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1. Introduction. Several recent studies have been concerned with the
metric theory of Diophantine approximation in the field of formal Laurent
series; for some references see below. The aim of this paper is to make
some further progress on the inhomogeneous Diophantine approximation
problem. More precisely, we will establish some analogues of results from
the real number case (which will be referred to as the “classical case”) with
some improvements which arise from the more simple nature of the metric
structure of the formal Laurent series field.

First, let us fix some notation. We will denote by Fq a finite field with
q elements; the polynomial ring, the field of rational functions, and the
field of formal Laurent series over Fq will be denoted by Fq[T ], Fq(T ), and
Fq((T−1)), respectively. For f ∈ Fq((T−1)) with

f = anT
n + an−1T

n−1 + · · · , ak ∈ Fq, an 6= 0, n ∈ Z,

we define |f | := qn and |0| := 0. It is easily checked that | · | is a norm which
has the ultra-metric property, i.e.,

|f − g| ≤ max{|f |, |g|}

with equality if |f | 6= |g|. This property in particular implies that two balls
(defined in the standard way) are either disjoint or contained in each other.
Finally, we set

L = {f ∈ Fq((T−1)) : |f | < 1}.

2010 Mathematics Subject Classification: 11J61, 11J83, 11K60.
Key words and phrases: formal Laurent series, inhomogeneous Diophantine approximation,
Diophantine approximation with restricted denominators, strong laws of large numbers,
Schmidt’s method.

DOI: 10.4064/aa141-2-4 [191] c© Instytut Matematyczny PAN, 2010



192 M. Fuchs

Note that L equipped with the restriction of the norm to L is a compact
abelian group. Consequently, there exists a unique, translation-invariant
probability measure which will be denoted by m.

In the following, we will be concerned with the inhomogeneous Diophan-
tine approximation problem: for f, g ∈ L consider the Diophantine inequality

(1) |Qf − g − P | < 1
qn+ln

, Q is monic, degQ = n,

whose solutions are pairs of polynomials 〈P,Q〉 ∈ Fq[T ]× Fq[T ] with Q 6= 0
(throughout this work we will use 〈·, ·〉 to denote pairs, whereas (·, ·) is
reserved for the gcd). Here, ln is a sequence of non-negative integers. In
particular, note that ln just depends on degQ.

In a recent paper, C. Ma and W.-Y. Su [8] investigated the above problem
and proved a Khinchin type 0-1 law for the number of solutions if both f
and g are chosen randomly (with respect to m) from L. Their result is an
analogue of a result of J. W. S. Cassels [3] from the classical case, where
this situation is sometimes called the “double-metric” case. Moreover, the
following two “single-metric” cases were considered over the real number
field as well (e.g., see [11] and [12]): (S1) fix f and choose a random g ∈ L;
(S2) fix g and choose a random f ∈ L.

In this paper, we are interested in stochastic properties of the solution
set of (1) for f, g such that the number of solutions is infinite. More pre-
cisely, we will derive strong laws of large numbers with error terms for the
number of solutions 〈P,Q〉 of (1) with degQ ≤ N . Such results have so far
only been established for (S2) with g = 0; see [6] and H. Nakada and R.
Natsui [9]. Here, we will further improve these results and extend them to
general g. So, the main part of the paper will focus on the case (S2). The
other “single-metric” case and the “double-metric” case exhibit a somehow
different behavior and will be only briefly discussed in the final section.

From now on, let g ∈ L be fixed. Moreover, define

Ψ(N) :=
∑
n≤N

1
qln

.

Our first result reads as follows.

Theorem 1. The number of solutions of (1) with 0 ≤ degQ ≤ N is

Ψ(N) +O(Ψ(N)1/2(logΨ(N))2+ε), a.s.,

where ε > 0 is an arbitrary constant.

This result is an analogue of a result of W. M. Schmidt [11] from the
classical case. In fact, we will use a variant of Schmidt’s method to prove it.
Note, however, that the error term is better than the one from the classical
case. Moreover, no monotonicity assumption on ln is required.
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For g = 0 the improved error term was also achieved in the classical case;
see G. Harman [7]. The result in this special case improves upon Theorem 3
in [9] by removing some further technical conditions on ln and providing an
error term. Moreover, our result completes the main result in [4] which was
concerned with Diophantine approximation of linear forms with at least two
terms. Here, the missing case of only one term is considered. As in the real
case, the current situation turns out to be more complex, a claim which is
further supported by the fact that the result in [4] has a better error term;
for a discussion of this phenomenon in the real case see [10].

