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On the integers not of the form p + 2% + 2°
by
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1. Introduction. As early as 1849, Polignac conjectured that every odd
integer greater than 3 is the sum of a prime and a power of 2. Of course,
Polignac’s conjecture is not true, since 127 is an evident counterexample. In
1934, Romanoff [11] proved that the sumset

{p+2°:pis prime, b € N}

has positive lower density. In the other direction, van der Corput [2] proved
that the set

{n>1:nis odd and not of the form p + 2°}

also has positive lower density. In fact, with the help of covering congruences,
Erdés [4] found that no positive integer n with n = 7629217 (mod 11184810)
is no representable as the sum of a prime and a power of 2.

In [3], Crocker proved that there exist infinitely many odd positive in-
tegers = not of the form p + 2% + 2°. One key to Crocker’s proof is the
following observation: If b — a = 2%t with s > 0 and 2 { ¢, then 2% +2° = 0
(mod 2% + 1). Crocker also constructed a suitable covering system to deal
with the case a = b. In [13], Sun and Le considered integers not of the form
p® + ¢(2% + 2%). Subsequently, Yuan [I5] proved that there exist infinitely
many positive odd integers = not of the form p® + ¢(2% 4 2°).

Let

N ={n >1:nis odd and not of the form p + 2% + Qb},
Ni={n>1:nis odd and not of the form p* + 2% + 2b}.

Erdés asked whether |A N [1,z]] > ¢ for some € > 0. Granville and
Soundararajan [6] mentioned that this is true under the assumption that
there exist infinitely many m; < mg < --- such that all 2™ + 1 are com-
posite and {m;+1 — m;} is bounded. Erdds even suggested [7, A19] that
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IN'N[1,z]| > Cz for a constant C' > 0, though it seems that the covering
congruences could not help here. In [I], Chen, Feng and Templier proved that
NN 1, z]]

limsup —————— =
e 21/4

if there exist infinitely many m such that 22" + 1 is composite, and
lim sup W. 1, 2|
—00 \/E

if there are only finitely many m such that 22" +1 is prime. Recently, in his
answer to a conjecture of Sun, Poonen [10] gave a heuristic argument which
suggests that for each odd k > 0,

{1 <n <z :nisodd and not of the form p + 2% + k- 2°}| >4 217

for any € > 0, where >} . means the implied constant only depends on k
and €.

On the other hand, using Selberg’s sieve method, Tao [14] proved that
for any K > 1 and sufficiently large x, the number of primes p < z such
that |kp + ja’| is composite for all 1 < a,j,k < K and 1 < i < Klog, is
at least Cicz/log x, where Ci is a constant only depending on K. Motivated
by Tao’s idea, in this short note, we shall unconditionally prove

>0

THEOREM 1.1.
log log log 1
NN [1,z]| > z-exp| —C'logz - 80808 08T ),
loglog log x
where C > 0 is an absolute constant.
Clearly Theorem implies [NV, N [1,2]| >¢ 217¢ for any € > 0. The
proof of Theorem [I.I] will be given in the next section. Unless indicated
otherwise, the constants implied by <, > and O(-) are always absolute.

2. Proof of Theorem [1.1. Since
{1 <n <z :nis of the form p® 4 2% + 2° with a > 2}| = O(Vz log z),
we only need to show that
loglog log1
INN L z]| > x-exp| —Clogx - 0808 OB 08T )
log log log x
We need several auxiliary lemmas. The first lemma is a special case of
the Brun—Titchmarsh theorem (cf. [8, Theorem 3.7]).

LEMMA 2.1. Suppose that W > 1 and 3 are integers with (3,W) = 1.
Then

C 1\ !
Hl1<n<xz:Wn+g is prime}| < 1xH(1—> ,
log P
plW

where C7 is an absolute constant.
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The next lemma is an easy application of the Selberg sieve method (cf.
[8, Theorems 3.2 and 4.1], [9, Theorem 7.1]).

LEMMA 2.2. Suppose that x is a sufficiently large integer. Suppose that
D1, ., pn are distinct primes less than x1/%. Then

h
1
Hl1<n<z:n#0 (mod p;) for every 1 < j < h}| < Cg:J;H(l—),
. P
7j=1
where Cy 1s an absolute constant.
The third lemma is due to Ford, Luca and Shparlinski [5, Theorem 1].
LEmMA 2.3. The series
logn
P 27 —1)
converges for any vy < 1/2, wheTe P(n) denotes the largest prime factor of n.
Now we are ready to prove Theorem Let

1
“= 2 By

p prime
Suppose that z is sufficiently large. Let

B log log log x
~ | 1001log log log log

and L = log(2°C1CyK) + 2Cs3, where || = max{z € Z : z < 0}.

oK (L+1)

