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1. Introduction. For a prime p and an integer a ∈ Z we denote by
N(p; a) the number of solutions to the congruence

(1) xx ≡ a (mod p), 1 ≤ x ≤ p− 1.

Obviously only the case of gcd(a, p) = 1 is of interest.
We note that other than the results of Crocker [3] and Somer [10] show-

ing that there are at least b
√

(p− 1)/2c and at most 3p/4 + O(p1/2+o(1)),
respectively, incongruent values of xx (mod p) when 1 ≤ x ≤ p−1, little has
been known about the solutions to (1). The function x 7→ xx (mod p) is also
used in some cryptographic protocols (see [9, Sections 11.70 and 11.71]), so
certainly deserves further investigation; see also [8] for various conjectures
concerning this function. We note that the function xx is periodic modulo
p with period p(p − 1), which is much larger than the range of x in the
congruence (1) and which explains why it is so difficult to study.

Here we suggest several approaches to studying this congruence and
derive some upper bounds for N(p; a).

Our first bound is nontrivial if a is of small multiplicative order, which
in the particular case when a = 1, takes the form N(p; a) ≤ p1/3+o(1) as
p→∞. The second bound is nontrivial if a is of large multiplicative order,
which in the particular case when a is a primitive root modulo p, takes the
form N(p; a) ≤ p11/12+o(1) as p→∞.

Furthermore, both bounds combined imply that as p→∞, we have the
uniform estimate

(2) N(p; a) ≤ p12/13+o(1).
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Finally, we estimate the number of solutions M(p) to the symmetric
congruence

(3) xx ≡ yy (mod p), 1 ≤ x, y ≤ p− 1,

which has been considered by Holden & Moree [8] in their study of short
cycles in the iterations of the discrete logarithm modulo p (see also [6, 7]).
However, no nontrivial estimate of M(p) has been known prior to this work.
Clearly

(4) M(p) =
p−1∑
a=1

N(p; a)2.

Thus using the bound (2) and the identity

(5)
p−1∑
a=1

N(p; a) = p− 1,

we immediately derive

(6) M(p) ≤ p25/13+o(1).

However here we obtain a slightly stronger bound, namely

M(p) ≤ p48/25+o(1).

Surprisingly enough, besides elementary number theory arguments, the
bounds derived here rely on some results and arguments from additive com-
binatorics, in particular on results of Garaev [4].

For an integer m ≥ 1 we use Zm to denote the residue ring modulo m
and we use Z∗m to denote the unit group of Zm.

Note that without the condition 1 ≤ x ≤ p − 1 (needed in the crypto-
graphic application) there are always many solutions. Let g be a primitive
root modulo p. For any element a ∈ Z∗p (and so for any integer a 6≡ 0 (mod p))
we use ind a for its discrete logarithm modulo p, that is, the unique residue
class v modulo p− 1 with

gv ≡ a (mod p).

Now, if for a primitive root g we have

x ≡ p ind a− (p− 1)g (mod p(p− 1)),

then
xx ≡ gp ind a−(p−1)g ≡ (gp)ind a · (g−g)p−1 ≡ a (mod p).

2. Elements of small order. We need to recall some notions and
results from additive combinatorics.

For a prime p and a set A ⊆ Z∗p we define the sets

A+A = {a1 + a2 : a1, a2 ∈ A}, A · A = {a1a2 : a1, a2 ∈ A}.
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Our bound on N(p; a) makes use of the following estimate of Garaev [4,
Theorem 1].

Lemma 1. For any set A ⊆ Z∗p,

#(A+A) ·#(A · A)� min
{
p#A, (#A)4

p

}
.

Let ord a denote the multiplicative order of a ∈ Z∗p.
Theorem 2. Uniformly over t | p− 1, we have, as p→∞,∑

a∈Z∗p
ord a|t

N(p; a) ≤ max{t, p1/2t1/4}po(1).

