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1. Introduction. Recently, Szalay (see [11]) found all the solutions
of the diophantine equation x2 = 2L ± 2M ± 2N in nonnegative integers
x,M,N,L. In this paper, we look at the title equation

(1) x2 = pa + εpb + 1, ε ∈ {±1},
in positive integers x, p, a, b, with a > b, and p a prime number. By Szalay’s
results, it suffices to consider the case p > 2. The problem of determining all
the integer solutions (x, t, a, b) with x, a, and b positive of the more general
diophantine equation x2 = ta + tb + 1 was posed by Zachary Franco at
the 1994 West Coast Number Theory Conference in Asilomar (see Problem
94:23 on the Problem Sets of this Conference), and various remarks on this
equation (mostly pertaining to the case t = 2, which meanwhile has been
completely solved by Szalay) are available from Gerry Myerson.

Before giving the main result, let us make a few remarks about the
degenerate cases which we are not considering here, namely when either
a = b, or b = 0. When a = b, equation (1) with ε = −1 has the positive
integer solution x = 1 independently of p, while (1) with ε = 1 is of the form
x2 − 1 = 2pa, which does not have integer solutions because x2 − 1 cannot
be an integer congruent to 2 modulo 4. When b = 0, equation (1) with
ε = −1 becomes x2 = pa, which has the positive integer solution x = pa/2

whenever a is even, while (1) with ε = 1 is of the form x2 − 2 = pa. It is
known (see [10]) that this last diophantine equation has only finitely many
positive integer solutions (x, p, a) with a ≥ 2, and x can be bounded by an
explicitly computable constant, which can be found using Baker’s theory of
lower bounds for linear forms in logarithms of algebraic numbers. It is not
known whether this last equation has finitely or infinitely many solutions
with a = 1, although the standard conjecture here is that there should be
infinitely many prime numbers p of the form x2 − 2.
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Our result is the following.

Theorem. The only solutions of (1) in positive integers (x, p, a, b), with
a > b, and p an odd prime number are (x, p, a, b) = (5, 3, 3, 1), (11, 5, 3, 1).

2. The equation x2 = y2a1 ± yb± 1. In this section, we prove that the
diophantine equation

(2) x2 = ya + ε1y
b + ε2, ε1, ε2 ∈ {±1},

has no positive integer solutions with a > b, a even, and y > 2 and not a
perfect power of some other integer.

Case 1: b is even. With the substitution X := x, Y := yb/2, D :=
ya−b + ε1 we may rewrite equation (2) as

(3) X2 −DY 2 = ε2.

Since a− b > 0 is even, we see that D = (y(a−b)/2)2 + ε1 > 1 is not a perfect
square, and therefore (3) is a Pell equation. The minimal positive integer
solution (X1, Y1) of the Pell equation

X2 −DY 2 = ±1

is certainly (X1, Y1) = (y(a−b)/2, 1) and

(4) X2
1 −DY 2

1 = −ε1.

Since Y = yb/2 > 1 = Y1, it follows that (X,Y ) = (Xt, Yt) for some t ≥ 2.
Since Y2 = 2X1Y1 = 2y(a−b)/2 is a multiple of y, it follows from the well
known properties of solutions of Pell equations that 2 | t. In particular, ε2 = 1,
and 2 |Y2 |Yt, and therefore y is even. If t = 2, we get yb/2 = 2y(a−b)/2,
therefore y(2b−a)/2 = 2, hence y = 2 and b = (a + 2)/2, but this is not a
convenient solution for us because we are assuming that y > 2.

We now show that the case t > 2 does not lead to a solution either.
Assume t ≥ 4, and notice that any prime divisor p of Yt = yb/2 is already a
prime divisor of Y2 = 2y(a−b)/2. Thus, the sequence (Yk)k, which is a Lucas
sequence of the first kind , has the property that its tth term does not have
a primitive divisor . From the results of Carmichael [3] (see also [2]), this is
possible only when t = 4, 6, 12. Since both Y4 and Y6 divide Y12, it suffices
to treat the cases t ∈ {4, 6}. Letting m := y(a−b)/2 and using the fact that

Yt =
(m+

√
m2 + ε1)t + (m−

√
m2 + ε1)t

2
√
m2 + ε1

for all positive integers t, one finds that Y2 = 2m, Y4 = 4m(2m2 + ε1), and
Y6 = 2m(16m4 + 16ε1m

2 + 3). Since m > 1 and 2m2 + ε1 > 1 is coprime to
2m, it follows immediately that Y4 is divisible by a prime p not dividing Y2.
Moreover, since gcd(2m, 16m4+16ε1m

2+3) | 3, the only instance in which all
primes dividing Y6 will also divide 2m is when 3 |m and 16m4 + 16m2ε1 + 3
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is a power of 3. However, in this last case 16m4 + 16ε1m
2 + 3 ≡ 3 (mod 9),

and 16m4 + 16ε1m
2 + 3 > 3, so this is also impossible.