In fact, our method of proof can be used to obtain even more general re-
sults. More precisely, the method will allow us to investigate inhomogeneous
Diophantine approximation with restricted denominators as well. Therefore,
replace (1) by

(2) |F (Q)f − g − P | < 1
qn+ln

, Q is monic, degQ = n,

where ln is as above and F is a function from Fq[T ] into Fq[T ].
First, we will fix some further notation. Let

F := {Q : Q monic and F (Q) 6= 0}
and denote by Fn the subset of all polynomials Q ∈ F with degQ = n. Sub-
sequently, we will only consider F with the following property: for Q,Q′ ∈ F
with degQ ≤ degQ′, we have degF (Q) ≤ degF (Q′). Finally, set

Ψ(N,F) :=
∑
n≤N

#Fn
qn+ln

.

Then the following generalization of the above result holds.

Theorem 2. Assume that F (Q) is either Q or 0. Then the number of
solutions of (2) with Q ∈ F and 0 ≤ degQ ≤ N is

(3) Ψ(N,F) +O(Ψ(N)1/2(logΨ(N))2+ε), a.s.,

where ε > 0 is an arbitrary constant.

In particular, the latter result gives a meaningful asymptotic formula
whenever

(4) lim inf
n→∞

#Fn
qn

> 0.

Two important special cases are collected in the following corollary, the first
of which has to be compared with the results in [6].

Corollary 1.

(i) Let C,D ∈ Fq[T ] with degC < degD. Then the number of solutions
of (1) with Q ≡ C mod D and 0 ≤ degQ ≤ N is
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(5)
1
|D|

Ψ(N) +O(Ψ(N)1/2(logΨ(N))2+ε), a.s.,

where ε > 0 is an arbitrary constant.
(ii) The number of solutions of (1) with Q monic, square-free and 0 ≤

degQ ≤ N is

(6)
q − 1
q

Ψ(N) +O(Ψ(N)1/2(logΨ(N))2+ε), a.s.,

where ε > 0 is an arbitrary constant.

Note that condition (4) is not satisfied for some interesting F such as
the set of monic, irreducible polynomials. This situation, however, turns out
to be simpler and we can obtain a strong law of large numbers with an even
better error term. Therefore, we first prove an analogue of Theorem 3.1 in
[7] which holds for general F .

Theorem 3. The number of solutions of (2) with Q ∈ F and 0 ≤
degQ ≤ N is

Ψ(N,F) +O(Ψ0(N)1/2(logΨ0(N))3/2+ε), a.s.,

where ε > 0 is an arbitrary constant and

Ψ0(N) =
∑
n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

.

This result entails the following corollary.

Corollary 2.

(i) Let

Ψ1(N) :=
∑
n≤N

1
nqln

.

Then the number of solutions of (1) with Q monic, irreducible and
0 ≤ degQ ≤ N is

Ψ1(N) +O(Ψ1(N)1/2(logΨ1(N))3/2+ε), a.s.,

where ε > 0 is an arbitrary constant.
(ii) Let F (Q) = Qt with t ≥ 2. Then the number of solutions of (2) with

0 ≤ degQ ≤ N is

Ψ(N) +O(Ψ(N)1/2(logΨ(N))3/2+ε), a.s.,

where ε > 0 is an arbitrary constant.

It is worth mentioning that Theorem 3 does not give a meaningful result
in the situations discussed in Theorem 1 and Corollary 1. Consequently, part
(ii) of Corollary 2 shows that the complexities of t = 1 and t ≥ 2 are rather
different.
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We conclude the introduction by giving a short plan of the paper. In the
next section, we will prove a weak independence result which will form the
crucial step in deriving all results above. In particular, Theorem 3 will follow
rather quickly from this result and this will be demonstrated in the next sec-
tion as well. Then, in Section 3, we will show how to adapt Schmidt’s method
to the current situation to obtain a proof of Theorem 1 and Theorem 2. In
the final section, we will then briefly discuss the other “single-metric” case
and the “double-metric” case.

Notation. All logarithms appearing throughout this work will only at-
tain values ≥ 1, i.e., loga x should be interpreted as max{loga x, 1}. We
will use Landau’s notation f(x) = O(g(x)) as well as Vinogradov’s nota-
tion f(x) � g(x) to indicate that there exists a constant C ≥ 0 such that
|f(x)| ≤ C|g(x)| for all x sufficiently large.

2. A weak independence result with applications. We start by
proving a technical lemma that constitutes a refinement of Lemma 2.3 in [2].

