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1. Introduction. Let k be a number field and let A be a commutative
algebraic group defined over k. Let P ∈ A(k). We denote by Mk the set of
the valuations v ∈ k and by kv the completion of k at the valuation v. In
previous papers we were concerned with the following question:

Problem. Assume that for all but finitely many v ∈ Mk, there exists
Dv ∈ A(kv) such that P = qDv, where q is a positive integer. Is it possible
to conclude that there exists D ∈ A(k) such that P = qD?

This problem is known as Local-Global Divisibility Problem. There are
known solutions in many cases, but many cases remain open too. By using
the Bézout identity, it turns out that it is sufficient to solve it in the case
when q is a power pn of a prime p, to get answers for a general integer q.

The local-global divisibility problem is motivated by a strong form of the
Hasse principle that says: If a quadratic form ax2 + bxy + cy2 ∈ Q[x, y] of
rank 2 represents 0 non-trivially over all but finitely many completions Qp,
then it represents 0 non-trivially over Q. Then, in particular, if a rational
number is a perfect square modulo all but finitely many primes p, then it
is a rational square. A generalization of this fact for q-powers of k-rational
numbers is the Local-Global Divisibility Problem in the case when A is
the multiplicative group Gm. For this algebraic group a solution is classi-
cal. The answer is affirmative for all odd prime powers q and for q | 4 (see
[AT, Chap. IX, Thm. I]). On the other hand, there are counterexamples
for q = 2t, t ≥ 3. The most famous of them was discovered by Trost (see
[Tro]) and it is the diophantine equation x8 = 16, that has a solution in
Qp for all primes p ∈ Q different from 2, but has no solutions in Q2 and
in Q.
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When A 6= Gm a classical way to proceed is to give a cohomologi-
cal interpretation to the problem. It turns out that the answer is strictly
connected to the behavior of two cohomology groups. The first of them
is the cohomology group H1(Gal(k(A[pn])/k),A[pn]), where A[pn] denotes
the pn-torsion subgroup of A. The second is one of its subgroups, named
H1

loc(Gal(k(A[pn])/k),A[pn]), that interprets the hypothesis of the problem
in the cohomological context. This last group is known as the first local coho-
mology group and was defined by R. Dvornicich and U. Zannier (see [DZ1]).

Definition. Let Σ be a group and let M be a Σ-module. We say that a
cocycle [c] = [{Zσ}] ∈ H1(Σ,M) satisfies the local conditions if there exists
Wσ ∈M such that Zσ = (σ−1)Wσ for all σ ∈ Σ. We denote by H1

loc(Σ,M)
the subgroup of H1(Σ,M) formed by such cocycles.

Working with all valuations, instead of almost all, we would get the
classical definition of the Shafarevich group. Modified Shafarevich groups
similar to H1

loc(Σ,M) appear in [San].
In 2001 R. Dvornicich and U. Zannier proved the following result (see

[DZ1]).

Theorem 1.1 (Dvornicich, Zannier, 2001). Assume that

H1
loc(Gal(k(A[pn])/k),A[pn]) = 0.

Let P ∈ A(k) be a point locally divisible by pn almost everywhere in the
completions kv of k. Then there exists a point D ∈ A(k) such that P = pnD.

Therefore, a natural question was if the non-vanishing of the group
H1

loc(G,A[pn]) could imply the existence of a counterexample to the prob-
lem. In 2007 they proved the following statement (see [DZ3]).

Theorem 1.2 (Dvornicich, Zannier, 2007). Let K0 := k(A[pn]) and let
G := Gal(k(A[pn])/k). Let {Zσ}σ∈G be a cocycle of G representing a non-
trivial element in H1

loc(G,A[pn]). Then there exists a number field L such
that L ∩ K0 = k and a point P ∈ A(L) which is divisible by pn in A(Lw)
for all unramified places w of L but is not divisible by pn in A(L).

It is possible to find a suitable field L and a suitable point P by proceed-
ing in the following way. Consider the restriction of scalars H := RKk (A) of
A from K to k. It is well known that H is isomorphic over K to the product
HK :=

∏
σ∈GAσ (see [Ser]), where Aσ is now simply A, but viewed over K.

Consider the points D ∈ A satisfying

Dσ −D = Zσ.