Case 2: b is odd. In this case, with the substitution X := x, Y :=
y(b−1)/2, A := y, B := ya−b + ε1, D := AB = y(ya−b + 1), we rewrite
equation (2) as

(5) X2 −DY 2 = ε2.

Since y is not a perfect square, and A = y is coprime to B = ya−b + ε1, it
follows that D is not a perfect square, therefore (5) is also a Pell equation.

If B is not a square, then the minimal positive integer solution (S, T ) of
the equation

AS2 −BT 2 = ±1

is (S1, T1) = (y(a−b−1)/2, 1), for which AS2
1 − BT 2

1 = −ε1, and by the well
known properties of solutions of Pell equations it follows that ε2 = 1, and
that the minimal positive integer solution of (5) is

X1 +
√
DY1 = (S1

√
A+ T1

√
B)2 = 2ya−b + ε1 + 2y(a−b−1)/2

√
D,

therefore (X1, Y1) = (2ya−b + ε1, 2y(a−b−1)/2). Let Y = Yt for some t ≥ 1.
Since Y1 |Yt, it follows that 2y(a−b−1)/2 | y(b−1)/2, therefore b > 1 and y is
even. If t = 1, it then follows that y(b−1)/2 = 2y(a−b−1)/2, leading again
to the conclusion that y = 2 and b = (a + 2)/2, which is a case we are
not considering. If t > 1, then every prime divisor of Yt divides Y1, and
thus we are led again to the instance in which Yt does not have a primitive
divisor. By Carmichael’s results, it follows that t ∈ {2, 3, 4, 5, 6, 12}. Since
Y2 divides all Y4, Y6 and Y12, it suffices to show that Yt has a prime divisor
p not dividing y when t ∈ {2, 3, 5}. A similar computation as in the previous
case shows that Y2 = 4y(a−b−1)/2(2ya−b+ ε1), Y3 = 2y(a−b−1)/2(16y2(a−b) +
16ε1y

(a−b)/2 + 3), and by arguments similar to the previous ones one shows
that not all prime divisors dividing either Y2 or Y3 can divide Y1. Finally,
when t = 5, a result of Carmichael from [3] (see also Table 1 of [2]) says
that the only Lucas sequences with real roots which lack primitive divisors
in their 5th term are associated with the Fibonacci sequence, i.e., their roots
are of the form ±((1 +

√
5)/2, (1−

√
5)/2), while our Lucas sequence (Yk)k

has roots 2ya−b+ε1±2y(a−b−1)/2
√
y(ya−b + ε1) which are not of the above

type.
This was the case when B was not a perfect square. If B= ya−b+ε1 = z2

is a perfect square, then a−b = 1. Indeed, if a−b > 1, then the above equa-
tion is a particular instance of Catalan’s equation which has been treated a
long time ago by V. A. Lebesgue [8] (for the case ε1 = −1), and by Chao
Ko [6] (for the case ε1 = 1), and it has no positive integer solutions with
y > 2. Finally, for the last case in which a − b = 1 and y + ε1 = z2 with
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some integer z > 1, we write U := x, V := y(b−1)/2z = (z2 − ε1)(b−1)/2z,
and D′ := y = z2 − ε1, and notice that equation (2) becomes

(6) U2 −D′V 2 = ε2,

with D′ = y > 2 not a square. The minimal positive integer solution of the
Pell equation

U2 −D′V 2 = ±1

is obviously (U1, V1) = (z, 1) for which U2−D′V 2 = ε1, and since (U2, V2) =
(2z2 − ε1, 2z) and z |V , it follows that V = Vt for some even integer t. The
case t = 2 gives y(b−1)/2z = 2z, therefore y = 2 and b = 3, which is again
not convenient, therefore we must have t ≥ 4. Notice that

Vt =
αt − βt
α− β , where (α, β) := (z +

√
z2 − ε, z −

√
z2 − ε),

and the fact that Vt = zy(b−1)/2 = zD′(b−1)/2 implies that every prime
divisor of Vt divides either V2 = 2z or D′ = (α− β)2. Thus, Vt is a defective
Lucas number (in the terminology of [2]), and by Carmichael’s results it
follows again that the only possibilities for t are t ∈ {4, 6, 12}, and since
Y4 |Y12 it suffices to show that this cannot happen for t ∈ {4, 6}. Now
Y4 = 2z(2z2 − ε) and Y6 = 2z(16z4 − 16z2ε + 3), and since z > 1 and
gcd(2z(z2 − ε), 2z2 − ε) = 1, and gcd(2z(z2 − ε), 16z4 − 16z2ε+ 3) = 3, one
checks again that it is not possible that all the prime factors of either Y4 or
Y6 are also prime factors of z(z2 − ε), which concludes the proof.