Lemma 1. Let Q,Q′ be two non-zero polynomials with n = degQ, m =
degQ′ and d = deg (Q,Q′). Let l be a non-negative integer. Then the number
N of pairs 〈P, P ′〉 with degP < n, degP ′ < m and

(7)
∣∣∣∣g + P

Q
− g + P ′

Q′

∣∣∣∣ < 1
qm+l

satisfies

N

{
= qn−l if n ≥ l + d,
≤ qd if n < l + d.

Proof. First, (7) can be reformulated to

|g(Q′ −Q) + PQ′ − P ′Q| < qn−l.

Next, write Q = (Q,Q′) · Q̄ and Q′ = (Q,Q′) · Q̄′. Then

|g(Q̄′ − Q̄) + PQ̄′ − P ′Q̄| < qn−l−d.

Let −C denote the polynomial part of g(Q̄′− Q̄). Now, we will consider two
cases.

First, assume that n < l + d. Then a necessary condition for 〈P, P ′〉 to
be a solution of the above inequality is PQ̄′−P ′Q̄ = C. Observe that for P
with degP < n and

(8) PQ̄′ ≡ C mod Q̄,

we have PQ̄′ = C + P ′Q̄ with some polynomial P ′ and

degP ′ + deg Q̄ = deg (PQ̄′ − C) ≤ degP + deg Q̄′ < n+ deg Q̄′.

Consequently, degP ′ < m. So, either N = 0 or N equals the number of
solutions of (8) which is qd.
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Next, we consider n ≥ l + d. Here, we can argue similarly, the only
difference being that N equals the number of solutions of (8) with C replaced
by C + D for all polynomials D with degD < n − l − d. Consequently,
N = qn−l.

Next, for Q ∈ Fn we define

FQ := {f ∈ L : f satisfies (2) with some P ∈ Fq[T ]}.
Obviously, FQ is the union of |F (Q)| disjoint balls. Consequently,

m(FQ) =
1

qn+ln
.

Moreover, we have the following weak independence result.

Proposition 1. Let Q ∈ Fn, Q′ ∈ Fm, and d = deg (F (Q), F (Q′)).
Then

m(FQ ∩ FQ′) ≤ m(FQ)m(FQ′) + qd−degF (Q)−n−ln .

Proof. First assume that n+ ln + degF (Q) ≥ m+ lm + degF (Q′). Then
all balls which make up FQ have radius at most as large as the radius of the
balls which make up FQ′ . So, by the ultra-metric property of the norm, we
have to count how many of the balls with center (g+P )/F (Q) are contained
in balls with center (g+P ′)/F (Q′) and radius q− degF (Q′)−m−lm , i.e., we have
to count the number of solutions of∣∣∣∣g + P

F (Q)
− g + P ′

F (Q′)

∣∣∣∣ < 1
qdegF (Q′)+m+lm

.

The latter number is given by the above lemma. We first consider the
case with degF (Q) ≥ m + lm + d. Here, the number of solutions equals
qdegF (Q)−m−lm . So, we obtain

m(FQ ∩ FQ′) =
|F (Q)|q−m−lm
|F (Q)|qn+ln

=
1

qn+ln
· 1
qm+lm

= m(FQ)m(FQ′).

Hence, the assertion holds in this case. Now, consider the second case where
degF (Q) < m+ lm + d. Then, again by the above lemma,

m(FQ ∩ FQ′) ≤
qd

qdegF (Q)+n+ln
.

Hence, the claim is proved in this case as well.
Next, if n+ ln degF (Q) < m+ lm+ degF (Q′), we obtain from the argu-

ments above the claim with the second term replaced by qd−degF (Q′)−m−lm .
This term is trivially bounded by qd−degF (Q)−n−ln . Hence, the proof of the
proposition is finished.

The above proposition will turn out to be one of the key ingredients in
the proof of our results. Another key ingredient is the following important
lemma which is a standard tool in metric number theory.
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Lemma 2 (Lemma 1.5 in [7]). Let ξn(ω) be a sequence of non-negative
random variables defined on a probability space (Ω,B, P ). Let ψn and ϕn be
sequences of real numbers with 0 ≤ ψn ≤ ϕn. Define

Φ(N) =
∑
n≤N

ϕn

and assume that Φ(N)→∞ as N →∞. Finally, assume that

E
( ∑
M≤n≤N

ξn − ψn
)2
�

∑
M≤n≤N

ϕn

for all non-negative M < N . Then∑
n≤N

ξn(ω) =
∑
n≤N

ψn +O(Φ(N)1/2(logΦ(N))3/2+ε + max
n≤N

ψn), a.s.,

where ε > 0 is an arbitrary constant.