The map D 7→ Dσ := D + Zσ is a K-isomorphism between A and a subva-
riety B of H (see [DZ3, Proof of Prop. 1]). Clearly B depends on Z. Every
L-rational point {Dσ}σ∈G over B corresponds to a point D ∈ A(LK). The
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point P := pnD is an L-rational point of A, locally divisible by pn for all
primes of L unramified in LK, but not globally (see [DZ3, Prop. 1 and proof
of Thm. 3]).

In this paper, we will prove two generalizations of Theorem 1.2 (see
Theorem 2.1 and Theorem 3.1).

Later, R. Dvornicich and U. Zannier investigated particularly the case
when A is an elliptic curve. They proved that for these algebraic groups we
have an affirmative answer to the problem when q is a prime (see [DZ1] and
[Won]), and when q is a power of a prime and

p /∈ S = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}

(see [DZ3, Thm. 1]). An interesting open question is if there exists a coun-
terexample for q = pn, for all p ∈ S and n > 1. There are known counterex-
amples only to the local-global divisibility by 4 (see [DZ2] and [Pal1]) and by
9 (see [Pal1]). In this paper we will prove the existence of counterexamples
to the local-global divisibility by 2n (see [DZ2] and [Pal1]) and by 3n, for
every n ≥ 2.

2. On counterexamples to local-global divisibility. We will prove
that for almost all primes p ∈ N the existence of a counterexample to the
local-global divisibility by pn in A ensures the existence of a counterexample
to the local-global divisibility by pn+s in A for all positive integers s. The
following theorem shows that in many cases the hypotheses of Theorem 1.2
are sufficient to prove that conclusion. As in the statement of Theorem 1.2
let K0 := k(A[pn]) and G := Gal(k(A[pn])/k).

Theorem 2.1. Let n, t be positive integers such that t ≤ n. Suppose
there exists a cocycle Ẑ of the group G with values in A[pn−t], representing
a nonzero element in H1

loc(G,A[pn]). Furthermore, suppose there are no k-
rational pt+1-torsion points in A(k). Then, for all positive integers s, there
exist number fields L(s) linearly disjoint from K0 over k, and points Ps ∈
A(L(s)) such that Ps is locally divisible by pn+s for almost all v ∈ Mk, but
Ps is not divisible by pn+s in A(L(s)).

Proof. By [DZ3, Thm. 3] we have the conclusion when s = 0. Now,
suppose s ≥ 1. Let Ks := k(A[pn+s]), let Gs be the Galois group Gal(Ks/k)
and let Hs be the Galois group Gal(Ks/K0). We have G ∼= Gs/Hs. We
consider the map

α : H1(G,A[pn])→ H1(Gs,A[pn+s])

defined by
(α(Z))(σ) := Z(σHs) for all σ ∈ Gs.
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We will prove that α is a homomorphism and that its restriction to the first
cohomology group H1

loc(G,A[pn]) induces a homomorphism

α : H1
loc(G,A[pn])→ H1

loc(Gs,A[pn+s])

that is injective on the elements in H1
loc(G,A[pn]) represented by cocycles

with values in A[pn−t]. Let Z ∈ H1(G,A[pn]) and let σ, τ ∈ Gs. We have

(α(Z))(στ) = Z(στHs) = Z(σHsτHs) = Z(σHs) + σ(Z(τHs)).

Since Z(τHs) ∈ A[pn], it is fixed by Hs. Thus

Z(σHs) + σ(Z(τHs)) = (α(Z))(σ) + σ((α(Z))(τ))

and α(Z) is a cocycle.
We will show that the image of a coboundary under α is again a cobound-

ary. Let Z ∈ H1(G,A[pn]) be such that Z(σ) = (σ − 1)A with A ∈ A[pn].
Therefore

(α(Z))(σ) = Z(σHs) = (σHs −Hs)A = (σ − 1)A.

Since Hs fixes A[pn], we have (α(Z))(σ) = (σ − 1)A, with A ∈ A[pn] ≤
A[pn+s]. Therefore α is well defined. It is clearly a homomorphism.

Remark. Let A[pn+s]Hs be the set of pn+s-torsion points of A fixed
by Hs. When A[pn+s]Hs = A[pn], then α is the inflation and it is injec-
tive.

