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1. Introduction. Let an(j) and bn(j), n ≥ 1, be two sequences of
positive integer-valued functions of the positive integers j ≥ 1, and set

(1) hn(j) =
an(j)
bn(j)

j(j − 1), j ≥ 2.

Assume that hn(j) is integer-valued (n ≥ 1, j ≥ 2).
The algorithm 0 < x ≤ 1, x = x1, and, for n ≥ 1, with positive integers

dn,

(2)
1
dn

< xn ≤
1

dn − 1
, xn+1 =

(
xn −

1
dn

)
bn(dn)
an(dn)

leads to the series representation

(3) x =
1
d1

+
a1(d1)
b1(d1)

1
d2

+ . . .+
a1(d1) . . . an(dn)
b1(d1) . . . bn(dn)

1
dn+1

+ . . .

The algorithm (2) implies

(4) dn+1 > hn(dn),

which in turn yields dn ≥ 2 for each n ≥ 1. The algorithm (2) never ter-
minates, and (3) with (4) is equivalent to (2). The representation (3) under
(4) is unique.

The representation (3) under (2) or (4) was first studied by Oppenheim
[8] who established the arithmetical properties, including the question of ra-
tionality, of the expansion (2)–(4). Oppenheim’s work was first distributed in
the form of lecture notes. These notes were used by Galambos [1] where the
foundations of the metric theory of (2)–(4) are laid down. Further develop-
ment, with several new results, can be found in a monograph of Galambos [2].
The expansion (2)–(4) became known as Oppenheim expansion.
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The terms in (3) are all positive. A modification of (2) to the algorithm
0 < x ≤ 1, x = x1, and

(5)
1

Dn + 1
< xn ≤

1
Dn

, xn+1 =
(

1
Dn
− xn

)
bn(Dn)
an(Dn)

,

Dn integer, n ≥ 1,

generates an alternating series representation. Indeed, if we rearrange the
recursive formula in (5) to

(6) xn =
1
Dn
− an(Dn)
bn(Dn)

xn+1

we get

(7) x =
1
D1
− a1(D1)
b1(D1)

1
D2

+ . . .+ (−1)n
a1(D1) . . . an(Dn)
b1(D1) . . . bn(Dn)

xn+1.

The algorithm at (5) terminates for rational x but never for irrationals, that
is, (7) always extends to an infinite sum for irrational x. In (5) we get

(8) xn+1 <

(
1
Dn
− 1
Dn + 1

)
bn(Dn)
an(Dn)

=
1

Hn(Dn)
,

say, yielding

(9) Dn+1 ≥ Hn(Dn), n ≥ 1,

where

(10) Hn(j) =
an(j)
bn(j)

j(j + 1), j ≥ 1.

We once again assume that Hn(j) is integer-valued for n ≥ 1, j ≥ 1.
Note the difference between (1) and (10). Even though (9) implies a

faster growth for the sequence Dn = Dn(x) that what is already known for
dn = dn(x) at (2) and (4), we shall establish a remarkable similarity between
the metric properties of the two sequences dn and Dn, valid for almost all
x (Lebesgue measure). As usual for metric theory, we shall use Lebesgue
measure on the Borel subsets A of the interval (0, 1], and write P (A) for
this measure.

Very little is known about the metric theory of the sequence Dn for
general sequences an(j) and bn(j). In fact, only the special cases an(j) = 1
and bn(j) = j(j+1) for all n ≥ 1 and j ≥ 1 (the Lüroth case; see Kalpazidou
et al. [6] and Indlekofer et al. [5]), and an(j) = 1 and bn(j) = j (alternating
Engel series or Pierce expansions; see Shallit [9]). We now fill in this gap.
For the arithmetical properties of the sequence Dn, see Indlekofer et al. [5]
and their references.
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2. The basic distributional properties. We assume that x is irra-
tional, so the algorithm at (5) does not terminate. It is immediate from
(5) that the set of x for which D1 = u, u ≥ 1, is an interval of length
1/(u(u+ 1)), and the set of those x’s for which Dt = ut, 1 ≤ t ≤ s, is once
again an interval, whose length, by (7), equals

a1(u1) . . . as−1(us−1)
b1(u1) . . . bs−1(us−1)