As a first application of this lemma, we show how to deduce Theorem 3
from it. Therefore, set

ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (2)}.
This sequence of random variables has the following properties.

Proposition 2.

E
(∑
n≤N

ξn

)
= Ψ(N,F),(i)

E
( ∑
M≤n≤N

ξn −
#Fn
qn+ln

)2
�

∑
M≤n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

(ii)

for all non-negative integers M < N .

Proof. Part (i) follows from

ξn =
∑
Q∈Fn

1FQ

and basic properties of the mean value.
For (ii), we also use the above representation which yields

E
( ∑
M≤n≤N

ξn −
#Fn
qn+ln

)2

= 2
∑

M≤n≤N

∑
M≤m≤n−1

∑
Q∈Fn, Q′∈Fm

(m(FQ ∩ FQ′)−m(FQ)m(FQ′))

+
∑

M≤n≤N

∑
Q∈Fn, Q′∈Fm

(m(FQ ∩ FQ′)−m(FQ)m(FQ′)).

Applying Proposition 1 immediately yields the claimed result.
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Now, we can prove Theorem 3.

Proof of Theorem 3. If Ψ(N,F) → c ≥ 0 as N → ∞, the result follows
by a standard application of the Borel–Cantelli lemma. Hence, we can as-
sume that Ψ(N,F) → ∞ as N → ∞. But then the claim follows from the
proposition above together with Lemma 2.

Corollary 2 follows from the last result as follows.

Proof of Corollary 2. For (i), we use the well-known result (see Chapter
3 in [1])

(9) #Fn = qn/n+O(qεn),

where ε < 1 is a suitable constant. Hence,

Ψ(N,F) = Ψ1(N) +O(1).

Moreover,

Ψ0(N) =
∑
n≤N

1
q2n+ln

∑
m≤n

∑
degQ=n

Qmonic, irreducible

∑
degQ′=m

Q′monic, irreducible

|(Q,Q′)|

� Ψ1(N),

where the last estimate again follows by (9). This proves the claim.
As for (ii), first observe that #Fn = qn and hence Ψ(N,F) = Ψ(N). The

bound for Ψ0(N) is slightly more tricky. First,

Ψ0(N) =
∑
n≤N

1
q(t+1)n+ln

∑
m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

|(Qt, (Q′)t)|

�
∑
n≤N

1
q(t+1)n+ln

∑
degQ=n
Qmonic

∑
D|Q

Dmonic

qn

|D|
|D|t.

Next, we have∑
degQ=n
Qmonic

∑
D|Q

Dmonic

|D|t−1 =
∑
d≤n

∑
degD=d
Dmonic

qn

|D|
|D|t−1 = qn

∑
d≤n

q(t−1)d � qtn.

Plugging this into the estimate above yields Ψ0(N) � Ψ(N). Hence, the
result is established.

3. Schmidt’s method in positive characteristic. Note that the
method from the last section does not yield a meaningful result for the
case F (Q) = Q. More specifically, it is easily checked that the error term
from the proof of Corollary 2(ii) for t = 1 would be larger than the main
term. The same phenomenon also occurs in the real case, where this problem
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was overcome by an ingenious method introduced by W. M. Schmidt in [10]
and [11]. In this section, Schmidt’s method will be adapted to the current
situation.

We start with a couple of (easy) lemmas.

Lemma 3 (Dirichlet’s principle in positive characteristic). For all non-
zero polynomials Q there exist polynomials A,B with 0 < |A| ≤ |Q| and
(A,B) = 1 such that ∣∣∣∣g − B

A

∣∣∣∣ < 1
|A| |Q|

.

Proof. This is proved as in the classical case.

Observe that A and B in the previous lemma just depend on degQ.
Subsequently, for any given non-zero polynomial Q, we will choose a fixed
pair 〈A,B〉 satisfying the assumption of the previous lemma for a polynomial
Q′ with degQ′ = bdegQ/2c.

Next, we define the following two sets:

S(Q; k) = {P : degP < degQ and deg (P,Q) ≤ k},
S∗(Q; k) = {P : degP < degQ and deg (AP +B,Q) ≤ k},

whose cardinalities will be denoted by ϕ(Q; k) and ϕ∗(Q; k), respectively.

Lemma 4. We have

ϕ∗(Q; k) ≥ ϕ(Q; k).

