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On the integers not of the form p + 2a + 2b
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Hao Pan (Nanjing)

1. Introduction. As early as 1849, Polignac conjectured that every odd
integer greater than 3 is the sum of a prime and a power of 2. Of course,
Polignac’s conjecture is not true, since 127 is an evident counterexample. In
1934, Romanoff [11] proved that the sumset

{p+ 2b : p is prime, b ∈ N}
has positive lower density. In the other direction, van der Corput [2] proved
that the set

{n ≥ 1 : n is odd and not of the form p+ 2b}
also has positive lower density. In fact, with the help of covering congruences,
Erdős [4] found that no positive integer n with n ≡ 7629217 (mod 11184810)
is no representable as the sum of a prime and a power of 2.

In [3], Crocker proved that there exist infinitely many odd positive in-
tegers x not of the form p + 2a + 2b. One key to Crocker’s proof is the
following observation: If b − a = 2st with s ≥ 0 and 2 - t, then 2a + 2b ≡ 0
(mod 22s + 1). Crocker also constructed a suitable covering system to deal
with the case a = b. In [13], Sun and Le considered integers not of the form
pα + c(2a + 2b). Subsequently, Yuan [15] proved that there exist infinitely
many positive odd integers x not of the form pα + c(2a + 2b).

Let

N = {n ≥ 1 : n is odd and not of the form p+ 2a + 2b},
N∗ = {n ≥ 1 : n is odd and not of the form pα + 2a + 2b}.

Erdős asked whether |N ∩ [1, x]| � xε for some ε > 0. Granville and
Soundararajan [6] mentioned that this is true under the assumption that
there exist infinitely many m1 < m2 < · · · such that all 22mi + 1 are com-
posite and {mi+1 − mi} is bounded. Erdős even suggested [7, A19] that
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|N ∩ [1, x]| ≥ Cx for a constant C > 0, though it seems that the covering
congruences could not help here. In [1], Chen, Feng and Templier proved that

lim sup
x→∞

|N∗ ∩ [1, x]|
x1/4

= +∞

if there exist infinitely many m such that 22m + 1 is composite, and

lim sup
x→∞

|N∗ ∩ [1, x]|√
x

> 0

if there are only finitely many m such that 22m + 1 is prime. Recently, in his
answer to a conjecture of Sun, Poonen [10] gave a heuristic argument which
suggests that for each odd k > 0,

|{1 ≤ n ≤ x : n is odd and not of the form p+ 2a + k · 2b}| �k,ε x
1−ε

for any ε > 0, where �k,ε means the implied constant only depends on k
and ε.

On the other hand, using Selberg’s sieve method, Tao [14] proved that
for any K ≥ 1 and sufficiently large x, the number of primes p ≤ x such
that |kp ± jai| is composite for all 1 ≤ a, j, k ≤ K and 1 ≤ i ≤ K log x, is
at least CKx/log x, where CK is a constant only depending on K. Motivated
by Tao’s idea, in this short note, we shall unconditionally prove

Theorem 1.1.

|N∗ ∩ [1, x]| � x · exp
(
−C log x · log log log log x

log log log x

)
,

where C > 0 is an absolute constant.

Clearly Theorem 1.1 implies |N∗ ∩ [1, x]| �ε x
1−ε for any ε > 0. The

proof of Theorem 1.1 will be given in the next section. Unless indicated
otherwise, the constants implied by �, � and O(·) are always absolute.

2. Proof of Theorem 1.1. Since
|{1 ≤ n ≤ x : n is of the form pα + 2a + 2b with α ≥ 2}| = O(

√
x log x),

we only need to show that

|N ∩ [1, x]| � x · exp
(
−C log x · log log log log x

log log log x

)
.

We need several auxiliary lemmas. The first lemma is a special case of
the Brun–Titchmarsh theorem (cf. [8, Theorem 3.7]).