Proof. Fix a primitive root g mod p. The union of the nonzero residue
classes x satisfying (1) with ord a | t is precisely the set of solutions to

(7) xtx ≡ 1 (mod p), 1 ≤ x ≤ p− 1.

This congruence is equivalent to

tx indx ≡ 0 (mod p− 1),

or if we put

T =
p− 1
t

to
x indx ≡ 0 (mod T ),

or after fixing d |T and considering only the solutions to (7) with

gcd(x, T ) = d,

they can be written as x = dy and seen to satisfy

(8) ind(dy) ≡ 0 (mod Td), 1 ≤ y ≤ D, gcd(y, Td) = 1,

where
Td =

T

d
, D =

p− 1
d

.

Let us denote by Yd the set of integers y satisfying (8), and by Wd the set
of residue classes modulo p represented by the elements of Yd. Obviously
#Yd = #Wd, and we have

(9)
∑
a∈Z∗p
ord a|t

N(p; a) =
∑
d|T

#Yd =
∑
d|T

#Wd.

First note that

(10) #(Wd +Wd) ≤ #(Yd + Yd) ≤ 2D

from the second condition in (8).
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Furthermore, the product set of Wd is contained in

{w ∈ Z∗p : ind(d2w) ≡ 0 (mod Td)},

and so

(11) #(Wd · Wd) ≤
p− 1
Td

= dt.

Hence, applying Lemma 1 and using the bounds (10) and (11) we see
that

min
{
p#Wd,

(#Wd)4

p

}
� pt.

Therefore

(12) #Wd � max{t, p1/2t1/4}.

Recalling the bound on the divisor function τ(k) given by

(13) τ(k) =
∑
d|k

1 = ko(1)

(see [5, Theorem 315]), and using (12) in (9), we conclude the proof.

Corollary 3. Uniformly over t | p− 1 and all integers a with gcd(a, p)
= 1 of multiplicative order ord a = t, we have, as p→∞,

N(p; a) ≤ max{t, p1/2t1/4}po(1).

Next we show that if t is very small then the bound of Theorem 2 can
be improved. For example, this applies to the most interesting special case
of the congruence (1), namely the case a = 1.

Theorem 4. Uniformly over t | p− 1, we have, as p→∞,∑
a∈Z∗p
ord a|t

N(p; a) ≤ p1/3+o(1)t2/3.

Proof. We follow the proof of Theorem 2 up to (11), but finish the ar-
gument in a different way to derive a new bound for #Yd. Let us define

s(b) = #{(y1, y2) : y1, y2 ∈ Yd, y1y2 ≡ b (mod p)}.

First note that s(b) > 0 only when b ∈ Wd · Wd, and so

(14) (#Yd)2 =
∑
b∈Zp

s(b) ≤ #(Wd · Wd) max
b∈Zp

s(b).

If (y1, y2) is counted in s(b) then on the one hand y1y2 ≡ b (mod p), on
the other hand 1 ≤ y1y2 ≤ D2 (where as before D = (p − 1)/d), therefore
y1y2 = b + kp, where 0 ≤ k < p/d2. Thus the product y1y2 can take at
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most p/d2 + 1 possible values y1y2 = z and once z is fixed, there are τ(z) =
zo(1) = po(1) possibilities for the pair (y1, y2) (see (13)). Thus

s(b) ≤ (p/d2 + 1)po(1),

which after inserting in (14) and recalling (11) yields

(15) #Yd ≤ ((pt/d)1/2 + (td)1/2)po(1).

For d ≤ p1/3t−1/3 we use #Yd ≤ dt from the first condition of (8) and for
d ≥ p2/3t−1/3 we use #Yd ≤ D from the second condition of (8). Therefore
we obtain

#Yd � p1/3t2/3 and #Yd � p1/3t1/3,

respectively.
Finally, for p1/3t−1/3 ≤ d ≤ p2/3t−1/3 we use (15) to derive

#Yd ≤ (p1/3t2/3 + p1/3t1/3)po(1) = p1/3+o(1)t2/3.

