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1. Introduction and statement of results. Let Γ = Γ0(N) or Γ+
0 (p)

with p = 1 or a prime. Here Γ+
0 (p) denotes the group generated by the Hecke

group Γ0(p) and the Fricke involution Wp =
(
0 −1
p 0

)
. For k ∈ Z we denote by

M !
k(Γ ) the space of weakly holomorphic modular forms of weight k on Γ .

As usual, Mk(Γ ) and Sk(Γ ) are the spaces of weight k modular and cusp
forms respectively on Γ . Let Hk(Γ ) be the space of weight k harmonic weak
Maass forms on Γ and H∞k (Γ ) be the subspace of those g ∈ Hk(Γ ) whose
principal parts at the cusps other than ∞ are constant. Following [16] we
call two collections fn ∈M !

k(Γ ) and gm ∈ H2−k(Γ ) with q-expansions

fn = q−n +
∑
m>0

cfn(m)qm, n ≥ 0,

gm = g−m + q−m +
∑
n≥0

cgm(n)qn, m > 0,

a harmonic weak Maass-modular grid of weight k on Γ if the identity of
Fourier coefficients

cfn(m) = −cgm(n)

holds. Here q = e2πiτ and τ ∈ H = {τ ∈ C | Im(τ) > 0}.
Guerzhoy [16] showed the existence of grids of integral weight k on the

full modular group SL2(Z). In [9] Cho and Choie considered vector-valued
harmonic weak Maass-modular grids of integral weights and obtained, as a
corollary, (scalar-valued) harmonic weak Maass-modular grids of prime level
p with a certain Nebentypus.

In this paper we deal with harmonic weak Maass-modular grids of inte-
gral weight k for both Γ0(N) and Γ+

0 (p). More precisely, we prove
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Theorem 1.1. Let Γ = Γ0(N) or Γ+
0 (p), and assume that k ≥ 2 is

even.

(i) If k > 2, then there exist unique fn ∈ M∞k (Γ ) = M !
k(Γ ) ∩ H∞k (Γ )

and gm ∈ H∞2−k(Γ ) with Fourier expansions

fn(τ) = q−n +
∑
m>0

cfn(m)qm, n ≥ 0,

gm(τ) = g−m(τ) + q−m +
∑
n≥0

c+gm(n), qn, m > 0,

such that

c+gm(n) = −cfn(m).

(ii) If k = 2, then there exists such a grid for all m,n ≥ 1. In this case
fn is unique and gm is unique up to constants.

Remark 1. (i) For complex s, let

Ms(y) := |y|k/2−1M(1−k/2)sgn(y),s−1/2(|y|),

where Mµ,ν(z) is the usual M -Whittaker function. Following [8, Section 6]
and [3, Section 2.2], we define, for k ∈ 2N and integers m,N ≥ 1,

Q(−m, k,N ; τ) :=
1

(k − 1)!

∑
γ∈Γ∞\Γ0(N)

(ϕ∗−m|2−kγ)(τ)

where ϕ∗−m(τ) =Mk/2(−4πmy)e−2πimx and τ = x+iy ∈ H. In Theorem 1.1,
gm is given in terms of the Maass Poincaré series Q(−m, k,N ; τ) and fn =
(−n)1−kDk−1gn for m,n ≥ 1. And f0 is constructed from the Eisenstein
series

∑
γ∈Γ∞\Γ 1|kγ (see Section 3). We note that the Fourier coefficient of

qn in g+m is expressed in terms of the I-Bessel function and the Kloosterman
sum as follows [8, Proposition 6.2]: for all m,n ≥ 1,

c+gm(0) = −2kπk(−1)k/2mk−1

(k − 1)!

∑
c>0

c≡0 (N)

K(−m, 0, c)
ck

,

c+gm(n) = −2π(−1)k/2
∑
c>0

c≡0 (N)

(m/n)(k−1)/2
K(−m,n, c)

c
Ik−1

(
4π
√
|mn|
c

)
.