1
us(us + 1)

where we assumed that the ut, 1 ≤ t ≤ s, are in conformity with (9). We
record these simple observations as

Theorem 1. The sequence Dn, n ≥ 1, satisfies P (D1 = u) = 1/(u(u+1))
for u ≥ 1, and , for ut, 1 ≤ t ≤ s, s ≥ 2,

(11) P (D1 = u1, . . . , Ds = us) =
a1(u1) . . . as−1(us−1)
b1(u1) . . . bs−1(us−1)

1
us(us + 1)

whenever any two consecutive ut satisfy (9). Consequently , the sequence Dn,
n ≥ 1, forms a Markov chain with transition probabilities

(12) P (Dn+1 = u |Dn = v) =
Hn(v)
u(u+ 1)

, u ≥ Hn(v).

Only (12) needs proof. By definition

P (Dn+1 = u |Dj = uj , 1 ≤ j ≤ n− 1, Dn = v)

=
P (D1 = u1, . . . , Dn−1 = un−1, Dn = v, Dn+1 = u)

P (D1 = u1, . . . , Dn−1 = un−1, Dn = v)
.

By (11), the right hand side above does reduce to the right hand side of
(12). Since this latter form depends only on u and v, both the Markovian
property and (12) follow.

Put

(13) yn+1 = Hn(Dn)xn+1.

Just as in the case of Oppenheim expansions with positive terms, we have

Theorem 2. For n ≥ 2, yn is uniformly distributed on the interval
(0, 1], and yn is stochastically independent of the vector (D1, . . . ,Dn−1).

Proof. Let 0 < c ≤ 1 be an arbitrary real number. We have to prove

(14) P (D1 = u1, . . . , Dn−1 = un−1, yn ≤ c)
= cP (D1 = u1, . . . , Dn−1 = un−1),

where the ut are integers satisfying (9). We once again refer to (7) and (5)
and note that the set of those x’s which appear on either side of (14) inside
P ( ) is an interval and the length of the interval on the left hand side is
exactly c times the length of the one on the right hand side (see also (11)).
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This completes the independence part of the theorem. Upon summing over
all possible values of the ut in (14), we now obtain P (yn ≤ c) = c. The proof
is complete.

Theorem 2a. Let each cj be the reciprocal of an integer ≥ 2. Then the
events {yj ≤ cj}, 1 ≤ j ≤ n, are independent with P (yj ≤ cj) = cj.

Proof. Decompose P (y1 ≤ c1, y2 ≤ c2, . . . , yn ≤ cn) as the sum of terms
appearing in (11). Upon observing that yj ≤ 1/kj , with kj ≥ 2 integer, is
equivalent to Dj ≥ kjHj−1(Dj−1), the summation introduced in the previ-
ous sentence yields 1/(k1k2 . . . kn). Hence, by the first part of Theorem 2,
the proof is complete.

We record a special case of Theorem 2a as

Theorem 3. The integer parts Vj of the ratios Dj/Hj−1(Dj−1) are
stochastically independent with distribution

(15) P (Vj = k) =
1

k(k + 1)
, k ≥ 1 and j ≥ 1,

where V1 is just D1.

Theorem 3 is a very powerful tool for analyzing the growth rate of the
sequence Dn = Dn(x) when we seek the growth rate valid for almost all x.
Note also that for the alternating Lüroth expansions, Hn(j) = 1 for all n
and j, so Vn = Dn in this case. Therefore, the subsequent statements on the
sequence Vn reestablish the results of Kalpazidou et al. [6] on the Lüroth
case.