Lemma 2.1. Suppose that W ≥ 1 and β are integers with (β,W ) = 1.
Then

|{1 ≤ n ≤ x : Wn+ β is prime}| ≤ C1x

log x

∏
p|W

(
1− 1

p

)−1

,

where C1 is an absolute constant.
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The next lemma is an easy application of the Selberg sieve method (cf.
[8, Theorems 3.2 and 4.1], [9, Theorem 7.1]).

Lemma 2.2. Suppose that x is a sufficiently large integer. Suppose that
p1, . . . , ph are distinct primes less than x1/8. Then

|{1 ≤ n ≤ x : n 6≡ 0 (mod pj) for every 1 ≤ j ≤ h}| ≤ C2x
h∏
j=1

(
1− 1

pj

)
,

where C2 is an absolute constant.

The third lemma is due to Ford, Luca and Shparlinski [5, Theorem 1].

Lemma 2.3. The series
∞∑
n=1

(log n)γ

P (2n − 1)

converges for any γ < 1/2, where P (n) denotes the largest prime factor of n.

Now we are ready to prove Theorem 1.1. Let

C3 =
∑

p prime

1
P (2p − 1)

.

Suppose that x is sufficiently large. Let

K =
⌊

log log log x
100 log log log log x

⌋
and L = log(29C1C2K) + 2C3, where bθc = max{z ∈ Z : z ≤ θ}.

Let u = ee
K(L+1)

. By the Mertens theorem (cf. [9, Theorem 6.7]), we
know that∑

p≤u
p prime

1
p

= log log u+B +O

(
1

log u

)
= K(L+ 1) +O(1),

where B = 0.2614972 . . . is a constant. So we may choose some distinct odd
primes less than u,

p1,1, . . . , p1,h1 ; p2,1, . . . , p2,h2 ; . . . ; pK,1, . . . , pK,hK ,

such that
hi∑
j=1

1
pi,j
≥ L

for 1 ≤ i ≤ K. Let qi,j = P (2pi,j − 1) for 1 ≤ i ≤ K and 1 ≤ j ≤ hi. Clearly
these qi,j are all distinct. Now,

hi∑
j=1

log
(

1− 1
pi,j

)
≤ −

hi∑
j=1

1
pi,j

,
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whence
hi∏
j=1

(
1− 1

pi,j

)
≤ e−L.

Noting that 1 + θ ≤ eθ for θ ≥ 0, we have
K∏
i=1

hi∏
j=1

(
1− 1

qi,j

)−1

≤
K∏
i=1

hi∏
j=1

(
1 +

2
qi,j

)
≤ exp

( K∑
i=1

hi∑
j=1

2
qi,j

)
≤ e2C3 .

Let

W1,i =
hi∏
j=1

qi,j for 1 ≤ i ≤ K, W1 =
K∏
i=1

W1,i.

Then
W1 ≤ 2

PK
i=1

Phi
j=1 pi,j ≤ 2u

2/log u,

since (cf. [12]) ∑
p≤u

p prime

p =
(

1
2

+ o(1)
)

u2

log u
.

Noting that for sufficiently large x,

log log log(2u
2/log u)

log log log(x1/K)
≤ 2K(L+ 1)

log(log log x− logK)
≤ 1,

we have W1 ≤ x1/K .
Let m = blog2 log2(x2/(K−1))c and K ′ = 1+b2−m log2 xc, where log2 x =

log x/log 2. We have

K ′ ≤ 1 +
log2 x

2m
≤ 1 +

2 log2 x

2log2 log2(x2/(K−1))
= 1 +

2 log2 x
2

K−1 · log2 x
= K.

For each k ≥ 0, let γk be the smallest prime factor of 22k + 1. Let

W2 =
m−1∏
k=0

γk

and W = W1W2. It is not difficult to see that (W1,W2) = 1. Moreover,

W ≤W1

m−1∏
k=0

(1 + 22k) ≤ x1/K · x2/(K−1) ≤ x3/(K−1).