From the above result, it follows that we may assume that a is odd in
equation (1). We also notice that a ≥ 2b+ 1 must hold. Indeed, if not, then
a ≤ 2b − 1, and in particular b ≥ 2. Rewriting (1) as (x − 1)(x + 1) =
pb(pa−b + ε), it follows that there exists ε1 ∈ {±1} so that x ≡ ε1 (mod pb).
Since x > 1, it follows that x ≥ pb − 1, therefore

p2b−1 + pb + 1 ≥ pa + εpb + 1 = x2 ≥ (pb − 1)2 = p2b − 2pb + 1,

which is equivalent to 3 > pb−1(p − 1), which is impossible because b ≥ 2
and p ≥ 3.

3. The equation x2 = pa + pb + 1 with a odd. Looking at equation
(1) with ε = 1 modulo 4, we see that the only case in which solutions might
exist is when p ≡ 3 (mod 4) and b is even. Write pb + 1 = Du2, with D
squarefree and u ≥ 1 some integer. Since b is even and p is odd, we see that
2 ‖D. We write K := Q[

√
D], OK = Z[

√
D] for the ring of algebraic integers

in K, and O′ = Z[
√
Du] = Z[

√
pb + 1]. Rewriting the equation pb+1 = Du2

as

(7) (pb/2)2 −Du2 = −1
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we recognize that (X,Y ) = (pb/2, u) is a solution of the Pell equation

(8) X2 −DY 2 = −1.

Lemma. Let b be even, p be an odd prime, and write pb + 1 = Du2 with
D squarefree. Then (X,Y ) = (pb/2, u) is the minimal solution of the Pell
equation

(9) X2 −DY 2 = ±1

except for b = D = 2 in which case (X,Y ) = (P,Q) = (p, u) is a solution of
the Pell equation

(10) P 2 − 2Q2 = ±1.

In this case, if t ≥ 1 is an integer and if we write (Pt, Qt) for the tth solution
of equation (10), then (p, u) = (Pk, Qk) with some odd prime number k.

Proof. Let t ≥ 1 and (Xt, Yt) be the tth solution of the Pell equation

(11) X2 −DY 2 = −1.

Since (X,Y ) = (Xt, Yt) is a solution of (11) with the sign −1 on the right
hand side, it follows that t is odd. By the results of Carmichael, Xt has
primitive divisors for all odd values of t except t ∈ {3, 5}. By arguments
entirely similar to the ones employed previously, one shows that Xt has
primitive divisors (i.e., that there exists a prime number p |Xt so that p -X1)
when t ∈ {3, 5} as well. Assume now that Xt = pb/2 with some odd prime p,
even positive integer b, and odd integer t > 1. Since X1 |Xt, it follows
that X1 = pc with some nonnegative integer c. If c ≥ 1, then Xt will not
have a primitive divisor, which is impossible. Thus, c = 0, and therefore
(X1, Y1) = (1, Y1) is a solution of the Pell equation 12 − DY 2

1 = −1. This
shows that D = 2 and that (Xt, Yt) = (Pk, Qk) with some odd integer k.
The fact that b = 2 must hold is Theorem 6.1 of [5] (see also Theorem 1.1
of [1] for a more general result), therefore Pk = p is a prime, and since
Pd |Pk for all divisors d of k, we conclude that k is an odd prime.

Returning now to our original problem, we proceed by analysing each
one of the two cases from the above lemma.

Case 1: (X,Y ) = (pb/2, u) is the minimal positive integer solution of
the Pell equation (8). In this case, the fundamental unit in OK is ζ :=
pb/2 +

√
Du = pb/2 +

√
pb + 1, which lives in the order O′. We rewrite

equation pb + 1 = Du2 as

(12) pb = Du2 − 1 = −(1 +
√
pb + 1)(1−

√
pb + 1).