Proof. First, let Q = Q1Q2, where every prime factor of Q1 is also a
prime factor of A and (Q2, A) = 1. Then

ϕ(Q; k) ≤ ϕ(Q1; k)ϕ(Q2; k) ≤ |Q1|ϕ(Q2; k).

Now, note that AP + B with degP < degQ2 are all different modulo Q2.
Hence, ϕ(Q2; k) = #{P : degP < degQ2 and deg (AP + B,Q2) ≤ k}.
Finally, notice that

(AP +B,Q2) = (AP +B,Q1Q2) = (AP +B,Q).

Consequently,

ϕ∗(Q; k) = |Q1| ·#{P : degP < degQ2 and deg (AP +B,Q2) ≤ k}.
Combining everything yields the claimed result.

Next, we fix F (Q) = Q. Moreover, as in the last section, it suffices to
consider the case where Ψ(N) → ∞ as N → ∞. The method of the last
section does not work when directly applied to the sequence ξn. Therefore,
we will approximate this sequence by

ξ∗n := #{〈P,Q〉 : P ∈ S∗(Q;Γ (n)) and 〈P,Q〉 is a solution of (1)},
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where Γ (n) = blogq Ψ(n)2c. Moreover, as in the last section, we define

F ∗Q := {f ∈ L : f satisfies (1) with some P ∈ S∗(Q;Γ (n))}.
Then

ξ∗n =
∑

degQ=n
Qmonic

1F ∗Q

and consequently

Eξ∗n =
∑

degQ=n
Qmonic

ϕ∗(Q;Γ (n))
q2n+ln

.

The next result shows that the mean values of the partial sums of ξn and
ξ∗n are very close to each other.

Proposition 3. We have

E
( ∑
M≤n≤N

ξ∗n

)
=

∑
M≤n≤N

1
qln

+O(1)

for all non-negative integers M < N .

Proof. First, observe that

0 ≤
∑

M≤n≤N

1
qln
− E

( ∑
M≤n≤N

ξ∗n

)
=

∑
M≤n≤N

∑
degQ=n
Qmonic

qn − ϕ∗(Q;Γ (n))
q2n+ln

≤
∑

M≤n≤N

∑
degQ=n
Qmonic

qn − ϕ(Q;Γ (n))
q2n+ln

,

where we have used the above lemma in the last step. Next, it is well-known
(see [5]) that the number of pairs 〈P,Q〉 with degP = l < degQ = n, P,Q
monic and deg (P,Q) = k < l is given by

qn+l−k
(

1− 1
q

)
.

Consequently,∑
degQ=n
Qmonic

ϕ(Q,Γ (n)) =
(q − 1)2

q

n−1∑
l=Γ (n)+1

Γ (n)∑
k=0

qn+l−k +O
(Γ (n)∑
l=0

l∑
k=0

qn+l−k
)

= q2n +O(q2n−Γ (n)).

Plugging this into the above expression, we obtain

0 ≤
∑

M≤n≤N

1
qln
− E

( ∑
M≤n≤N

ξ∗n

)
�

∑
N≤n≤M

1
qlnΨ(n)2

.
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Since the latter series is convergent by the Abel–Dini theorem, the claim is
proved.

Finally, we need the following property.

Proposition 4. We have

E
( ∑
M≤n≤N

ξ∗n −
1
qln

)2

�
∑

M≤n≤N

Γ (n)
qln

for all non-negative integers M < N .

Proof. We start with an observation that is needed below. By a close
inspection of the proof of Proposition 1, we have

(10) m(F ∗Q ∩ F ∗Q′) ≤
1

qn+ln
· 1
qm+lm

+
1

q2n+ln
A(Q,Q′),

where A(Q,Q′) is the number of all pairs P, P ′ with P ∈ S∗(Q;Γ (n)), P ′ ∈
S∗(Q′;Γ (m)) and

(11) |g(Q−Q′) + P ′Q− PQ′| < min{|(Q,Q′)|, qmax{n−m−lm,m−n−ln}}.