Similarly the Fourier coefficient of qm in f+0 has the following exact formula:
for all m ≥ 1,

c+f0(m) =
2kπk(−1)k/2mk−1

(k − 1)!

∑
c>0

c≡0 (N)

K(0,m, c)

ck
.
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(ii) Assume that the genus g(Γ ) of Γ is zero. Let mk denote the maximal
order of a nonzero f ∈M∞k (Γ ) at∞. For every integer n ≥ −mk, there exists
a unique weakly holomorphic modular form fk,n ∈ M∞k (Γ ) with Fourier
expansion

fk,n(τ) = q−n +
∑
m>mk

ak(m,n)qm

and together they form a basis for M∞k (Γ ) (see [15, 13, 14, 11, 12]). An-
other type of grids which do not involve harmonic weak Maass forms ap-
pears in [15, 13, 14]. It follows from [15, Corollary 1] and [14, Corollary 3.6]
that the two collections fk,n ∈ M !

k(Γ
+
0 (p)) (= M∞k (Γ+

0 (p))) and f2−k,m ∈
M !

2−k(Γ
+
0 (p)) form a grid. In particular, if dimSk(Γ

+
0 (p)) = 0, then the

grid given by fk,n and f2−k,m coincides with our grid (fn, gm) of Theo-
rem 1.1.

Theorem 1.2.

(i) Let (fn, gm) be a weight k grid on Γ and let Tn denote the usual
weight k Hecke operator. Then fn = n1−kf1|Tn for any positive in-
teger n relatively prime to the level of Γ .

(ii) Assume that g(Γ ) = 0. Then there exists a modular form ψ ∈Mk(Γ )
such that if n is a positive integer relatively prime to the level of Γ ,
then

fn − n1−kψ|Tn ∈ Q((q−1, q)).

Remark 2. In the proof of Theorem 1.2 in Section 4, ψ is chosen to be
f1 − fk,1, which belongs to Sk(Γ ) when Γ = Γ+

0 (p).

Example 1. Let Γ = Γ0(9) and k = 4. It follows from the Fourier
expansion of Q+(−m, 4, 9; τ) that

g+1 (τ) = q−1 − 1
4q

2 + 49
125q

5 +O(q6),

g+2 (τ) = q−2 − 2q − q4 +O(q6),

g+3 (τ) = q−3 + 3 − 18q3 +O(q6),

g+4 (τ) = q−4 − 8q2 − 11392
125 q

5 +O(q6),

g+5 (τ) = q−5 + 49q − 178q4 +O(q6).

...

Since f0(τ) =
∑

γ∈Γ∞\Γ 1|kγ and fn = (−n)−3D3gn for n ≥ 1, the Fourier
expansion of fn is given by
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f0(τ) = 1 − 3q3 +O(q6),

f1(τ) = q−1 + 2q2 − 49q5 +O(q6),

f2(τ) = q−2 +
1

4
q + 8q4 +O(q6),

f3(τ) = q−3 + 18q3 +O(q6),

f4(τ) = q−4 + q2 + 178q5 +O(q6),

f5(τ) = q−5 − 49
125q + 11392

125 q
4 +O(q6),

...

In the above we can observe that the duality relation c+gm(n) = −cfn(m)
holds, as expected from Theorem 1.1.

Let j9(τ) = (η(τ)/η(9τ))3 + 3 be the Hauptmodul for Γ0(9), and ∆9 =
η(9τ)6/η(3τ)2. It then follows from the Fourier expansion of f1 and [12] that

f1(τ) = f4,1 + 2f4,−2

where f4,−2 = ∆2
9 ·j29 and f4,1 = ∆2

9(j
5
9−29j29). From the action of the Hecke

operator Tn on the Fourier coefficients of f1 we can verify that fn = 1
n3 f1|Tn,

as desired in Theorem 1.2.
This paper is organized as follows. We begin with necessary background

on harmonic weak Maass forms in Section 2. The proof of Theorem 1.1 is
given in Section 3, while Theorem 1.2 is proved in Section 4.