For any integer a and any odd prime q we write (a|q) for the Legendre symbol
of a with respect to q. Since (D|p) = (Du2|p) = (pb + 1|p) = (1|p) = 1, it
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follows that the principal ideal [p] generated by p inside OK splits into a
product of two prime ideals in OK; we call them π1 and π2. Passing to ideals
in (12), we get

(13) πb1π
b
2 = [1−

√
pb + 1][1 +

√
pb + 1].

The ideals appearing on the right hand side of (13) are obviously coprime
(because if I is any ideal dividing both of them, then on the one hand
I divides their product which is a power of p, and on the other hand I

divides the sum (1 +
√
pb + 1) + (1 −

√
pb + 1) = 2), therefore, by unique

factorization, and up to relabelling π1 and π2, we may assume that

(14) πb1 = [1 +
√
pb + 1], πb2 = [1−

√
pb + 1].

From (14), we see that πb1 is principal and has a generator in O′, and since
the fundamental unit in OK is in O′ as well, it follows that every generator
of πb1 is in O′, and the same is true for π2. Moreover, the order of π1 in the
ideal class group of K is a divisor of b. We now rewrite equation (1) with
ε = 1 as

pa = x2 − (pb + 1) = (x−
√
pb + 1)(x+

√
pb + 1),

and pass again to ideals in OK to conclude that

(15) πa1π
a
2 = [x+

√
pa + 1][x−

√
pa + 1].

The integer x is clearly coprime to p, and by an argument similar to the one
employed previously, we conclude that the two principal ideals appearing on
the right hand side of (15) are coprime. Thus, by unique factorization for
ideals in OK, there exists ε1 ∈ {±1} so that

(16) πa1 = [x+ ε1

√
pb + 1], πa2 = [x− ε1

√
pb + 1].

In particular, the order of π1 in the ideal class group of K is a divisor
of a, and since both the fundamental unit in OK as well as the generator
x+ ε1

√
pb + 1 of πa1 are in O′, all generators of πa1 are in O′. It now follows

that if we write c := gcd(a, b), then πc1 is principal, and every generator
of πc1 in OK belongs to O′ as well. Since a is odd and b is even, we have
c ≤ b/2. By writing v + w

√
pb + 1 for some generator of πc1 (here, v and w

are nonzero integers with v and w(pb + 1) coprime), and computing norms,
we get the diophantine equation

(17) v2 − w2(pb + 1) = ±pc.
With m := pb/2, D′ := m2 +1, and z := pc ≤ pb/2 <

√
D′, we have obtained

the diophantine equation

(18) v2 − w2D′ = ±z with 1 < z <
√
D′,

and we may assume that v and w are both positive. It is well known that
in this case v/w must be a convergent of

√
D′. Since D′ = m2 + 1, we
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find that the continued fraction of
√
D′ is [m, {2m}], and if pk/qk is any

convergent to
√
D′, then p2

k−D′q2
k = ±1. Thus, equation (18) does not have

an integer solution (v, w, z) with v and wD′ coprime and 1 < z <
√
D′,

which completes the analysis for this case.

Case 2: b = D = 2, and (p, u) = (Pk, Qk) for some odd prime num-
ber k. Notice that a ≥ 2b + 1 = 5. When k = 3, we get p = P3 = 7,
and equation (1) becomes x2 = 7a + 72 + 1, which reduced modulo 5 gives
x2 = 7a (mod 5), which is impossible because (7a|5) = (7|5) = −1. When
k = 5, we get p = Pk = 41, which is congruent to 1 modulo 4, which
is impossible. When k = 7, we get Pk = 239, and equation (1) becomes
x2 = 239a + 2392 + 1, which reduced modulo 13 gives x2 = 239a (mod 13),
which is impossible because (239|13) = (5|13) = (13|5) = (3|5) = −1. When
k = 11, then Pk = 8119 is a multiple of 23, therefore it is not prime.
Thus, k ≥ 13, therefore p = Pk > 47000. We now write K := Q[

√
2], and

OK = Z[
√

2] for the ring of algebraic integers in K. The ring OK is Euclidean
and its fundamental unit is ζ = 1 +

√
2. From the equation

p2 = P 2
k = −1 + 2Q2

k,

it follows that
p2 = −(1 +Qk

√
2)(1−Qk

√
2).

We write p = π1 · π2, where π1 and π2 are prime numbers in Q[
√

2], we
rewrite (1) with ε = 1 as

(19) pa = x2 − 2Q2
k = (x−Qk

√
2)(x+Qk

√
2),

and we square both sides of (19) to get

−(1 +Qk
√

2)a(1−Qk
√

2)a = p2a = π2a
1 π2a

2(20)

= (x−Qk
√

2)2(x+Qk
√

2)2.