Moreover, observe that A(Q,Q′) ≤ |(Q,Q′)|.
We will use this to bound the expected value from the claim. First,

E
( ∑
M≤n≤N

ξ∗n −
1
qln

)2

=
∑

M≤n≤N

∑
M≤m≤N

Eξ∗n · ξ∗m − 2
∑

M≤n≤N

1
qln

E
( ∑
N≤n≤M

ξ∗n

)
+

∑
M≤n≤N

∑
M≤m≤N

1
qln
· 1
qlm

=
∑

M≤n≤N

∑
M≤m≤N

(
Eξ∗n · ξ∗m −

1
qln
· 1
qlm

)
+O

( ∑
M≤n≤N

1
qln

)
= 2

∑
M≤n≤N

∑
M≤m≤n−1

(
Eξ∗n · ξ∗m −

1
qln
· 1
qlm

)
+

∑
M≤n≤N

(
E(ξ∗n)2 − 1

q2ln

)
+O

( ∑
M≤n≤N

1
qln

)
,

where the third step follows from Proposition 3. Now, applying (10) gives
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M≤m≤n

Eξ∗n · ξ∗m =
∑

M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

m(F ∗Q ∩ F ∗Q′)

≤ 1
qln
·
∑

M≤m≤n

1
qlm

+
1

q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

A(Q,Q′).

Using this to bound the first and second term in the expression above yields

(12) E
( ∑
M≤n≤N

ξ∗n −
1
qln

)2

�
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

A(Q,Q′) +
∑

M≤n≤N

1
qln

.

Next, we will estimate

Σ :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

A(Q,Q′).

Therefore, we fix an arbitrary small δ and break Σ into two parts Σ′ and
Σ′′, where the first part runs over all pairs 〈Q,Q′〉 with degQ′ ≤ dn −
δ deg (Q,Q′)e and the second part runs over the remaining pairs. In order
to bound Σ′, we change the order of summation as follows: first we sum
over Q, then over D |Q and finally over Q′ with D = (Q,Q′). Note that for
fixed Q and D the number of Q′’s is bounded by qn/|D|1+δ. This together
with A(Q,Q′) ≤ |D| then yields

Σ′ =
∑

M≤n≤N

1
q2n+ln

∑
degQ=n
Qmonic

∑
D|Q

Dmonic

qn

|D|1+δ
|D|

�
∑

M≤n≤N

1
qln

∑
degD≤n
Dmonic

1
|D|1+δ

�
∑

M≤n≤N

1
qln

.

As for Σ′′, observe that degQ′ > dn− δ deg (Q,Q′)e implies

min{|(Q,Q′)|, qmax{n−m−lm,m−n−ln}} < |(Q,Q′)|δ.

Hence, for all 〈Q,Q′〉 involved in the range of Σ′′ the relation (11) can be
replaced by

(13) |g(Q−Q′) + P ′Q− PQ′| < |(Q,Q′)|δ.
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This yields

Σ′′ �
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

B(Q,Q′),

where B(Q,Q′) denotes the number of all P, P ′ with P ∈ S∗(Q;Γ (n)) and
P ′ ∈ S∗(Q′;Γ (m)) that satisfy (13). Again note that B(Q,Q′) ≤ |(Q,Q′)|.

Collecting all bounds so far, we see that the right hand side of (12) can
be replaced by

(14)
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

B(Q,Q′) +
∑

M≤n≤N

1
qln

.

Next, we will estimate the first term

Σ0 :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
degQ=n
Qmonic

∑
degQ′=m
Q′monic

B(Q,Q′),

which we will break into three parts Σ′0, Σ
′′
0 , Σ

′′′
0 , where the ranges will be

given below. For every part we will proceed as for Σ′ above. More precisely,
we will change the order of summation as follows: just as for Σ′, the first
two sums will run over Q and D |Q. The final sum will run over Q̄′ with
(Q̄′, Q/D) = 1. Here, we introduce the notation Q′ = DQ̄′ and Q = DQ̄.
Using this notation, we can rewrite (13) as

(15) |g(Q̄− Q̄′) + P ′Q̄− PQ̄′| < |D|−1+δ.

Finally, we need the notation R = g − B/A, where 〈A,B〉 is the pair be-
longing to Q. Now, we will separately estimate the three parts Σ′0, Σ

′′
0 , Σ

′′′
0 .

As for Σ′0, the first two sums of this part run over all 〈Q,D〉 with D |Q
and |A| ≥ |D|δ1 , where δ1 will be chosen later. The last sum runs over Q̄′
and our goal is to count the number of Q̄′ such that (15) has solutions in
P, P ′ (whose number will then be bounded by |D|). First, we consider Q̄′ of
the form Q̄′ = C1 +C2, where C1 is fixed and C2 is an arbitrary polynomial
with degC2 < degA. Plugging this into (15) and doing some simplifications
yields

|gC2 + L+ ḡ| < |D|−1+δ,

where ḡ ∈ L does not depend on C2 ∈ Fq[T ] and L might depend on C2.
From the ultra-metric property of the norm, we obtain∣∣∣∣BA C2 + L+ ḡ

∣∣∣∣ ≤ max{|gC2 + L+ ḡ|, |RC2|} < max{|D|−1+δ, |RA|}.