2. Harmonic weak Maass forms. Let τ = x + iy ∈ H, the com-
plex upper half-plane, with x, y ∈ R. Let k ∈ Z and N a positive integer.
A smooth function f : H → C is called a harmonic weak Maass form of
weight k for Γ0(N) if it satisfies:

(i) For all γ = ( a bc d ) ∈ Γ0(N) we have

(f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
= f(τ).

(ii) ∆kf = 0, where ∆k is the weight k hyperbolic Laplace operator
defined by

∆k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

(iii) There is a Fourier polynomial Pf (τ) =
∑
−∞�n≤0 c

+
f (n)qn ∈ C[q−1]

such that f(τ) = Pf (τ) + O(e−εy) as y → ∞ for some ε > 0. Here
q = e2πiτ as usual. Analogous conditions are required at all cusps.

We denote the space of all harmonic weak Maass forms by Hk(Γ0(N)).
The polynomial Pf ∈ C[q−1] is called the principal part of f at the corre-



Harmonic weak Maass-modular grids 133

sponding cusps. In particular f ∈ Hk(Γ0(N)) has a unique decomposition
f = f+ + f−, where

f+(τ) =
∑

n�−∞
c+f (n)qn, f−(τ) =

∑
n<0

c−f (n)Γ (1− k, 4π|n|y)qn.

Here Γ (a, y) =
	∞
y e−tta−1dt denotes the incomplete Gamma function.

The Maass raising and lowering operators Rk and Lk on functions f :
H→ C are defined by

Rk = 2i
∂

∂τ
+ ky−1 = i

(
∂

∂x
− i ∂

∂y

)
+ ky−1,

Lk = −2iy2
∂

∂τ̄
= −iy2

(
∂

∂x
+ i

∂

∂y

)
.

We also recall the differential operator

D :=
1

2πi

d

dτ
.

For ε > 0 we denote by F(ε) the truncated fundamental domain

F(ε) = {τ ∈ H | |x| ≤ 1/2, |τ | ≥ 1, y ≤ 1/ε}
for SL2(Z), and we define the truncated fundamental domain for Γ0(N) by

FN (ε) =
⋃

γ∈Γ0(N)\SL2(Z)

γF(ε).

We denote by (·, ·) the Petersson inner product. Now we introduce the
regularized inner product (f, h)reg for f ∈M !

k(Γ0(N)) and h ∈Mk(Γ0(N)).
It is defined to be the constant term in the Laurent expansion at s = 0 of
the meromorphic continuation in s of the function

lim
ε→0+

�

FN (ε)

f(τ)h(τ)yk−s
dx dy

y2
.

As in [8, Remark 8], if f ∈M !
k(Γ0(N)) has vanishing constant term at every

cusp of Γ0(N), then

(f, h)reg = lim
ε→0+

�

FN (ε)

f(τ)h(τ)yk
dx dy

y2
.

For k ≥ 2 there is an antilinear differential operator ξ2−k : H2−k(Γ0(N))
→ Sk(Γ0(N)) defined by

ξ2−k(f)(τ) := yk L2−kf(τ).

Finally, we can define the regularized bilinear pairing {f, g} with f ∈
M !
k(Γ0(N)) and g ∈ H2−k(Γ0(N)) as

{f, g} := (f, ξ2−k(g))reg.
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3. Proof of Theorem 1.1. Let CN denote the set of all cusps for Γ0(N),
and hs the width for s ∈ CN . For each cusp s ∈ CN , take σs ∈ SL2(Z)
so that σs(s) = ∞. Then, at every cusp s ∈ CN , f ∈ M !

k(Γ0(N)) and
g ∈ H2−k(Γ0(N)) have Fourier expansions

(f |kσ−1s )(τ) =
∑

n�−∞
cf (s, n)qnhs ,

(g|2−kσ−1s )(τ) =
∑

n�−∞
c+g (s, n)qnhs +

∑
n<0

c−g (s, n)Γ (k − 1, 4π|n|y/hs)qnhs ,

where qhs = e2πiτ/hs . We denote by g+s (τ) (respectively, g−s (τ)) the holo-
morphic (respectively, nonholomorphic) part of (g|2−kσ−1s )(τ).