Using these bounds with (13) in (9) we conclude the proof.

Corollary 5. Uniformly over t | p− 1 and all integers a with gcd(a, p)
= 1 of multiplicative order ord a = t, we have, as p→∞,

N(p; a) ≤ p1/3+o(1)t2/3.

3. Elements of large order. Here we use a different argument, which
is similar to the one used in [1], and a bound of [2], on the number of
solutions of an exponential congruence, plays the crucial role. However, this
approach is effective only for values of a of sufficiently large order.

We recall the following estimate, given in [2, Lemma 7], on the number
of zeros of sparse polynomials over a finite field Fq of q elements.

Lemma 6. For n ≥ 2 given elements a1, . . . , an ∈ F∗q and integers
k1, . . . , kn in Z let us denote by Q the number of solutions of the equation

n∑
i=1

aiX
ki = 0, X ∈ F∗q .

Then
Q ≤ 2q1−1/(n−1)∆1/(n−1) +O(q1−2/(n−1)∆2/(n−1)),

where
∆ = min

1≤i≤n
max
j 6=i

gcd(kj − ki, q − 1).

We are now ready to prove the main result of this section.

Theorem 7. Uniformly over t | p−1 and all integers a with gcd(a, p) = 1
of multiplicative order ord a = t, we have, as p→∞,

N(p; a) ≤ p1+o(1)t−1/12.
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Proof. Let a be a nonzero residue class modulo p of multiplicative order
t | p− 1. As before, we put

T =
p− 1
t

.

Clearly, there is a primitive root g modulo p with a ≡ gT (mod p). Using
the discrete logarithm to base g, the congruence (1) is equivalent to

x indx ≡ T (mod p− 1).

Note the condition gcd(x, p − 1) |T . After fixing d |T and considering only
the solutions to (1) with gcd(x, p − 1) = d, they can be written as x = dy
and satisfy

y ind(dy) ≡ Td (mod D), 1 ≤ y ≤ D, gcd(y,D) = 1,

where, as before,

Td =
T

d
, D =

p− 1
d

.

Note that t |D. The congruence yz ≡ 1 (mod D) defines a one-to-one
correspondence between the integers {1 ≤ y ≤ D : gcd(y,D) = 1} and
z ∈ Z∗D.

Furthermore, the relation yz ≡ 1 (mod D) defines a one-to-Md cor-
respondence between the set {1 ≤ y ≤ D : gcd(y,D) = 1} and z ∈ Z∗p−1,
where Md is the number of residue classes in Z∗p−1 of the form z+kD. These
residue classes are automatically coprime to D, but we have to ensure that
they are coprime to d as well (and thus belong to Z∗p−1). Thus using µ(k) to
denote the Möbius function, by [5, Theorem 263] (which is essentially the
inclusion-exclusion principle) we obtain

Md =
d∑

k=1

∑
f |gcd(z+kD,d)

µ(f) =
∑
f |d

µ(f)
d∑

k=1
z+kD≡0 (mod f)

1

=
∑
f |d

gcd(f,D)=1

µ(f)
d

f
= d

ϕ(m)
m

,

where ϕ(k) is the Euler function and m is the product of primes q with q | d
and q - D, see [5, equation (16.3.1)]. In particular m ≤ d ≤ p and recalling
the well-known estimate on the Euler function (see [5, Theorem 328]) we
obtain

Md = dpo(1).

From now on the integer 1 ≤ y ≤ D and the residue class z ∈ Z∗p−1 with
or without subscripts are always connected by yz ≡ 1 (mod D), even if this
is not explicitly stated.
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Let us define

Zd = {z ∈ Z∗p−1 : ind(dy) ≡ Dz/t (mod D), 1 ≤ y ≤ D}

(we recall our convention that we always have yz ≡ 1 (mod D)). We have

(16) N(p; a) =
∑
d|T

1
Md

#Zd ≤ po(1)
∑
d|T

1
d

#Zd.