Observe that since C2 runs through a complete set of residues modulo A
and (A,B) = 1, BC2 also runs through a complete set of residues modulo A.
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Consequently, ∣∣∣∣CA + L̄+ ḡ

∣∣∣∣ < max{|D|−1+δ, |RA|},

where we now have to count the number of C’s satisfying this inequality
with degC < degA. Here, L̄ is another polynomial that might depend on C.
However, since the right hand side of the above inequality is smaller than 1,
L̄ must be equal to 0. Thus,

|C +Aḡ| < max{|A| |D|−1+δ, |RA2|} ≤ max{|A| |D|−1+δ, 1}
and the number of such C’s is clearly bounded by |A| |D|−1+δ +1. Next, ob-
serve that the number of C1’s above is bounded by |Q| |DA|−1+1. Therefore,
the number of Q̄′ such that (15) has a solution in P, P ′ is bounded by

(|A| |D|−1+δ + 1)(|Q| |DA|−1 + 1)

≤ |Q| |D|−2+δ + |Q| |D|−1−δ1 +
√
|Q| |D|−1+δ + 1� |Q| |D|−1−δ1 + 1,

where δ1, δ are chosen such that δ + δ1 ≤ 1/2. Overall, this yields the fol-
lowing bound for Σ′0:

Σ′0 �
∑

M≤n≤N

1
q2n+ln

∑
degQ=n
Qmonic

∑
D|Q

Dmonic

(
qn

|D|1+δ1
+ 1
)
|D|(16)

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn+ln

∑
degD≤n
Dmonic

1�
∑

M≤n≤N

1
qln

.

Next, we turn to Σ′′0 whose first two sums run over all pairs 〈Q,D〉 with
D |Q, |A| < |D|δ1 , and |R| ≥ |D|/|QA|. Again, we will estimate the number
of solutions of (15) in Q̄′, P, P ′. Therefore, first observe that (15) can be
rewritten as

(17)
∣∣∣∣RC +

L

A

∣∣∣∣ < |D|−1+δ

for some polynomials C and L. If L is fixed, then the number of solutions
in C of the above inequality is bounded by |R|−1|D|−1+δ + 1. On the other
hand, we have

|L| ≤ max{|A| |D|−1+δ, |RCA|} ≤ max{|A| |D|−1+δ, |RQA|/|D|}.
So, overall, for the number of C’s such that there exist L satisfying (17) we
obtain the bound

(|R|−1|D|−1+δ + 1)(|A| |D|−1+δ + |RQA|/|D|+ 1)

� |QA2| |D|−3+2δ + |QA| |D|−2+δ +
√
|Q| |D|−1 + 1

� |Q| |D|−2+δ+δ1 +
√
|Q| |D|−1 + 1.
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Note that the above number also equals the number of Q̄′’s such that (14)
has solutions in P, P ′. Hence, Σ′′0 is bounded as follows:

Σ′′0 �
∑

M≤n≤N

1
q2n+ln

∑
degQ=n
Qmonic

∑
D|Q

Dmonic

(
qn

|D|2−δ−δ1
+
qn/2

|D|
+ 1
)
|D|(18)

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn/2+ln

∑
degD≤n
Dmonic

1
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

n

qn/2+ln
�

∑
M≤n≤N

1
qln

.

So, what is left is to bound Σ′′′0 . Here, the first two sums run over all pairs
〈Q,D〉 with D |Q, |A| < |D|δ1 , and |R| < |D|/|QA|. Then (15) together with
the ultra-metric property of the norm yields

|Q̄(AP ′ +B)− Q̄′(AP +B)|
≤ max{|R(Q̄− Q̄′)A|, |A| |g(Q̄− Q̄′) + P ′Q̄− PQ̄′|} < 1.

Consequently,
Q̄(AP ′ +B) = Q̄′(AP +B).

Thus AP +B ≡ 0 mod Q̄ and this implies deg Q̄ ≤ Γ (n). The latter in turn
yields degD ≥ n− Γ (n). So, in this case, we obtain the bound

Σ′′′0 �
∑

M≤n≤N

1
q2n+ln

∑
degQ=n
Qmonic

∑
D|Q,Qmonic

degD≥n−Γ (n)

qn

|D|
|D|(19)

=
∑

M≤n≤N

1
qn+ln

∑
degQ=n
Qmonic

∑
D|Q,Qmonic
degD≤Γ (n)

1�
∑

M≤n≤N

Γ (n)
qln

.