By the unique factorization property in OK, there exist integers l, ε1, ε2

with ε1, ε2 ∈ {±1} so that

(21) (1 +Qk
√

2)a = ε1(x+ ε2Qk
√

2)2ζl.

The number l will turn out to be positive, but for the time being we do not
work under this assumption. Conjugating (21) we get

(22) (1−Qk
√

2)a = ε1(x− ε2Qk
√

2)2(−ζ−1)l.

Multiplying (21) and (22) and comparing the resulting equation with (20)
shows that l must be an odd number. In particular, |l| ≥ 1. We next give
an upper bound on |l| in terms of a. To start, we notice that

(23) p− 1 < Qk
√

2− 1 < Qk
√

2 + 1 < p+ 2.
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Indeed, if Qk
√

2− 1 < p− 1, then Qk
√

2 + 1 < p+ 1, therefore

p2 = (Qk
√

2− 1)(Qk
√

2 + 1) < p2 − 1,

which is impossible. The inequality Qk
√

2 + 1 < p + 2 can be proved in a
similar way. Let us also notice that

(24) p(a−2)/2(p− 1) < x−Qk
√

2.

Indeed, if (24) did not hold, then we would get

x ≤ p(a−2)/2(p− 1) +Qk
√

2 = p(a−2)/2(p− 1) +
√
p2 + 1,

therefore

pa + p2 + 1 = x2 ≤ (p(a−2)/2(p− 1) +
√
p2 + 1)2

= pa − 2pa−1 + pa−2 + (p2 + 1) + 2p(a−2)/2(p− 1)
√
p2 + 1,

which implies

2pa−1 − pa−2 < 2p(a−2)/2(p− 1)
√
p2 + 1 < 2p(a+2)/2,

therefore
pa−1 < 2pa−1 − pa−2 < 2p(a+2)/2,

hence,
pa−4 < 4,

which is impossible for p > 47000 and a ≥ 5. From (23)–(24) and (21)–(22),
we get

ζ−|l| ≥ (x−Qk
√

2)2

(1 +Qk
√

2)a
>
pa−2(p− 1)2

(p+ 2)a
=
(

1− 1
p

)2(
1 +

2
p

)−a

>

(
1 +

2
p

)−(a+2)

> exp
(
−2(a+ 2)

p

)
,

therefore

(25) |l| < 2(a+ 2)
p log ζ

.

A better inequality than (25) can be achieved by noticing that k | l.
Indeed, write l = ε3|l| and (21) as

(26) (1 +Qk
√

2)a = ε1(x+ ε2Qk
√

2)2(P|l| + ε3Q|l|
√

2).

The coefficient of
√

2 on the left hand side of (26) is certainly a multiple of
Qk, while the coefficient of

√
2 on the right hand side of (26) is

(27) ε1(2ε2xQkP|l| + 2ε3Q|l|Q
2
k + ε3Q|l|x

2),

and imposing that the number shown at (27) is a multiple of Qk, we get
Qk |Q|l|x2. Since x and Qk are obviously coprime, it follows that Qk |Q|l|,
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which shows that k | l. Thus, writing |l| = sk, we find that s ≥ 1 is odd, and
that

(28) s <
2(a+ 2)

kPk log(1 +
√

2)
.

We now divide the two relations (21) and (22) side by side keeping in mind
that l is odd to get

(
1 +Qk

√
2

1−Qk
√

2

)a
ζ−2l = −

(
x+ ε2Qk

√
2

x− ε2Qk
√

2

)2

,

therefore with

α := −1 +Qk
√

2

1−Qk
√

2
,

we have

(29) |αaζ−2l − 1| =
∣∣∣∣
(
x+ ε2Qk

√
2

x− ε2Qk
√

2

)2

− 1
∣∣∣∣.

Now ∣∣∣∣
x+ ε2Qk

√
2

x− ε2Qk
√

2
− 1
∣∣∣∣ ≤

2Qk
√

2

x−Qk
√

2
<

2
√
p2 + 1

p(a−2)/2(p− 1)
<

3
p(a−2)/2

,

therefore

(30)
∣∣∣∣
(
x+ ε2Qk

√
2

x− ε2Qk
√

2

)2

− 1
∣∣∣∣ <

6
p(a−2)/2

+
9

pa−2 <
7

p(a−2)/2
.

Thus, with (30), inequality (29) implies that

(31) |αaζ−2l − 1| < 7
p(a−2)/2

.

