − 2δ2|rC] + P 1
q [Φ; r](f)

+
r−1∑
m=0

(−1)mP 2
q [Φ; r,m](f) + P 3

q [Φ; r](f) +O

(
1

log3(qr)

)
where CPNT is defined in (1.1), C in (1.2), C∞ in (1.3) and

P 1
q [Φ; r](f) := − 2

log(qr)

∑
p∈P
p-q

λf (pr)
log p
√
p
Φ̂

(
log p

log(qr)

)
,

P 2
q [Φ; r,m](f) := − 2

log(qr)

∑
p∈P
p-q

λf (p2(r−m))
log p
p

Φ̂

(
2 log p
log(qr)

)
,

P 3
q [Φ; r](f) := − 2

log(qr)

∑
p∈P
p-q

∑
n>3

[ ∑
16j6r

j≡r (mod 2)

(λf (pjn)− λf (pjn−2))
]

× log p
pn/2

Φ̂

(
n log p
log(qr)

)
for any integer m ∈ {0, . . . , r − 1}.



Lower order terms for one-level densities 163

Proof. Let

G(s) := Φ

(
log(qr)

2iπ

(
s− 1

2

))
.

From [13, (4.11) and (4.14)] we get

(3.1) D1,q[Φ; r](f) = Φ̂(0) + C∞
Φ̂(0)

log(qr)
+Q+O

(
1

log3(qr)

)
where

Q := − 2
log(qr)

∑
p∈P

+∞∑
n=1

[ r∑
j=0

αf (p)jnβf (p)(r−j)n
]
Φ̂

(
n log p
log(qr)

)
log p
pn/2

.

Note that the contribution of the prime q to Q is given by

−2
r

+∞∑
n=1

(
λf (q)r
√
q

)n
Φ̂

(
n

r

)
� 1

q(r+1)/2
.

For p 6= q we use
r∑
j=0

αf (p)jnβf (p)(r−j)n = S(αf (p);n, r)

with the notation of (2.7). We obtain

S(αf (p); 1, r) = Xr(αf (p) + αf (p)−1) = λf (pr)

according to (2.1). This term contributes to P 1
q [Φ; r](f). Then

S(αf (p); 2, r)=
∑

06j6r
j≡r (mod 2)

[X2j(αf (p) + αf (p)−1)−X2j−2(αf (p) + αf (p)−1)]

=
r∑
j=0

(−1)jX2(r−j)(αf (p) + αf (p)−1) (cf. (2.8))

=
r−1∑
m=0

(−1)mλf (p2(r−m)) + (−1)r.

As a consequence,

Q = P 1
q [Φ; r](f) +

r−1∑
m=0

(−1)mP 2
q [Φ; r,m](f)− 2

log(qr)
S3(3.2)

− 2
log(qr)

∑
p∈P
p-q

∑
n>3

S(αf (p);n, r)
log p
pn/2

Φ̂

(
log(pn)
log(qr)

)
+O

(
1
q

)
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where

S3 := (−1)r
∑
p∈P

log p
p

Φ̂

(
log(p2)
log(qr)

)
.

By partial summation,

S3 = (−1)r
+∞�

1

θ(t)
t2

(
Φ̂

(
2 log t
log(qr)

)
− 2

log(qr)
Φ̂′
(

2 log t
log(qr)

))
dt.

Then

S3 = (−1)r
+∞�

1

(
Φ̂

(
2 log t
log(qr)

)
− 2

log(qr)
Φ̂′
(

2 log t
log(qr)

))
dt

t

+ (−1)r
+∞�

1

θ(t)− t
t

(
Φ̂

(
2 log t
log(qr)

)
− 2

log(qr)
Φ̂′
(

2 log t
log(qr)

))
dt

t
.

Using the Prime Number Theorem in the totally explicit form

θ(t) = t+O(te−c
√

log t)

for some absolute constant c > 0 and the facts that Φ̂(u) = Φ̂(0) + O(u2)
and Φ̂′(u)� |u|, we get

S3 = (−1)r
log(qr)

2

+∞�

0

Φ̂(u) du− (−1)r
+∞�

0

Φ̂′(u) du

+ (−1)rΦ̂(0)
+∞�

1

θ(t)− t
t2

dt+O

(
1

log2(qr)

)
and finally

S3 = (−1)r
log(qr)

4
Φ(0) + (−1)rΦ̂(0)

(
1 +

+∞�

1

θ(t)− t
t2

dt

)
(3.3)

+O

(
1

log2(qr)

)
.