Finally, combining (16), (18), and (19) gives the bound

Σ0 �
∑

M≤n≤N

Γ (n)
qln

.

Plugging this into (14) then proves the claimed result.

Now, we can start with the proof of Theorem 1.

Proof of Theorem 1. First, from Proposition 4 together with Lemma 2,
we obtain∑

n≤N
ξ∗n = Ψ(N) +O(Ψ∗(N)1/2(logΨ∗(N))3/2+ε), a.s.,
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where ε > 0 is an arbitrary constant. Next, observe

Ψ∗(N) =
∑
n≤N

Γ (n)
qln

� Ψ(N) logΨ(N).

Hence, the claimed result holds for the sequence ξ∗n.
In order to show that it holds for ξn as well, observe that from Proposi-

tion 3,

P
(∑
n≤N

(ξn − ξ∗n) > logΨ(N)
)
� (logΨ(N))−1.

Next, choose Nk to be the minimal positive integer with logΨ(Nk) ≥ 2k.
Then, the Borel–Cantelli lemma implies that∑

n≤Nk

(ξn − ξ∗n) ≤ logΨ(Nk)

for almost all f and k large enough. Now, let N be a large enough integer
with Nk ≤ N < Nk+1. Then∑
n≤N

(ξn − ξ∗n) ≤
∑

n≤Nk+1

(ξn − ξ∗n) ≤ logΨ(Nk+1)� logΨ(Nk)� logΨ(N).

Overall, we have shown that for almost all f ,∑
n≤N

ξn =
∑
n≤N

ξ∗n +O(logΨ(N)).

Combining this with the above result yields the claim.

We note that Theorem 2 also follows from the method above with only
minor modifications. So, what is left is the proof of Corollary 1.

Proof of Corollary 1. For (i), choose F such that

F = {C + LD : C + LD monic and L ∈ Fq[T ]}.

Then #Fn = qn/|D| for all n ≥ degD. Consequently,

Ψ(N,F) =
1
|D|

Ψ(N) +O(1).

For (ii), it suffices to point out that it is well-known (see Chapter 3 in
[1]) that the number of monic, square-free polynomials of degree n ≥ 2 is
qn − qn−1. Hence,

Ψ(N,F) =
q − 1
q

Ψ(N) +O(1).

From this the result follows.
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4. The “double-metric” and the other “single-metric” case. We
first turn our attention to the “double-metric” case. So, in the following, we
consider (1) with both f, g random. As before, we define the set

FQ := {〈f, g〉 ∈ L× L : 〈f, g〉 is a solution of (1) with some P ∈ Fq[T ]},
where Q is a non-zero polynomial.

As already mentioned in the introduction, this case is much easier than
the “single-metric” case discussed in the previous sections. The reason for
this is the second property of the following lemma which was proved in [8].

Lemma 5.

(m×m)(FQ) =
1

qn+ln
,(i)

(m×m)(FQ ∩ FQ′) = (m×m)(FQ)(m×m)(FQ′) for Q 6= Q′.(ii)

So, if we define

ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (1)},
then we again have

ξn =
∑

degQ=n
Qmonic

1FQ
.

However, the above lemma shows that ξn considered as a sequence of random
variables on the product probability space is pairwise independent. This
yields

E
( ∑
M≤n≤N

ξn −
1
qln

)2

=
∑

M≤n≤N
Var(ξn) =

∑
M≤n≤N

1
qln

(
1− 1

qn+ln

)
=

∑
M≤n≤N

1
qln

+O(1).

Hence, if we assume that

Ψ(N) :=
∑
n≤N

1
qln
→∞ as N →∞,

then Lemma 2 directly applies and yields the following result (whose proof
in case the above assumption does not hold is trivial).

Theorem 4. The number of solutions of (1) with 0 ≤ degQ ≤ N is

Ψ(N) +O(Ψ(N)1/2(logΨ(N))3/2+ε), a.s.,

where ε > 0 is an arbitrary constant.

Note that a.s. here means with respect to the product measure m×m.
Finally, we briefly discuss the other “single-metric” case where the roles

of f and g are interchanged. Therefore, assume now that f is fixed and g is
random. Here, without proof, we state the following result: for any sequence
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ln tending to infinity arbitrarily slowly, there exists an f ∈ L such that for
almost all g the number of solutions of (1) is finite (see P. Szüsz [12] for the
corresponding result in the real number case). Consequently, results similar
to those above are impossible in this case.
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