We notice that both α and ζ are real, positive (in fact, larger than 1), and
multiplicatively independent, and with Λ := a logα−2l log ζ inequality (31)
becomes

(32) |eΛ − 1| < 7
p(a−2)/2

<
7
p
<

7
40000

.

For real values of Λ for which (32) holds, the inequality |eΛ−1| > |Λ|/2 also
holds, therefore (31) implies

|Λ| < 14
p(a−2)/2

,

which is equivalent to

(33) log |Λ| < log 14− a− 2
2

log p.

We now need a lower bound for log |Λ|, and we use the following one due to
Laurent, Mignotte and Nesterenko (see Corollaire 2 in [7]).
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Theorem LMN. Let α1, α2 be real and positive algebraic numbers which
are multiplicatively independent. Put K := Q[α1, α2], D := [K : Q], and
assume that A1 and A2 are positive numbers such that

(34) logAi ≥ max
{
h(αi),

|log(αi)|
D

,
1
D

}

with i := 1, 2, where h(α) is the logarithmic height of the algebraic number α.
For any two positive integers b1 and b2 put

(35) b′ :=
b1

D logA2
+

b2
D logA1

,

and let
Λ := b2 logα2 − b1 logα1.

Then

(36) log |Λ| ≥ −24.34D4
(

max
{

log b′ + 0.14,
21
D
,

1
2

})2

logA1 logA2.

In our case α > 1, ζ > 1, and a is positive, therefore the only instance
in which |Λ| will be small is when l is also positive. We may put α2 := α,
α1 := ζ, b2 := a, and b1 := 2l. In this case, K = Q[α1, α2] is precisely Q[

√
2],

therefore we may put D := 2. The conjugate of α1 is 1−
√

2, therefore

h(α1) = h(1 +
√

2) =
1
2

log(1 +
√

2),

while the conjugate of α2 is α−1
2 , therefore its logarithmic height is

h(α2) =
1
2

(
log(2Q2

k−1)+log
(√

2Qk + 1√
2Qk − 1

))
<

log(P 2
k ) + log 2

2
< log(2Pk).

Thus, we may choose A1 and A2 to be such that logA1 = 1/2, and logA2 =
log(2p), and then inequalities (34) hold. Now

b′ =
2l

2 logA2
+

a

2 logA1
< a+ l < 2a,

with the last inequalities holding by (25) and the fact that p is large. Thus,

log |Λ| > −23 · 24.34 · (max{log(2a) + 0.14, 10.5})2 · log(2p)(37)

> −200 · (max{log(2a) + 0.14, 10.5})2 log(2p).

Comparing (33) and (37) we get

−200 · (max{log(2a) + 0.14, 10.5})2 log(2p) < log 14− a− 2
2

log p,

therefore

(38) a− 2 <
2 log 14

log p
+ 400 · (max{log(2a) + 0.14, 10.5})2 · log(2p)

log p
.
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Since p > 47000 > 142, we have log(2p)/log p < 1.07, and therefore (38)
implies

(39) a− 3 < 428(max{log(2a) + 0.14, 10.5})2.

When 10.5 > 0.14 + log(2a), (39) gives

a < 3 + 428 · 10.52 < 50000,

while when log(2a) + 0.14 ≥ 10.5, it becomes

a− 3 < 428 · (log(2a) + 0.14)2,

which implies that a < 52000. Thus, a < 52000, and now (28) tells us that

1 ≤ s < 2(52000 + 2)

13 · 47000 · log(1 +
√

2)
< 1,

which is the final contradiction here.

4. The equation x2 = pa− pb + 1. We first analyse the case of b = 3a.
In this case, with q := pb, the equation becomes x2 = q3 − q + 1. While
this last equation is a particular instance of the equation Y 2 = X3 −X + 1
which is an elliptic curve, and therefore all its integer solutions (X,Y ) can
be computed using various computer packages like SIMATH, for example,
we show by an elementary argument that the only positive integer solutions
(x, q) of our equation are (x, q) = (5, 3), (11, 5).

Writing the equation as (x− 1)(x+ 1) = q(q2 − 1), it follows that there
exists ε ∈ {±1} so that q |x − ε. We write x = qλ + ε, with some positive
integer λ, and the equation becomes λ(qλ + 2ε) = q2 − 1, therefore qλ2 +
(2λε+ 1) = q2. We now learn that q | 2λε+ 1, therefore there exists an odd
positive integer w so that 2λε+1 = εqw. Thus, λ = (qw−ε)/2, and we may
rewrite our equation in terms of w to get

(qw − ε)2 + 4εw = 4q,

therefore
(qw − 1)2 ≤ 4(q − εw) ≤ 4(q + w) ≤ 4(qw + 1),

and so,
(qw)2 − 6qw − 3 < 0,

which implies qw < 3 + 2
√

3 < 7. Thus, q ∈ {3, 5}, which leads to the
positive integer solutions (x, q) = (5, 3), (11, 5).