Now, we are going to prove that α(H1
loc(G,A[pn])) ⊆ H1

loc(Gs,A[pn+s]).
Let Z ∈ H1

loc(G,A[pn]). Then, for all σ ∈ G, we have

Z(σ) = (σ − 1)Aσ with Aσ ∈ A[pn].

Let σ ∈ Gs. Therefore

(α(Z))(σ) = Z(σHs) = (σHs −Hs)Aσ = (σ − 1)Aσ.

Since Aσ ∈ A[pn] ≤ A[pn+s], we can conclude α(Z) ∈ H1
loc(G,A[pn+s]).

Furthermore, we observe that if h ∈ Hs, then (α(Z))(h) = O, where O is
the zero point in A.

Remark. We have already noticed that if A[pn+s]Hs = A[pn], then α
is injective. In this case, by using [DZ3, Thm. 3], we immediately get the
conclusion.

Now, let Z̃ be a cocycle with values in A[pn−t], representing an element
in H1

loc(G,A[pn]). Suppose that α(Z̃) is a coboundary. Therefore, for all
σ ∈ Gs we have

Z̃(σHs) = (α(Z̃))(σ) = (σ − 1)Ã with Ã ∈ A[pn+s].

We are assuming Z̃(σHs) ∈ A[pn−t], thus

0 = pn−tZ̃(σHs) = pn−t((σ−1)Ã) = pn−tσ(Ã)−pn−tÃ = σ(pn−tÃ)−pn−tÃ.
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Therefore pn−tÃ ∈ A(k). Since Ã is a pn+s-torsion point, we have pn−tÃ ∈
A[ps+t]. By hypothesis there are no k-rational pt+1-torsion points, which
implies there are no k-rational pt+s-torsion points for every s ≥ 1. So
pn−tÃ ∈ A[pt], yielding Ã ∈ A[pn]. It follows that Z̃ is a coboundary. Thus,
the restriction of α to H1

loc(G,A[pn]) is injective on the cocycles with values
in A[pn−t]. Let Ẑ be as in the statement of the theorem. Then α(Ẑ) is a
nonzero element in H1

loc(G,A[pn+s]). By applying [DZ3, Thm. 3], we have
the conclusion.

Clearly, the best cases to apply Theorem 2.1 are when t is very small.
The most suitable possibility is when t = 0. In this case, the algebraic group
Amust have no k-rational p-torsion points. In fact, for every A, this happens
for infinitely many primes p. When A is an elliptic curve and k = Q, the
famous Mazur’s Theorem ensures that there are no rational torsion points
of order p ≥ 11. For completeness, we recall the statement of this theorem.

Theorem 2.2 (Mazur). Let E be an elliptic curve defined over Q. Then
its subgroup Etors, formed by the rational torsion points of E, is isomorphic
to one of the following groups:

Z/mZ for m = 1, 2, 3, . . . , 10, 12,
Z/2Z× Z/mZ for m = 2, 4, 6, 8.

Now, we consider the more general case when A is a commutative alge-
braic group defined over a number field k. For every integer m, the m-torsion
subgroup of A is isomorphic to (Z/mZ)nA for a certain integer nA, depend-
ing only on A (see for instance [DZ1, §2]). Therefore, if A is a linear algebraic
group, we can deduce from [Jar, Thm. B] that the torsion part of A over k
is finite. If A is an abelian variety, we can use the Mordell–Weil Theorem
(see [Wei, VIII, Thm. 6.7]) to get the same conclusion. Thus, the torsion
part of a commutative algebraic group over a number field k is finite (see
for instance [Sha, III, §4, Thm. C]).

Then, for every A, there exists a prime pA,k, depending on A and k, such
that for all primes p ≥ pA,k, we can choose t = 0 to apply Theorem 2.1.
When k = Q, we will denote pA,k simply by pA. For every elliptic curve E ,
we have already observed that pE ≤ 11.

By Theorem 1.1, the existence of a counterexample to the local-global
divisibility by pn in A(k) is a sufficient condition to the non-vanishing of the
group H1

loc(G,A[pn]). Therefore, in particular we have proved the following
statement.