The congruence ind(dy) ≡ Dz/t (mod D) is equivalent to

dy ≡ ρgDz/t (mod p)

for some ρ ∈ Z∗p with ρd ≡ 1 (mod p). Thus we split Zd into subsets Zd,ρ
getting

(17) #Zd =
∑

ρd≡1 (mod p)

#Zd,ρ,

where
Zd,ρ = {z ∈ Z∗p−1 : dy ≡ ρgDz/t (mod p), 1 ≤ y ≤ D}

(and again we recall our convention that yz ≡ 1 (mod D)).
Clearly,

(#Zd,ρ)2 = #{z1, z2 ∈ Z∗p−1 : dyj ≡ ρgDzj/t (mod p), j = 1, 2}.

We deduce by adding the two congruences that

(#Zd,ρ)2 ≤ #{z1, z2 ∈ Z∗p−1 : d(y1 + y2) ≡ ρ(gDz1/t + gDz2/t) (mod p)}

=
∑
v∈Z

#{z1, z2 ∈ Z∗p−1 : d(y1 + y2) = v, ρ(gDz1/t + gDz2/t)

≡ v (mod p)}.

The sum over v ∈ Z is empty unless v = dw, where 2 ≤ w ≤ 2D and we
find by the Cauchy–Schwarz inequality that

(#Zd,ρ)4 ≤ 2D#{z1, z2, z3, z4 ∈ Z∗p−1 : d(y1 + y2) = d(y3 + y4)

≡ ρ(gDz1/t + gDz2/t) ≡ ρ(gDz3/t + gDz4/t) (mod p)}.

Clearly, when z1, z2, z3, z4 ∈ Z∗p−1 are fixed, the condition

d(y1 + y2) = d(y3 + y4) ≡ ρ(gDz1/t + gDz2/t) ≡ ρ(gDz3/t + gDz4/t) (mod p)

defines ρ uniquely. Hence∑
ρd≡1 (mod p)

(#Zd,ρ)4 ≤ 2D#{z1, z2, z3, z4 ∈ Z∗p−1 : y1 + y2 = y3 + y4,

gDz1/t + gDz2/t ≡ gDz3/t + gDz4/t (mod p)}.
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Relaxing the condition y1 + y2 = y3 + y4 to y1 + y2 ≡ y3 + y4 (mod D)
only increases the number of solutions (but allows us to think about yj as a
residue class modulo D defined by yjzj ≡ 1 (mod D), j = 1, 2, 3, 4). Thus∑

ρd≡1 (mod p)

(#Zd,ρ)4 ≤ 2DT

where

T = #{z1, z2, z3, z4 ∈ Z∗p−1 : y1 + y2 ≡ y3 + y4 (mod D),

gDz1/t + gDz2/t ≡ gDz3/t + gDz4/t (mod p)}.

Finally, after the substitution zj 7→ wzj for w ∈ Z∗p−1 (and thus yj 7→
w−1yj), j = 1, 2, 3, 4, where w−1 is defined modulo D, we deduce that any
solution is counted with multiplicity ϕ(p− 1), that is,

(18)
∑

ρd≡1 (mod p)

(#Zd,ρ)4 ≤
2D

ϕ(p− 1)
T̃

where

T̃ = #{z1, z2, z3, z4, w ∈ Z∗p−1 : y1 + y2 ≡ y3 + y4 (mod D),

(gw)Dz1/t + (gw)Dz2/t ≡ (gw)Dz3/t + (gw)Dz4/t (mod p)}.