Set R1 = D1, and for n ≥ 2,

(16) Rn = Dn/Hn−1(Dn−1).

By definition, Vn and Rn differ by at most one, hence several state-
ments on the sequence Vn immediately transform to similar statements on
the sequence Rn. We make use of this possibility in what follows, without
repeatedly referring to this relation between Vn and Rn.

3. Asymptotic results on Vn and Rn. Because the expected value of
Vn is infinity, we have from probability theory

(A1) lim
1
n

(V1 + . . .+ Vn) =∞ for almost all x (n→∞)

and, for any a > 0,

(A2) limP

(∣∣∣∣
1

n logn
(V1 + . . .+ Vn)− 1

∣∣∣∣ > a

)
= 0 (n→∞),

which limit result cannot be extended to a limit for almost all x (see Galam-
bos [3, p. 63]).



Alternating Oppenheim expansions 155

However, if one turns to logarithm, the strong law of large numbers
applies and one gets

(A3) lim(log V1 + . . .+ log Vn)/n = E > 0 finite as n→∞.
All three limits above remain valid for the sequence Rj in the place of Vj ,
1 ≤ j ≤ n.

When one analyzes the speed of convergence at (7), as n → ∞, one
needs an estimate on the product of aj(Dj)/bj(Dj), 1 ≤ j ≤ n. We turn to
logarithm. By the definitions at (10) and (16),

log
aj(Dj)
bj(Dj)

= logHj(Dj)− logDj − log(Dj + 1)

= − logRj+1 + logDj+1 − logDj − log(Dj + 1).

Upon summing the extreme sides above over j, from 1 to n, we get

(17)
n∑

j=1

log
aj(Dj)
bj(Dj)

= logDn+1−
n+1∑

j=2

logRj − logD1−
n∑

j=1

log(Dj+1 + 1).

The sum of logRj , when divided by n, converges to a finite number A > 0
as n → ∞ (see (A3)). So far we ignored xn+1 in the error term at (7) (the
last term of (7)). However, by (5), 1/2 ≤ xn+1Dn+1 ≤ 1, whose logarithm is
bounded. Hence, if N(n) is a sequence of numbers tending to infinity faster
than n, we have

Theorem 4. If N(n) goes to infinity faster than n, for the error term
at (7) we have

1
N(n)

(
log xn+1 +

n∑

j=1

log
aj(Dj)
bj(Dj)

)
= − 1

N(n)

n∑

j=1

log(Dj + 1).

To every classical expansion with positive terms such as that of Engel,
Sylvester, Lüroth, Cantor and others (see Galambos [2, pp. 14–19] for a
list) there is a corresponding alternating series expansion. For each of these,
except for the case of Lüroth, N(n) is indeed of a larger magnitude than
n when one seeks a finite nonzero limit on the right hand side of Theo-
rem 4; consequently, Theorem 4 applies to all of the classical cases. For the
exceptional case of Lüroth, the limits (A1)–(A3) correspond to Theorem 4.
Since the basic distributional properties of the alternating series are simi-
lar to those in the case of expansions with positive terms, we refer to [2,
pp. 106–109] for the choice of N(n) for the classical cases.

4. The real role of the fundamental inequality (9). The funda-
mental inequality (9) is a necessary and sufficient condition for obtaining
the digits Dj at (7) by the expansion (5) and (6). In particular, there are
numbers x for which equality holds at (9) infinitely many times.
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However, if we allow a rule to apply for all x except on a set of mea-
sure zero, then a significant change occurs at (9). We easily deduce from
Theorem 3 that the set of x for which

(18) Dn+1 ≥ 2Hn(Dn)

for all large n is of measure zero because it would imply that, for such x’s,
Vj = 1 would occur only a finite number of times, while Theorem 3 implies
that Vj should be one in about 50% of the cases (by one more application of
the strong law of large numbers). What is then the real magnitude of growth
for Dn in the light of (9) and (18)? In one direction we get the following
rule from the Borel–Cantelli lemmas.