Theorem 2.3. For all but finitely many primes p ∈ N, the existence
of a counterexample to the local-global divisibility by pn in A ensures the
existence of a counterexample to the local-global divisibility by pn+s in A for
all positive integers s.
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The case of elliptic curves when p ∈ {2, 3}. In [DZ2], [Pal1] and
[Pal2] there are counterexamples to the local-global divisibility by 4 and
by 9 in elliptic curves defined over Q. We will use Theorem 2.1 to get the
existence of counterexamples to the local-global divisibility by 2n and 3n,
for all n ≥ 2. We have the following result:

Corollary 2.4. For every integer n ≥ 2, there exist counterexamples
to the local-global divisibility by 2n and 3n in elliptic curves.

Proof. In [DZ2] and [Pal1] there are given elliptic curves such that
H1

loc(Gal(E [4]/Q), E [4]) 6= 0, and [Pal2] features elliptic curves such that
H1

loc(Gal(E [9]/Q), E [9]) 6= 0. Since those curves have a rational point of or-
der respectively 2 or 3, we cannot apply Theorem 2.1 with t = 0. But in the
same numerical examples, the cocycles representing non-zero elements in
the first local cohomology group have values in E [p], where p is respectively
2 or 3. Therefore, we may try to apply Theorem 2.1 with t = 1. We only
have to prove that the relevant elliptic curves have no rational p2-torsion
points. One can verify that by calculating the rational points of finite order
of those curves by using the software PARI. The command is elltors(E).

Some remarks about the first local cohomology groups. In the
proof of Theorem 2.1 we have shown that for commutative algebraic
groups A(k) with no k-rational torsion points of order p, there is an in-
jective map α between H1

loc(G,A[pn]) and H1
loc(Gs,A[pn+s]) for every pos-

itive integer s. In particular, there is an injective map from H1
loc(G,A[pn])

to H1
loc(G1,A[pn+1]). Therefore, the first local cohomology groups form an

increasing sequence

H1
loc(G,A[pn]) ≤ H1

loc(G1,A[pn+1]) ≤ · · · ≤ H1
loc(Gs,A[pn+s]) ≤ · · ·

when n varies in N.
Now, we are going to prove that there also exists an injective map ϕ

from H1
loc(G,A[pn]) to H1

loc(G,A[pn+1]H1). Then the first local cohomology
groups H1

loc(G,A[pn]Hs) also form an increasing sequence

H1
loc(G,A[pn]) ≤ H1

loc(G,A[pn+1]H1) ≤ · · · ≤ H1
loc(G,A[pn+s]Hs) ≤ · · ·

when n varies in N.

Proposition 2.5. Let k be a number field and let A be a commutative
algebraic group defined over k. Let p be a prime and suppose there are no
k-rational torsion points of order p in A. Then there exists an injective map
ϕ : H1

loc(G,A[pn]) → H1
loc(G,A[pn+1]H1) such that the following diagram

commutes:
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H1
loc(G,A[pn]) α //

ϕ
))SSSSSSSSSSSSSS

H1
loc(G1,A[pn+1])

H1
loc(G,A[pn+1]H1)

ι

OO

where ι is the restriction of the inflation map to H1
loc(G,A[pn+1]H1).

Proof. Let α be the homomorphism defined in Theorem 2.1. Define

ϕ : H1
loc(G,A[pn])→ H1

loc(G,A[pn+1]H1)

by (ϕ(Z))(σ) := Z(σ) for all σ ∈ G. Clearly ϕ is a well defined homomor-
phism. Now, we show that the preimage of a coboundary is a coboundary.
Suppose (ϕ(Z))(σ) = (σ − 1)Ã with Ã ∈ A[pn+1]H1 for all σ ∈ G. There-
fore, by definition, Z(σ) = (σ − 1)Ã. Since Z ∈ H1

loc(G,A[pn]), we have
Z(σ) = (σ − 1)Aσ with Aσ ∈ A[pn] for all σ ∈ G. We get

(σ − 1)Aσ = (σ − 1)Ã for all σ ∈ G.

Thus σ(Ã−Aσ) = Ã−Aσ. Hence we have pn(σ(Ã−Aσ)) = pn(Ã−Aσ), i.e.
σ(pnÃ− pnAσ) = pnÃ− pnAσ. Since Aσ is a point of order pn, we obtain

σ(pnÃ) = pnÃ for all σ ∈ G.