Theorem 3.1. Let f ∈ M !
k(Γ0(N)) and g ∈ H2−k(Γ0(N)). Suppose

that f has vanishing constant terms at all cusps of Γ0(N). Then, with the
notation as above,

{f, g} =
∑
s∈CN

hs

( ∑
m+n=0

cf (s,m)c+g (s, n)
)
.

Proof. Note that

d(f(τ)g(τ)dτ) = ∂̄(f(τ)g(τ) dτ) = f(τ)

(
∂

∂τ̄
g(τ)

)
dτ̄ ∧ dτ

= −f(τ)(L2−kg)
dxdy

y2
= −f(τ)ξ2−k(g)yk

dxdy

y2
.

We put
γ(s, ε) = {τ ∈ FN (ε) | Im(σsτ) = 1/ε}.

Then

{f, g} = − lim
ε→0+

�

FN (ε)

d(f(τ)g(τ) dτ) = − lim
ε→0+

�

∂FN (ε)

f(τ)g(τ) dτ

= − lim
ε→0+

∑
s∈CN

�

γ(s,ε)

f(τ)g(τ) dτ

= − lim
ε→0+

∑
s∈CN

�

σs(γ(s,ε))

(f |kσ−1s )(w)(g|2−kσ−1s )(w) dw

with w = σs(τ)

= lim
ε→0+

∑
s∈CN

hs/2+i/ε�

−hs/2+i/ε

(f |kσ−1s )(w)(g|2−kσ−1s )(w) dw

= lim
ε→0+

∑
s∈CN

hs/2�

−hs/2

(f |kσ−1s )(x+ i/ε)(g|2−kσ−1s )(x+ i/ε) dx

with w = x+ i/ε
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= lim
ε→0+

∑
s∈CN

( hs/2�

−hs/2

(f |kσ−1s )(x+ i/ε) · g−s (x+ i/ε) dx

+

hs/2�

−hs/2

(f |kσ−1s )(x+ i/ε) · g+s (x+ i/ε) dx
)
.

If we decompose (f |kσ−1s )(τ) = Pf,s(τ) +Rf,s(τ) with the principal part

Pf,s(τ) =
∑

−∞�m<0

cf (s,m)qmhs

of (f |kσ−1s )(τ), then

hs/2�

−hs/2

Pf,s(x+ i/ε) · g−s (x+ i/ε) dx =

hs/2�

−hs/2

( ∑
−∞�m<0

cf (s,m)e
2πim
hs

(x+i/ε)
)

×
(∑
n<0

c−g (s, n)Γ

(
k − 1, 4π|n| 1

εhs

)
e

2πim
hs

(x+i/ε)

)
dx

= hs
∑

−∞�m<0, n<0
m+n=0

cf (s,m)c−g (s, n)Γ

(
k − 1, 4π|n| 1

εhs

)
= 0.

Furthermore,

lim
ε→0+

hs/2�

−hs/2

Rf,s(x+ i/ε) · g−s (x+ i/ε) dx = 0

because g−s (x + i/ε) decays to zero due to the behavior of the incomplete
Gamma function Γ (k − 1, 4π|n|y) ∼ e−4π|n|y as y →∞.