From now on, we assume that a is odd, a > 2b + 1, a 6= 3b. We write
pb − 1 = Du2, with D and u positive integers, and D squarefree. We write
K := Q[i

√
D], OK for the ring of algebraic integers in K, and we notice that

pb = (1 + i
√
Du)(1 − i

√
Du). By the usual argument, the two principal

ideals [1 + i
√
Du] and [1 − i

√
Du] are coprime in OK, and the principal

ideal [p] generated by p inside OK splits into two prime ideals; we call them



98 F. Luca

π1 and π2. By unique factorization for ideals in OK, we may assume that
πb1 = [1 + i

√
Du] and πb2 = [1− i

√
D]. In particular, the order of π1 in the

ideal class group of K is a divisor of b, and the same is true for π2. We now
rewrite (1) with ε = −1 as

pa = x2 + (pb − 1) = x2 +Du2 = (x+ i
√
D)(x− i

√
D),

and passing to ideals we get πa1π
a
2 = [x + i

√
Du][x − i

√
Du]. Since x is

coprime to p, the ideals [x + i
√
Du] and [x − i

√
Du] are coprime, and

by unique factorization for ideals in OK, there exists ε1 ∈ {±1} so that
πa1 = [x + ε1

√
Du], and πa2 = [x − ε1

√
Du]. Hence, the order of π1 in the

ideal class group of K divides a and the same is true for π2. Let c := gcd(a, b),
and write a := ca1 and b := cb1. Notice that a1 ≥ 5. Indeed, this is obviously
so when b1 ≥ 2, because in this case a1c = a ≥ 2b+ 1 ≥ 2b1c+ 1 ≥ 4c+ 1,
therefore a1 ≥ 5. When b1 = 1, we have c = b, and the fact that we may
assume a1 ≥ 5 follows from the fact that we have already treated the case
a = 3b. The ideal πc1 is now principal; let α ∈ OK be some generator of
it. Passing from the ideal equations to elements, it follows that there exist
units ζ and ζ ′ in OK so that

(40) αb1 = (1 + i
√
Du)ζ, αa1 = (x+ ε1

√
Du)ζ ′.

Since K is complex nonreal, it follows that ζ and ζ ′ are roots of unity. We
also notice that when b1 is coprime to the order of ζ, we may replace α by
αζd1 , where d1 is the multiplicative inverse of b1 modulo the order of ζ, and
with this replacement we may assume that ζ = 1 in (40).

We now distinguish the following cases:

Case 1: D > 3. In this case, K contains only the trivial units ±1,
therefore ζ, ζ ′ ∈ {±1}. Writing β for the complex conjugate of α, which is
the same as the conjugate in K of α, and identifying imaginary parts in (40),
we get

(41)
αb1 − βb1
α− β = ζ

2i
√
Du

α− β ,
αa1 − βa1

α− β = ζ ′ε1
2i
√
Du

α− β .

Let (uk)k≥0 be the Lucas sequence of roots α and β whose general for-
mula is given by

(42) uk =
αk − βk
α− β for all k ≥ 0.

It is clear that this is indeed a Lucas sequence because α + β and αβ are
coprime integers (they are clearly integers because α and β are conjugate
algebraic integers, and they are coprime because [α] and [β] in K are powers
of π1 and π2, respectively), and α/β is not a root of 1. The number uk is
always an integer, and equations (41) show that ua1 = ±ub1 . In particular,
every prime divisor of ua1 divides ub1 , and therefore ua1 lacks primitive
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divisors. Since a1 ≥ 5 is odd, by the results from [2], a1 ∈ {5, 7, 13}, and for
each of these values of a1 there are only finitely many possibilities for the pair
of roots (α, β), and all these possibilities are listed in Table 1 of [2]. A quick
computation shows that none of these exceptional pairs of roots leads to a
new solution of (1). In fact, if a1 = 5, then the only possibilities for pc = αβ
from Table 1 of [2] are 2, 3, 4, 11, 55, 377; now 2, 4 are not convenient because
they are even, 55, 377 are not convenient because they are not powers of
primes, while c = 1 and p ∈ {3, 11} simply do not produce new solutions
because p5 − pb1 + 1 is never a square for such values of p and b1 ∈ {1, 2}.
A similar argument works for a1 = 7, 13.