We are assuming Ã ∈ A[pn+1]H1 . If Ã has order pn+1, then pnÃ has order
p and we have a contradiction with the hypothesis that A has no k-rational
points of order p. Therefore Ã ∈ A[pn] and ϕ is injective. Now, we consider
the map

ι : H1
loc(G,A[pn+1]H1)→ H1

loc(G1,A[pn+1]),

defined by (ι(Z))(σ) := Z(σH1), which is simply the restriction of the in-
flation to H1

loc(G,A[pn+1]H1). Clearly, ϕ ◦ ι = α.

3. Numerical examples. As we have seen, we can use Theorem 2.1
to prove the existence of counterexamples to the local-global divisibility in
many cases. But Theorem 2.1 gives no method to find numerical examples.
Under the same assumptions, the next theorem shows how we can find a
sequence of points Ps violating the local-global divisibility by pn+s for every
s ∈ N.

Theorem 3.1. Let n, t be positive integers such that t ≤ n. Suppose
there exists a cocycle Ẑ of the group G with values in A[pn−t], representing
a nonzero element in H1

loc(G,A[pn]). Suppose there are no k-rational pt+1-
torsion points in A(k). Furthermore, suppose there exists a point D ∈ A(K0)
of infinite order such that Ẑ(σ) = Dσ − D for all σ ∈ G. Then, for every
positive integer s, the point Ps := pn+sD is divisible by pn+s in A(kv) for all
valuations v ∈Mk unramified in K0, but Ps is not divisible by pn+s in A(k).
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Proof. Let v ∈Mk be unramified in K0. By [DZ3, Thm. 3 and its proof],
the point P0 := pnD is divisible by pn in A(kv). Therefore, there exists a
point Dv ∈ A(kv) such that P0 = pnDv. Let Ps := pn+sD. We have

Ps = pn+sD = psP0 = pn+sDv.

Thus Ps is divisible by pn+s in A(kv) for all valuations v ∈ Mk unramified
in K0. Now, we will prove that Ps is not divisible by pn+s over k. Suppose
there exists D∗ ∈ A(k) such that Ps = pn+sD∗. Then D = D∗+T with T ∈
A[pn+s]. Let α be the homomorphism defined in the proof of Theorem 2.1.
We have shown that α(Ẑ) is a nonzero element inH1

loc(Gs,A[pn+s]). Suppose
σ ∈ Gs. Then

(α(Z))(σ) = Z(σHs) = Dσ −D.
The last equality follows because D ∈ A(K0), then it is fixed by Hs, for every
positive integer s. In fact, if h ∈ Hs, we have 0 = (α(Ẑ))(h) = Z(Hs) =
D −D, as required. Thus, for all σ ∈ Gs, we have

(α(Z))(σ) = Dσ−D = (D∗+T )σ− (D∗+T ) = Dσ
∗ −D∗+T σ−T = T σ−T.

Since α(Ẑ) is a nonzero element in H1
loc(Gs,A[pn+s]), there is a contradic-

tion. We conclude that Ps is not divisible by pn+s over k.

Numerical examples for 2n. The numerical examples that appear in
[DZ2] and [Pal1] satisfy every assumption of Theorem 3.1, except the infinite
order of the point D, which we have to prove. It suffices to prove that the
point P = 4D has infinite order. Since P ∈ E(Q) and its coordinates are not
integers, by the Nagell–Lutz theorem it has infinite order. Therefore, for ev-
ery integer n ≥ 2, the point 2n−2P = 2nD gives a numerical counterexample
to the local-global divisibility by 2n over Q.

For completeness, we recall the cited numerical examples that appear
respectively in [DZ2] and [Pal1]:

E : y2 = x(x+ 15)(x− 5)(x+ 10),

D = (7 + 4
√
−1,−4 + 22

√
−1), P = 4D =

(
1561
122

,−19459
133

)
,

and

E : y2 = x(x+ 93)(x− 31)(x− 62) = x3 − 6727x+ 178746,

D =
(
−403

2
− 31

2
√
−31, 1922− 434

√
−31

)
,

P = 4D =
(

5006244481
16646400

,−341996266999871
67917312000

)
.

By using PARI one can calculate 2n−2P = 2nD for every n ≥ 2. The
command is ellpow(E , P, 2n−2).
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