Theorem 5. The inequalities Dn+1≥knHn(Dn) for arbitrary real num-
bers kn > 1 occur infinitely often either with probability one or with proba-
bility zero. It is of measure zero if , and only if , the sum of 1/kn over n is
finite.

In the opposite direction we extend a recent result of Lee [7] who proved
that, for the newly introduced Daróczy–Kátai–Birthday (DKB) expansions
(see Galambos [4]), one can get very close to the opposite inequality at
(18). The DKB expansion of real numbers in an Oppenheim expansion with
hn(j) = j2(j− 1). Its modification to alternating DKB expansion is the one
obtained by the algorithm (5) and (6) with

(19) Hn(j) = j2(j + 1).

This is a cubic equation. We shall deal with expansions whose Hn(j) is
a polynomial of degree t ≥ 3 with leading coefficient one. The cases t = 1
or 2 have similar growth rates to those established below but their proof
deviates somewhat from the one that follows. We therefore do not deal with
those cases here.

Theorem 6. Let Hn(j) = H(j) in (10) be a polynomial of degree t ≥ 3
with leading coefficient one and assume that it is the same function for all
n. Then, for almost all 0 < x ≤ 1,

(20) Dn+1 ≥ Dt
n +Dt

n/(logDn)c for all n ≥ n0(x),

where c > 0 is an arbitrary constant.

Proof. Let uj , 1 ≤ j ≤ n, be integers which are possible values of the
Dj , i.e. for which the inequalities (9) hold. We shall refer to such values as
realizable sequences (by the algorithm (5) and (6)). We fix n and un, and
estimate

(21) P (Dn+1 < Dt
n +Dt

n/(logDn)c).

The value in (21) is the sum over all realizable values uj , 1 ≤ j ≤ n + 1,
where un+1 is further limited by (21). For a fixed set of uj , Theorem 1
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applies. Next, we observe that

aj(uj)
bj(uj)

=
H(uj)
j(j + 1)

,

which, by assumption, is jt−2+O(jt−3), with constant in O( ) not dependent
on j. We do summation over a single uj , 1 ≤ j ≤ n − 1, starting with u1.
This way, the summands will be ut−2

j (with the appropriate error term that

we shall take care of soon), and in view of (9), uj is limited by u
1/t
j+1. We

increase these sums if we sum over all integers for uj not exceeding u
1/t
j+1,

getting the bounds in the jth summation

(uj+1)e(j)+1/(e(j) + 1)

where the exponents e(j) are defined by the recursive relation e(1) = t− 2,
and e(j+ 1) = (e(j) + 1)/t+ t− 2. Upon solving this difference equation we
get e(j) = t−1− t−j+1. Finally, upon observing that un+1 satisfies both (9)
and (21), summation over these values yields the estimate (recall (11) with
s = n+ 1)

1/(un+1(un+1 + 1)) ≤ u−2t
n (1 + 1/utn)

multiplied by the number of terms between (9) and (21) which equals
utn/(log un)c.

When we collect the above terms for fixed un we obtain on (21) the
upper estimate

n−1∏

j=1

(e(j) + 1)−1
∑ u

e(n)
n

utn(log un)c

where the summation is over all possible values of un. Now, since un is larger
than the values generated by (9) with equality for every n, the smallest value
of un satisfies log(un) > gtn with some constant g > 0 (see Lee [7], whose
argument easily extends from t = 3 to any t ≥ 3). From this fact one
easily sees that the sum above is finite. By the Borel–Cantelli lemma, the
inequality in (21) fails for all large n with probability one, i.e. (20) applies.
The theorem is established.

Since the argument above applies in the case of expansions with positive
terms as well, our result extends that of Lee [7], whose result is for t = 3
(the DKB expansions), and his result is not for arbitrary c > 0.
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