Let u = e . By the Mertens theorem (cf. [9, Theorem 6.7]), we
know that

Z 1—loglogu+B+O<1> =K(L+1)+0(1),
log u

p<u
p prime

where B = 0.2614972. .. is a constant. So we may choose some distinct odd
primes less than wu,

P11, -5 P1LR1s D215+ -5 P2,hos - -y PK s - - -y PK hie s

for 1 <i< K. Let qg;; = P(me -1
these ¢; ; are all distinct. Now,

h; 1
Zlog<1 - pz,]) _jz::lpi,j’

such that

for1 <i< K and 1 < j < h;. Clearly
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whence

ﬁﬁ(1_1>1 Sﬁ ] <1+j> Sexp<i 3 2> < 2%,

i=1j=1 i.j i=1j=1 b i=1 j=1 10
Let b, K
Wi = HQi,j for1<i< K, W ZHWLZ‘-
j=1 i=1
Then

W, < QZf; S i < 2“2/101%“’
since (cf. [12])

1 2
Y op= <2+o(1))1“ .
= ogu
p prime
Noting that for sufficiently large x,
log log log(2“2/log“) < 2K (L +1)
log log log(x1/K)  ~ log(loglog x — log K))

we have W, < zl/K.

Let m = |logy logy (% (K= | and K’ = 14|27 log, x|, where logy 2 =
log x/log 2. We have

<1

— Y

2logy x

10g2:c<1 2logy x S
m‘lOgQZC

2m = olog, logy («2/(K=1)) = K.

K <1+

For each k > 0, let 7 be the smallest prime factor of 22" 4+ 1. Let

m—1
Wa = H Tk
k=0
and W = W1 Wa. Tt is not difficult to see that (W7, Ws) = 1. Moreover,
m—1
W <W H (14 22k) < gVE L p2/(K=1) < 23/(K=1),
k=0

Let 3 be an odd integer such that
h;
g=22"0-1 41 (mod H qi,j) and (=0 (mod )
j=1

for 1<i<K'and0<k<m—1.
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Let
S={1<n<z:n=p (mod2W)}
Clearly,
L 1<8 < 41
2w 2
Let

Ty = {n € S :nis of the form p + 2% + 2° with p| W},
Ty ={ne S\ Ti:nis of the form p + 2% + 2° with p{ W}.

Clearly |7;| = O(W (log x)?).
Suppose that n € S and n = p + 2% + 2° with p prime and 0 < a < b. If
a Z b (mod 2™), then b = a + 25t where 0 < s < m — 1 and 21 ¢. Thus
t—1 o
p=n—-2°2""+1)=6-22% +1)) (-1)72%7 =0 (mod ).

J

Il
=)

Since p is prime, we must have p = s, i.e., n € T7.

Below we assume that a = b (mod 2™). Write b — a = 2™(t — 1) where
1<t<K'Ifa=0 (mod p;) for some 1 < j < hy, then recalling 2Pti = 1
(mod ¢ ;), we have

p=n—2°22"0D L 1)= - (27D 11) = 0 (mod ¢1).

So p = q;,j and n € 71. On the other hand, for any a > 0 satisfying a # 0
(mod py ;) for all 1 < j < hy, i.e., (a, W1;) = 1, by Lemma [2.1] we have

{neS:n—2922"¢"Y 1 1) is prime}|

m—1 -1 K hi —1 5 203
log |S]| P i w log

LT}

since v = 1 (mod 2¥+1) and 73, > 2¥*!. Noting that
log log u < K(L+1)
log log((log, x)1/8) ~ log(loglog z — loglog 2 — log 8)

we have u < (log, #)/®. By Lemma

<1

)

{0 <a <logyz:a#0 (mod p ;) for all 1 < j < Iy}

ht
log x 1 _I
<C Il 1-——) <2C log .
- 2log2 .:1< > = sbac e

DPt,j
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Thus

K/
73] < Z Z {ne&:n—2922""Y 4 1) is prime}|
t=1 0<a<logy x
(a,Wl’t)Zl

25C1e2% gz I x
<K- ‘ 2Cye Llogr < ——.
= W loga 2C2¢ Tlers g

It follows that

[{n € S : n is not of the form p + 2% + 2°}|
x x
S| =T =T > = —1— log 2)%) — —— > g1 =4/K
S| =] - || = W O(W (logx)7) aw =7
The proof of Theorem [I.1]is complete. m

REMARK. Using a similar discussion, it is not difficult to prove that for
any given K > 1,

{1 <n<z:nisodd and n # p+ ¢(2% + 2°) with p prime,
a,b>0,1<c<K}

log log log 1
>>IC x.exp _CK: logaj w ,
log log log «
where the constant Cx > 0 only depends on K.

Recently, Professor Y.-G. Chen asked the author the following question:

Are there infinitely many positive odd numbers which are not divisible
by 3 and cannot be represented as p + 2 + 202 Similar problems can be
posed with 3 replaced by 5, 17 etc.
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