Therefore,

{f, g} = lim
ε→0+

∑
s∈CN

hs/2�

−hs/2

(f |kσ−1s )(x+ i/ε) · g+s (x+ i/ε) dx

= lim
ε→0+

∑
s∈CN

hs/2�

−hs/2

( ∑
m�−∞

cf (s,m)e
2πim
hs

(x+i/ε)
)

×
( ∑
n�−∞

c+g (s, n)e
2πin
hs

(x+i/ε)
)
dx

= lim
ε→0+

∑
s∈CN

hs

( ∑
m+n=0

cf (s,m)c+g (s, n)
)

=
∑
s∈CN

hs

( ∑
m+n=0

cf (s,m)c+g (s, n)
)
.
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Hereafter we assume that k ≥ 2.

Lemma 3.2. Let m be a positive integer and gm ∈ H∞2−k(Γ ) be such that
gm = g−m + g+m and g+m = q−m +O(1).

(i) If k > 2, then the gm is unique.
(ii) If k = 2, then the gm is unique up to constants.

Proof. Suppose that there are two elements satisfying the definition
of gm and let h ∈ H∞2−k(Γ ) be their difference. By Theorem 3.1 we ob-
tain 0 = {φ, h} = (φ, ξ2−k(h)) for every φ ∈ Sk(Γ ). It then follows that
ξ2−k(h) = 0, i.e. h ∈M !

2−k(Γ ) ∩H∞2−k(Γ ). Furthermore, h ∈M2−k(Γ ) since
h is holomorphic at all cusps. Therefore h = 0 if k > 2, and h should be
constant if k = 2.

The uniqueness of the grid in Theorem 1.1 follows immediately from
Lemma 3.2. For m,N ≥ 1 and k ≥ 2, let Q(−m, k,N ; τ) be the harmonic
weak Maass form of weight 2−k for Γ0(N) defined as in [8]. Let Γ = Γ+

0 (p).
For m,n ≥ 1 and k ≥ 2 we take

gm(τ) = Q(−m, k, p; τ) +Q(−m, k, p; τ)|2−kWp,

fn(τ) = (−n)1−kDk−1gn(τ)

and for n = 0 and k > 2,

f0(τ) =
∑

γ∈Γ∞\Γ

1|kγ.

Indeed f0(τ) is the classical Eisenstein series. For details, we refer the reader
to [18, Theorems 2.6.6 and 2.6.9].

The following proposition comes from [21, Proposition 3.3].

Proposition 3.3. If k ≥ 2 and m,N ≥ 1, then Q(−m, k,N ; τ) ∈
H∞2−k(Γ0(N)) and Q+(−m, k,N ; τ) = q−m +O(1).

Proof. For the convenience of the reader, we prove that the principal
part of Q(−m, k,N ; τ) at all cusps other than∞ is constant. It follows from
[8, Section 6.2] that

(3.1) Dk−1Q(−m, k,N ; τ) = −mk−1P (−m, k,N ; τ),

where P (−m, k,N ; τ) is the classical Poincaré series defined as

P (−m, k,N ; τ) =
∑

γ∈Γ∞\Γ0(N)

e−2πimτ |kγ.

Let s be a cusp which is not Γ0(N)-equivalent to ∞, and σ ∈ SL2(Z) with
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σ(∞) = s. Then

Dk−1(Q(−m, k,N ; τ)|2−kσ)

= (Dk−1Q(−m, k,N ; τ))|kσ by Bol’s identity [2]

= −mk−1P (−m, k,N ; τ)|kσ by (3.1)

= −mk−1
∑

γ∈Γ∞\Γ0(N)

e−2πimτ |kγσ.

Since γσ(∞) 6= ∞ for all γ ∈ Γ0(N), we see that γσ =
(
a b
c d

)
with c 6= 0.

Thus

|e−2πimτ |kγσ| =
e2πmy/|cτ+d|

2

|cτ + d|k
≤ e2πm/y

|cτ + d|k
.

This implies that if k > 2, then P (−m, k,N ; τ)|kσ is bounded as y → ∞,
whence Q(−m, k,N ; τ) has a constant principal part at the cusp s.