Writing X ≡ gw (mod p) and kj = Dzj/t = (p − 1)zj/dt = Tdzj , after
fixing z1, z2, z3, z4, the number of w ∈ Z∗p−1 satisfying the congruence in (18)
is bounded by the number of solutions to the congruence Xk1 + Xk2 ≡
Xk3 + Xk4 (mod p), and this is bounded in Lemma 6, applied with n = 4,
by O(p2/3∆1/3), where

∆ = min
1≤i≤4

max
1≤j≤4
j 6=i

gcd(Td(zi − zj), p− 1)

= Td min
1≤i<j≤4

max
1≤j≤4
j 6=i

gcd(zi − zj , dt).

For every fixed i 6= j, 1 ≤ i, j ≤ 4 and δ | dt there are (p− 1)2/δ choices
for (zi, zj) with

gcd(zi − zj , dt) = δ.

When zi and zj are fixed the congruence y1 + y2 ≡ y3 + y4 (mod D) im-
plies that there are dp1+o(1) choices for the remaining two variables. (Recall
that each y determines Md = dpo(1) different choices of z.) Thus, putting
everything together in (18) and recalling (13), we obtain
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∑
ρd≡1 (mod p)

(#Zd,ρ)4 ≤
2D

ϕ(p− 1)

∑
δ|dt

p2/3(Tdδ)1/3
(p− 1)2

δ
dp1+o(1)

= dDp8/3+o(1)T
1/3
d

∑
δ|dt

δ−2/3 = p11/3+o(1)T
1/3
d

=
p4+o(1)

(dt)1/3
.

Putting this into (17), by the Hölder inequality we get

#Zd ≤ d3/4
( ∑
ρd≡1 (mod p)

(#Zd,ρ)4
)1/4

≤ p1+o(1)

t1/12
d2/3.

Finally (16) and (13) give

N(p; a) ≤
∑

d|(p−1)/t

p1+o(1)

t1/12d1/3
≤ p1+o(1)

t1/12
,

and we conclude the proof.

4. Symmetric congruence. We now improve the bound (6) on the
number of solutions to the symmetric congruence (3).

Theorem 8. We have, as p→∞,

M(p) ≤ p48/25+o(1).

Proof. From (4) we obtain

M(p) ≤
∑
t|p−1

∑
a∈Z∗p

ord a=t

N(p; a)2.

We fix some parameter ϑ and for t ≤ ϑ we use Theorem 2 to estimate∑
a∈Z∗p

ord a=t

N(p; a)2 ≤
( ∑
a∈Z∗p

ord a=t

N(p; a)
)2

≤ max{t2po(1), p1+o(1)t1/2}
≤ max{ϑ2po(1), p1+o(1)ϑ1/2}.

For t ≥ ϑ we use Theorem 7 together with (5) to estimate∑
a∈Z∗p

ord a=t

N(p; a)2 ≤ p1+o(1)t−1/12
∑
a∈Z∗p

ord a=t

N(p; a) ≤ p2+o(1)ϑ−1/12.
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Taking ϑ = p24/25 to balance the above estimates, we obtain the bound∑
a∈Z∗p

ord a=t

N(p; a)2 ≤ p48/25+o(1),

and using (13), we conclude the proof.

5. Concluding remarks. Clearly Theorem 2 is nontrivial provided
that t ≤ p1−ε for some ε > 0, while Theorem 7 is nontrivial provided
t ≥ pε for an arbitrary ε > 0 and a sufficiently large p. In particular, using
Corollary 3 for t ≤ p12/13 and Theorem 7 for t > p12/13, we derive (2).

It is also easy to see that all but o(p) elements a ∈ Z∗p are of multiplicative
order t = p1+o(1). Thus for almost all a ∈ Z∗p we have

N(p; a) ≤ p11/12+o(1)

by Theorem 7.
Similar results can also be established for several other congruences. For

example, the same arguments as those used in the proof of Theorem 4 imply
that the congruence

xx−1 ≡ 1 (mod p), 1 ≤ x ≤ p− 1,

has O(p1/3+o(1)) solutions. This means that the function x 7→ xx (mod p)
has O(p1/3+o(1)) fixed points in the interval 1 ≤ x ≤ p− 1.
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