Case 2: D = 3. In this case, we must have pb − 1 = 3u2. It is known
that the equation yn = 3v2 + 1 has no integer solutions (y, v, n) with y > 1
and n ≥ 3 (see, for example, [5, p. 81]). Thus, b ≤ 2, and since a is odd, it
follows that c = 1 and b = b1. All the units in the ring OK are of the form
±ωi, where i ∈ {0, 1, 2}, with ω a primitive root of unity of degree 3. Since
b1 ≤ 2, it follows that b1 is coprime to 3, and by the remarks preceding
Case 1, we may assume that ζ = ±1 in (40). The ring OK has integral base
{1, (1+i

√
3)/2}, and therefore we may write α := (m+in

√
3)/2 with m and

n some integers which are congruent modulo 2. Since b1 = 1, 2, formula (40)
with ζ = 1 implies that m and n are both even (this is obviously so when
b1 = 1, while when b1 = 2 we get α2 = (m2 − 3n2)/4 + i

√
3mn/2, and

this number is obviously not of the form ±(1 + i
√

3u) with some integer u
when both m and n are odd). This argument shows that we may assume
that α = m1 + in1

√
3 with some nonzero integers m1 and n1 such that m1

and 3n1 are coprime. Hence, αa1 is also of the form m2 + n2i
√

3 with some
integers m2 and n2. This remark, together with the fact that x is odd and
u is even, shows that the unit ζ ′ appearing in (40) must be ±1. Indeed, if
ζ ′ = ±ωi with some i = 1, 2, then one can check that (x + ε1)ζ ′ is of the
form (m3 + in3

√
3)/2 with two odd integers m3 and n3.

The above discussion shows that we may assume that ζ, ζ ′ ∈ {±1}, and
we are therefore in the situation of the preceding case (in fact, none of the
exceptional pairs of roots appearing in Table 1 of [2] consists of members of
Q[i
√

3]).

Case 3: D = 1. In this case, we have pb − 1 = u2, and by the result
from [8], it follows that b = 1. Thus, c = b1 = 1, and we may assume that
ζ = 1 in (40). If ζ ′ = ±1, we are in the situation of Case 1, therefore we may
assume that ζ ′ = ±i. Thus, we have α = 1 + iu, α + β = 2, α − β = 2iu,
and αa1 = ±(ix− ε1u), therefore αa1 + βa1 = ±2u, and so

α2a1 − β2a1

α− β = ±2u · α
a1 − βa1

α− β ,
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and therefore, with the notation (42), every prime divisor of u2a1 is a prime
divisor of either ua1 or 4u2 = (α−β)2. Thus, u2a1 is a defective Lucas number
with 2a1 ≥ 10 and whose pair of roots consists of conjugate elements in Q[i],
and by Table 1 of [2], such a Lucas number does not exist.

5. Concluding remarks. Following Szalay [11], it will be of interest
to completely solve the equation x2 = pM ±pN ±pL in nonnegative integers
x, p,M,N,L with p > 2 a prime number. In order to do this, by the results
of our paper, it suffices to treat the equations

(43) x2 = pa ± pb − 1,

where a ≥ b. If b = 0, we get the equations x2 = pa and x2 = pa − 2,
respectively. The first one has the solution x = pa/2 when a is even and
independently of p, while the only solution of the second equation with
a ≥ 2 is (x, p, a) = (5, 3, 3) (see [9] for a more general statement). It is not
known if the second equation above has finitely or infinitely many solutions
with a = 1, although it is conjectured that there should be infinitely many
primes p of the form x2 + 2. When a = b, we get the equation x2 = −1
(with no real solution), and x2 = 2pa − 1, respectively. The only solution
with a ≥ 3 of this last equation is (x, p, a) = (239, 13, 4) (see [4]), and it is
not known if this last equation has finitely or infinitely many solutions with
a = 1, 2. Finally, when a > b > 0, the equation

x2 = pa − pb − 1

has no solutions, because by reducing it modulo p first, we see that (−1|p)
= 1, therefore p ≡ 1 (mod 4), and now reducing it modulo 4, we get x2 ≡ −1
(mod 4), which is impossible.

However, we have no idea what to say about the equation

x2 = pa + pb − 1,

with a > b > 0, and a odd, and we leave this last equation to the reader.
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E-mail: fluca@matmor.unam.mx

Received on 25.11.2002
and in revised form on 22.4.2003 (4403)