Let β be an odd integer such that

β ≡ 22m(i−1) + 1
(

mod
hi∏
j=1

qi,j

)
and β ≡ 0 (mod γk)

for 1 ≤ i ≤ K ′ and 0 ≤ k ≤ m− 1.
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Let

S = {1 ≤ n ≤ x : n ≡ β (mod 2W )}.

Clearly,
x

2W
− 1 ≤ |S| ≤ x

2W
+ 1.

Let

T1 = {n ∈ S : n is of the form p+ 2a + 2b with p |W},
T2 = {n ∈ S \ T1 : n is of the form p+ 2a + 2b with p - W}.

Clearly |T1| = O(W (log x)2).
Suppose that n ∈ S and n = p+ 2a + 2b with p prime and 0 ≤ a ≤ b. If

a 6≡ b (mod 2m), then b = a+ 2st where 0 ≤ s ≤ m− 1 and 2 - t. Thus

p = n− 2a(22st + 1) ≡ β − 2a(22s + 1)
t−1∑
j=0

(−1)j22sj ≡ 0 (mod γs).

Since p is prime, we must have p = γs, i.e., n ∈ T1.
Below we assume that a ≡ b (mod 2m). Write b − a = 2m(t − 1) where

1 ≤ t ≤ K ′. If a ≡ 0 (mod pt,j) for some 1 ≤ j ≤ ht, then recalling 2pt,j ≡ 1
(mod qt,j), we have

p = n− 2a(22m(t−1) + 1) ≡ β − (22m(t−1) + 1) ≡ 0 (mod qt,j).

So p = qt,j and n ∈ T1. On the other hand, for any a ≥ 0 satisfying a 6≡ 0
(mod pt,j) for all 1 ≤ j ≤ ht, i.e., (a,W1,t) = 1, by Lemma 2.1, we have

|{n ∈ S : n− 2a(22m(t−1) + 1) is prime}|

≤ 2C1|S|
log |S|

m−1∏
k=0

(
1− 1

γk

)−1 K∏
i=1

hi∏
j=1

(
1− 1

qi,j

)−1

≤ 25C1e
2C3

W
· x

log x

since γk ≡ 1 (mod 2k+1) and γk > 2k+1. Noting that

log log u
log log((log2 x)1/8)

≤ K(L+ 1)
log(log log x− log log 2− log 8)

< 1,

we have u < (log2 x)1/8. By Lemma 2.2,

|{0 ≤ a ≤ log2 x : a 6≡ 0 (mod pt,j) for all 1 ≤ j ≤ ht}|

≤ C2
log x
log 2

ht∏
j=1

(
1− 1

pt,j

)
≤ 2C2e

−L log x.
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Thus

|T2| ≤
K′∑
t=1

∑
0≤a≤log2 x
(a,W1,t)=1

|{n ∈ S : n− 2a(22m(t−1) + 1) is prime}|

≤ K · 25C1e
2C3

W
· x

log x
· 2C2e

−L log x ≤ x

4W
.

It follows that

|{n ∈ S : n is not of the form p+ 2a + 2b}|

= |S| − |T1| − |T2| ≥
x

2W
− 1−O(W (log x)2)− x

4W
� x1−4/K .

The proof of Theorem 1.1 is complete.

Remark. Using a similar discussion, it is not difficult to prove that for
any given K ≥ 1,

|{1 ≤ n ≤ x : n is odd and n 6= p+ c(2a + 2b) with p prime,
a, b ≥ 0, 1 ≤ c ≤ K}|

�K x · exp
(
−CK log x · log log log log x

log log log x

)
,

where the constant CK > 0 only depends on K.
Recently, Professor Y.-G. Chen asked the author the following question:

Are there infinitely many positive odd numbers which are not divisible
by 3 and cannot be represented as p + 2a + 2b? Similar problems can be
posed with 3 replaced by 5, 17 etc.
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