Now we assume k = 2. In this case,

ϕ∗m(τ) = M0,1/2(4πmy)e−2πimx

= 2π
√
my1/2I1/2(2πmy)e−2πimx by [1, (13.6.3)] or [7, Section 3.1].

This implies that our Q(−m, 2, N ; τ) equals 2π
√
m Fm(τ, 1), where Fm(τ, s)

is the Niebur-Poincaré series. Since Fm(τ, 1) has a constant principal part
at all cusps other than ∞ (see [19, 17] and [10, Section 2]), we have the
desired assertion.

We remark that gm and fn have Fourier expansions

gm(τ) = g−m(τ) + q−m +
∑
n≥0

c+gm(n)qn ∈ H2−k(Γ
+
0 (p)),

fn(τ) = q−n +
∑
m>0

cfn(m)qm ∈M !
k(Γ

+
0 (p)).

Theorem 3.4. Let Γ = Γ+
0 (p). With the same notation as above:

(i) If k > 2, then

c+gm(n) = −cfn(m) for all m ≥ 1 and n ≥ 0.

(ii) If k = 2, then the relation in (i) holds for all m,n ≥ 1.

Proof. If n = 0 and k > 2, then {f0, gm} = (f0, ξ2−k(gm)) = 0 since f0 is
an Eisenstein series and ξ2−k(gm) is a cusp form (see [18, Theorem 2.6.10]).
For n ≥ 1, we can infer

{fn, gm} = (fn, ξ2−k(gm))reg = (−n)1−k(Dk−1gn, ξ2−k(gm))reg = 0

from [8, Corollary 4.3] or [3, Theorem 1.2]. By Theorem 3.1 we have
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0 = {fn, gm} =
∑
s∈Cp

hs

( ∑
m′+n′=0

cfn(s,m′)c+gm(s, n′)
)

=
∑

m′+n′=0

cfn(∞,m′)c+gm(∞, n′) + p
∑

m′+n′=0

cfn(0,m′)c+gm(0, n′)

= (1 + p)
∑

m′+n′=0

cfn(∞,m′)c+gm(∞, n′)

= (1 + p)(cfn(∞,m) + c+gm(∞, n)).

Let Γ = Γ0(N). For m,n ≥ 1 and k ≥ 2 we take

gm(τ) = Q(−m, k,N ; τ), fn(τ) = (−n)1−kDk−1gn(τ)

and for n = 0 and k > 2,

f0(τ) =
∑

γ∈Γ∞\Γ

1|kγ.

We observe from [21, Proposition 3.3] that gm ∈ H∞2−k(Γ0(N)) and fn ∈
M∞k (Γ0(N)). Now we write the Fourier expansions of gm and fn as

gm(τ) = g−m(τ) + q−m +
∑
n≥0

c+gm(n)qn, fn(τ) = q−n +
∑
m>0

cfn(m)qm.

Theorem 3.5. Let Γ = Γ0(N). With the same notation as above:

(i) If k > 2, then

c+gm(n) = −cfn(m) for all m ≥ 1 and n ≥ 0.

(ii) If k = 2, then the relation in (i) holds for all m,n ≥ 1.

Proof. We proceed as in the proof of Theorem 3.4. First, {fn, gm} = 0
for the same reason, and hence

0 = {fn, gm} =
∑
s∈CN

hs

( ∑
m′+n′=0

cfn(s,m′)c+gm(s, n′)
)

=
∑

m′+n′=0

cfn(∞,m′)c+gm(∞, n′) +
∑

s∈CN−{∞}

hs

( ∑
m′+n′=0

cfn(s,m′)c+gm(s, n′)
)

= cfn(∞,m) + c+gm(∞, n) +
∑

s∈CN−{∞}

hs

( ∑
m′+n′=0

cfn(s,m′)c+gm(s, n′)
)
.