Equations (3.3) and (3.2) entail that

(3.4) Q = P 1
q [Φ; r](f) +

r−1∑
m=0

(−1)mP 2
q [Φ; r,m](f)

− 2
log(qr)

∑
p∈P
p-q

∑
n>3

S(αf (p);n, r)
log p
pn/2

Φ̂

(
log(pn)
log(qr)

)

+
(−1)r+1

2
Φ(0) + 2(−1)r+1CPNT

Φ̂(0)
log(qr)

+O

(
1

log3(qr)

)
.
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According to (2.1) and (2.7), we have

S(αf (p);n, r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[λf (pjn)− λf (pjn−2)].

Since Φ̂(u) = Φ̂(0) +O(u2), the contribution of δ2|r leads to∑
p∈P
p-q

∑
n>3

log p
pn/2

Φ̂

(
n log p
log(qr)

)
=
∑
p∈P

∑
n>3

log p
pn/2

Φ̂(0) +O

(
1

log2(qr)

)

=
∑
p∈P

log p
p3/2 − p

Φ̂(0) +O

(
1

log2(qr)

)
.

According to the previous estimate and equation (3.4), we get

Q = P 1
q [Φ; r](f) +

r−1∑
m=0

(−1)mP 2
q [Φ; r,m](f) + P 3

q [Φ; r](f)

+
(−1)r+1

2
Φ(0) + 2(−1)r+1CPNT

Φ̂(0)
log(qr)

− 2δ2|rC
Φ̂(0)

log(qr)
+O

(
1

log3(qr)

)
.

Finally, the result is deduced from this equation for Q and (3.1).

4. Proof of Theorem A. The aim of this part is to determine an
asymptotic expansion of∑

f∈H∗κ(q)

ωq(f)D1,q[Φ; r](f) =: Eh
q (D1,q[Φ; r]).

According to Proposition 3.1 and the proof of [22, (4.6) and (4.7)], if

(4.1) ν <

(
1− 1

2(κ− 2θ)

)
2
r2

then

Eh
q (D1,q[Φ; r]) =

[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
(4.2)

+
Φ̂(0)

log(qr)
[C∞ + 2(−1)r+1CPNT − 2δ2|rC]

+ Eh
q (P 3

q [Φ; r](f)) +O

(
1

log3(qr)

)
.

The first term in (4.2) is the main term given in Theorem A. We now
estimate the penultimate term of (4.2) via the Petersson trace formula given
in [22, Proposition 2.2]. For completeness, we recall that this formula uses
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the ∆ symbol defined for any integers l, m and n by

∆l(m,n) := δ(m,n) + 2πiκ
∑
c>1
l|c

S(m,n; c)
c

Jκ−1

(
4π
√
mn

c

)

where δ(m,n) is 1 if m = n and 0 otherwise, S(m,n; c) is a Kloosterman
sum and Jκ−1 is the Bessel J function. The Petersson trace formula leads
to

Eh
q (P 3

q [Φ; r]) = P3
q,new[Φ; r] + P3

q,old[Φ; r]

where

P3
q,new[Φ; r] = − 2

log(qr)

∑
p∈P
p-q

∑
n>3

[ ∑
16j6r

j≡r (mod 2)

(∆q(pjn, 1)−∆q(pjn−2, 1))
]

× log p
pn/2

Φ̂

(
n log p
log(qr)

)
and

P3
q,old[Φ; r] =

2
q log(qr)

∑
l|q∞

1
l

×
∑
p∈P
p-q

∑
n>3

[ ∑
16j6r

j≡r (mod 2)

(∆1(pjnl2, 1)−∆1(pjn−2l2, 1))
] log p
pn/2

Φ̂

(
n log p
log(qr)

)
.

Let us estimate the new part which can be written as

P3
q,new[Φ; r]

= −2(2πiκ)
log(qr)

∑
16j6r

j≡r (mod 2)

∑
n>3

(P3
q,new[Φ; r, jn]− P3

q,new[Φ; r, jn− 2])

where

(4.3) P3
q,new[Φ; r, k] :=

∑
p∈P
p 6=q

log p
pn/2

Φ̂

(
log p

log(qr/n)

)

×
∑
c>1
q|c

S(pk, 1; c)
c

Jκ−1

(
4π
√
pk

c

)
.

By [22, Lemma 3.10], the c-sum in (4.3) is bounded by

τ(q)
√
q


(√

pk

q

)1/2

if p > q2/k,(√
pk

q

)κ−1

otherwise.
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We deduce∑
n>3

P3
q,new[Φ; r, jn]� τ(q)

qκ−1/2

∑
n>3

∑
p6qrν/n

1
pn/2

prn(κ−1)/2 log p

� τ(q)
qκ−1/2

∑
36n6νr log q/log 2

1
n
qνr[((κ−1)r−1)n/2+1]/n

� τ(q)
qκ−1/2

qνr[(κ−1)r−1]/2qνr/3 log log(3q)� 1
q1/2

as soon as ν < 2/r2 (and in particular if (4.1) is satisfied). We make the same
computations for jn − 2 and find then that P3

q,new[Φ; r, k] is an admissible
error term. The old part is

P3
q,old[Φ; r] =

2(2πiκ)
q log(qr)

∑
16j6r

j≡r (mod 2)

∑
n>3

(P3
q,old[Φ; r, jn]− P3

q,old[Φ; r, jn− 2])

where

P3
q,old[Φ; r, k] :=

∑
p∈P
p 6=q

log p
pn/2

Φ̂

(
log p

log(qr/n)

)∑
l|q∞

1
l
∆1(pkl2, 1).

From [22, (3.2) and (3.3)] we have∑
l|q∞

1
l
∆1(pkl2, 1) 6 2(k + 1)

so that ∑
n>3

P3
q,old[Φ; r, jn]� 1

and similarly for P3
q,old[Φ; r, jn−2]. Thus, Eh

q (P 3
q [Φ; r]) enters the error term

of size O(1/log3(qr)).

Appendix A. Some comments on an aesthetic identity. It is
possible to prove by induction on k0 > 1 the following equality in Q[T ]:

(A.1) X2k0 −X2k0−2

=
k0−1∑
j=0

∑
16kj<kj−1<···<k1<k0

(−1)j
[j−1∏
i=0

(
2ki

ki − ki+1

)]{
T 2kj −

(
2kj
kj

)}
.

As a consequence, if K > 1 then

(A.2) X2K+1 −X2K−1 = (−1)KT
(

1 +
∑

16k06K

(−1)k0X2k0 −X2k0−2

)
.
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Now, use (2.4) with r = 1 (so that X1 = T ) to get from (A.1) the equality

X2k0 −X2k0−2

=
k0−1∑
j=0

∑
16kj<kj−1<···<k1<k0

(−1)j
[j−1∏
i=0

(
2ki

ki − ki+1

)][ 2kj∑
l=0

x(2kj , 1, l)Xl−
(

2kj
kj

)
X0

]
and compare the coefficients of X0 to obtain, thanks to (2.5), the equality

k0−1∑
j=0

∑
16kj<kj−1<···<k1<k0

(−1)j
[j−1∏
i=0

(
2ki

ki − ki+1

)](
2kj
kj

)
kj

1 + kj
= 0.

We could have expressed formulas (A.1) and (A.2) in terms of Fourier coef-
ficients of primitive forms to determine the lower order terms. However, this
is definitely not the best way to proceed since it consists in decomposing
the polynomial XK −XK−2 in the canonical basis of Q[T ] and decomposing
again each element of this canonical basis in the Chebyshev basis (Xl)l∈N.

Appendix B. S. J. Miller’s identity and Chebyshev polynomi-
als. S. J. Miller [18, (3.12), p. 6] recently proved that

(B.1) αf (p)K + βf (p)K =
∑

06k6K
k≡K (mod 2)

cK,kλf (p)k

where cK,k = 0 if k ≡ K + 1 (mod 2) and

c0,0 = 0,

c2K,0 = 2(−1)K (K > 1),

c2K,2L =
2(−1)K+LK(K + L− 1)!

(2L)!(K − L)!
(1 6 L 6 K),

c2K+1,2L+1 =
(−1)K+L(2K + 1)(K + L)!

(2L+ 1)!(K − L)!
(0 6 L 6 K).

We would like to give a quick proof of this identity, the crucial tool being
Chebyshev polynomials.

Proof of equation (B.1). We know that

αf (p)K + βf (p)K = XK(λf (p))−XK−2(λf (p))

for K > 2 according to (2.6). Thus, the proof consists in decomposing the
polynomial XK−XK−2 in the canonical basis of Q[T ]. This can be done via
(2.9). It entails that
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αf (p)K + βf (p)K =
∑

K−16u6K
u≡K (mod 2)

(−1)(K−u)/2
(

(K + u)/2
u

)
λf (p)u

+
∑

06u6K−2
u≡K (mod 2)

(−1)(K−u)/2
[(

(K + u)/2
u

)
+
(

(K + u)/2− 1
u

)]
λf (p)u,

which is an equivalent formulation of (B.1).

Remark B.1. Equation (B.1) could be used to recover the lower order
terms coming from P 3

q [Φ; r] but, once again, it is not the most clever way to
proceed since it would imply decomposing the polynomials XK −XK−2 in
the canonical basis of Q[T ] at the beginning of the process and decomposing
the polynomials T j in the basis (Xr)r>0 just before the end of the proof in
order to be able to apply some trace formula for the Fourier coefficients of
cusp forms.
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