The Maass–Poincaré series gm has the Fourier expansion at s ∈ CN − {∞}
of the form

gm|2−kσ−1s = g−m,s +
∑
l≥0

c+gm(s, l)qlhs ,

and also fn (n ≥ 1) has the Fourier expansion

fn|kσ−1s = (−n)1−kDk−1(gn|2−kσ−1s ) =
∑
l>0

cfn(s, l)qlhs
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with

cfn(s, l) = (−n)1−kc+gn(s, l)(l/hs)
k−1.

We also note that the Eisenstein series f0 vanishes at all cusps s ∈ CN−{∞}.
Therefore, ∑

s∈CN−{∞}

hs

( ∑
m′+n′=0

cfn(s,m′)c+gm(s, n′)
)

= 0.

In fact, we can prove Theorem 3.5 by dealing with their Fourier coeffi-
cients explicitly as follows.

Lemma 3.6. For any m,n ∈ Z, let K(m,n, c) be the Kloosterman sum

K(m,n, c) =
∑
v(c)×

e

(
mv̄ + nv

c

)
.

Then

K(−m,n, c) = K(−n,m, c).
Proof. By direct computation,

K(−m,n, c) =
∑
v(c)×

e

(
−mv̄ + nv

c

)

=
∑
v(c)×

e

(
−m(−v) + n(−v̄)

c

)
= K(−n,m, c).

Lemma 3.7. With the notation as above, for all m,n ≥ 1,

c+gn(m)mk−1 = c+gm(n)nk−1.

Proof. We recall from Remark 1 that the Fourier coefficient of qn in g+m
is

c+gm(n) = −2π(−1)k/2
∑
c>0

c≡0 (N)

(
m

n

)(k−1)/2K(−m,n, c)
c

Ik−1

(
4π
√
|mn|
c

)
.

By Lemma 3.6,

c+gm(n)

=

(
m

n

)k−1(
− 2π(−1)k/2

∑
c>0

c≡0 (N)

(
n

m

)(k−1)/2K(−n,m,c)
c

Ik−1

(
4π
√
|nm|
c

))

=

(
m

n

)k−1
c+gn(m).

Another proof of Theorem 3.5. When m,n ≥ 1, Theorem 3.5 follows
immediately from Lemma 3.7:

cfn(m) = (−n)1−kc+gn(m)mk−1 = (−n)1−kc+gm(n)nk−1 = −c+gm(n).



140 B. Cho et al.

Finally when n = 0, we find from Lemma 3.6 and the formulas for the
Fourier coefficients cf0(m) and c+gm(0) given in Remark 1 that

cf0(m) = −c+gm(0).

4. Proof of Theorem 1.2. The Hecke operators Tn act on harmonic
weak Maass forms and on weakly holomorphic modular forms in the usual
way, and the formula for the action on the Fourier coefficients is the same.
Since g1|Tm belongs to the space H∞2−k(Γ ) and has principal part m1−kq−m,

it follows from Lemma 3.2 that gm = mk−1g1|Tm. We then have

−fn = Dk−1(n1−kgn) = Dk−1(g1|Tn) = Dk−1
(
n−k/2

∑
ad=n
0≤b<d

g1|2−k
(
a b
0 d

))
= n−k/2

∑
ad=n
0≤b<d

(Dk−1g1)|k
(
a b
0 d

)
= n1−k

∑
ad=n
0≤b<d

nk/2−1(Dk−1g1)|k
(
a b
0 d

)
= n1−k(Dk−1g1)|Tn = −n1−kf1|Tn.

Now we take ψ = f1 − fk,1 where fk,1 is the weakly holomorphic modular
form in the space M∞k (Γ ) defined in Remark 1(ii). Then ψ ∈Mk(Γ ). Since
fn = n1−kf1|Tn, we obtain fn = n1−kψ|Tn +n1−kfk,1|Tn. Now the assertion
follows since ψ|Tn ∈Mk(Γ ) and n1−kfk,1|Tn ∈ n1−kZ((q−1, q)).
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